gecko-dev/third_party/rust/bincode
Manish Goregaokar 6029c24c9d Bug 1341102: Revendor rust dependencies; r=bustage
MozReview-Commit-ID: 7hXRyaLssOZ


--HG--
rename : third_party/rust/cssparser/src/macros/match_byte.rs => third_party/rust/cssparser/build/match_byte.rs
2017-02-28 09:23:59 -08:00
..
examples
src Bug 1341102: Revendor rust dependencies; r=bustage 2017-02-28 09:23:59 -08:00
tests Bug 1341102: Revendor rust dependencies; r=bustage 2017-02-28 09:23:59 -08:00
.cargo-checksum.json Bug 1341102: Revendor rust dependencies; r=bustage 2017-02-28 09:23:59 -08:00
.cargo-ok
.gitignore
.travis.yml
Cargo.toml Bug 1341102: Revendor rust dependencies; r=bustage 2017-02-28 09:23:59 -08:00
LICENSE.md
changelist.org
logo.png
readme.dev.md
readme.md Bug 1341102: Revendor rust dependencies; r=bustage 2017-02-28 09:23:59 -08:00

readme.md

Bincode

Build Status

A compact encoder / decoder pair that uses an binary zero-fluff encoding scheme. The size of the encoded object will be the same or smaller than the size that the object takes up in memory in a running Rust program.

In addition to exposing two simple functions that encode to Vec and decode from Vec, binary-encode exposes a Reader/Writer API that makes it work perfectly with other stream-based apis such as rust files, network streams, and the flate2-rs compression library.

Api Documentation

Bincode in the wild

  • google/tarpc: Bincode is used to serialize and deserialize networked RPC messages.
  • servo/webrender: Bincode records webrender API calls for record/replay-style graphics debugging.
  • servo/icp-channel: Ipc-Channel uses Bincode to send structs between processes using a channel-like API.

Example

extern crate bincode;
extern crate rustc_serialize;

use bincode::SizeLimit;
use bincode::rustc_serialize::{encode, decode};

#[derive(RustcEncodable, RustcDecodable, PartialEq)]
struct Entity {
    x: f32,
    y: f32,
}

#[derive(RustcEncodable, RustcDecodable, PartialEq)]
struct World {
    entities: Vec<Entity>
}

fn main() {
    let world = World {
        entities: vec![Entity {x: 0.0, y: 4.0}, Entity {x: 10.0, y: 20.5}]
    };

    let encoded: Vec<u8> = encode(&world, SizeLimit::Infinite).unwrap();

    // 8 bytes for the length of the vector, 4 bytes per float.
    assert_eq!(encoded.len(), 8 + 4 * 4);

    let decoded: World = decode(&encoded[..]).unwrap();

    assert!(world == decoded);
}

Details

The encoding (and thus decoding) proceeds unsurprisingly -- primitive types are encoded according to the underlying Writer, tuples and structs are encoded by encoding their fields one-by-one, and enums are encoded by first writing out the tag representing the variant and then the contents.

However, there are some implementation details to be aware of:

  • isize/usize are encoded as i64/u64, for portability.
  • enums variants are encoded as a u32 instead of a uint. u32 is enough for all practical uses.
  • str is encoded as (u64, &[u8]), where the u64 is the number of bytes contained in the encoded string.