gecko-dev/dom/canvas/DrawTargetWebglInternal.h

417 строки
15 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef _MOZILLA_GFX_DRAWTARGETWEBGL_INTERNAL_H
#define _MOZILLA_GFX_DRAWTARGETWEBGL_INTERNAL_H
#include "DrawTargetWebgl.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/gfx/PathSkia.h"
namespace mozilla::gfx {
// TexturePacker implements a bin-packing algorithm for 2D rectangles. It uses
// a binary tree that partitions the space of a node at a given split. This
// produces two children, one on either side of the split. This subdivision
// proceeds recursively as necessary.
class TexturePacker {
public:
explicit TexturePacker(const IntRect& aBounds, bool aAvailable = true)
: mBounds(aBounds),
mAvailable(aAvailable ? std::min(aBounds.width, aBounds.height) : 0) {}
Maybe<IntPoint> Insert(const IntSize& aSize);
bool Remove(const IntRect& aBounds);
const IntRect& GetBounds() const { return mBounds; }
private:
bool IsLeaf() const { return !mChildren; }
bool IsFullyAvailable() const { return IsLeaf() && mAvailable > 0; }
void DiscardChildren() { mChildren.reset(); }
// If applicable, the two children produced by picking a single axis split
// within the node's bounds and subdividing the bounds there.
UniquePtr<TexturePacker[]> mChildren;
// The bounds enclosing this node and any children within it.
IntRect mBounds;
// For a leaf node, specifies the size of the smallest dimension available to
// allocate. For a branch node, specifies largest potential available size of
// all children. This can be used during the allocation process to rapidly
// reject certain sub-trees without having to search all the way to a leaf
// node if we know that largest available size within the sub-tree wouldn't
// fit the requested size.
int mAvailable = 0;
};
// CacheEnty is a generic interface for various items that need to be cached to
// a texture.
class CacheEntry : public RefCounted<CacheEntry> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(CacheEntry)
CacheEntry(const Matrix& aTransform, const IntRect& aBounds, HashNumber aHash)
: mTransform(aTransform), mBounds(aBounds), mHash(aHash) {}
virtual ~CacheEntry() = default;
void Link(const RefPtr<TextureHandle>& aHandle);
void Unlink();
const RefPtr<TextureHandle>& GetHandle() const { return mHandle; }
const Matrix& GetTransform() const { return mTransform; }
const IntRect& GetBounds() const { return mBounds; }
HashNumber GetHash() const { return mHash; }
virtual bool IsValid() const { return true; }
protected:
virtual void RemoveFromList() = 0;
// The handle of the rendered cache item.
RefPtr<TextureHandle> mHandle;
// The transform that was used to render the entry. This is necessary as
// the geometry might only be correctly rendered in device space after
// the transform is applied, so in general we can't cache untransformed
// geometry.
Matrix mTransform;
// The device space bounds of the rendered geometry.
IntRect mBounds;
// A hash of the geometry that may be used for quickly rejecting entries.
HashNumber mHash;
};
// CacheEntryImpl provides type-dependent boilerplate code for implementations
// of CacheEntry.
template <typename T>
class CacheEntryImpl : public CacheEntry, public LinkedListElement<RefPtr<T>> {
typedef LinkedListElement<RefPtr<T>> ListType;
public:
CacheEntryImpl(const Matrix& aTransform, const IntRect& aBounds,
HashNumber aHash)
: CacheEntry(aTransform, aBounds, aHash) {}
void RemoveFromList() override {
if (ListType::isInList()) {
ListType::remove();
}
}
};
// CacheImpl manages a list of CacheEntry.
template <typename T>
class CacheImpl {
typedef LinkedList<RefPtr<T>> ListType;
static constexpr size_t kNumChains = 17;
public:
~CacheImpl() {
for (size_t i = 0; i < kNumChains; ++i) {
while (RefPtr<T> entry = mChains[i].popLast()) {
entry->Unlink();
}
}
}
protected:
ListType& GetChain(HashNumber aHash) { return mChains[aHash % kNumChains]; }
void Insert(T* aEntry) { GetChain(aEntry->GetHash()).insertFront(aEntry); }
ListType mChains[kNumChains];
};
// TextureHandle is an abstract base class for supplying textures to drawing
// commands that may be backed by different resource types (such as a shared
// or standalone texture). It may be further linked to use-specific metadata
// such as for shadow drawing or for cached entries in the glyph cache.
class TextureHandle : public RefCounted<TextureHandle>,
public LinkedListElement<RefPtr<TextureHandle>> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(TextureHandle)
enum Type { SHARED, STANDALONE };
virtual Type GetType() const = 0;
virtual const RefPtr<WebGLTextureJS>& GetWebGLTexture() const = 0;
virtual IntRect GetBounds() const = 0;
IntSize GetSize() const { return GetBounds().Size(); }
virtual IntSize GetBackingSize() const = 0;
virtual SurfaceFormat GetFormat() const = 0;
virtual size_t UsedBytes() const = 0;
static inline size_t UsedBytes(SurfaceFormat aFormat, const IntSize& aSize) {
return size_t(BytesPerPixel(aFormat)) * size_t(aSize.width) *
size_t(aSize.height);
}
virtual void UpdateSize(const IntSize& aSize) {}
virtual void Cleanup(DrawTargetWebgl::SharedContext& aContext) {}
virtual ~TextureHandle() {}
bool IsValid() const { return mValid; }
void Invalidate() { mValid = false; }
void SetSurface(SourceSurface* aSurface) { mSurface = aSurface; }
SourceSurface* GetSurface() const { return mSurface; }
float GetSigma() const { return mSigma; }
void SetSigma(float aSigma) { mSigma = aSigma; }
bool IsShadow() const { return mSigma >= 0.0f; }
void SetSamplingOffset(const IntPoint& aSamplingOffset) {
mSamplingOffset = aSamplingOffset;
}
const IntPoint& GetSamplingOffset() const { return mSamplingOffset; }
IntRect GetSamplingRect() const {
return IntRect(GetSamplingOffset(), GetSize());
}
const RefPtr<CacheEntry>& GetCacheEntry() const { return mCacheEntry; }
void SetCacheEntry(const RefPtr<CacheEntry>& aEntry) { mCacheEntry = aEntry; }
// Note as used if there is corresponding surface or cache entry.
bool IsUsed() const {
return mSurface || (mCacheEntry && mCacheEntry->IsValid());
}
private:
bool mValid = true;
// If applicable, weak pointer to the SourceSurface that is linked to this
// TextureHandle.
SourceSurface* mSurface = nullptr;
// If this TextureHandle stores a cached shadow, then we need to remember the
// blur sigma used to produce the shadow.
float mSigma = -1.0f;
// If the originating surface requested a sampling rect, then we need to know
// the offset of the subrect within the surface for texture coordinates.
IntPoint mSamplingOffset;
// If applicable, the CacheEntry that is linked to this TextureHandle.
RefPtr<CacheEntry> mCacheEntry;
};
class SharedTextureHandle;
// SharedTexture is a large slab texture that is subdivided (by using a
// TexturePacker) to hold many small SharedTextureHandles. This avoids needing
// to allocate many WebGL textures for every single small Canvas 2D texture.
class SharedTexture : public RefCounted<SharedTexture> {
public:
MOZ_DECLARE_REFCOUNTED_TYPENAME(SharedTexture)
SharedTexture(const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<WebGLTextureJS>& aTexture);
already_AddRefed<SharedTextureHandle> Allocate(const IntSize& aSize);
bool Free(const SharedTextureHandle& aHandle);
SurfaceFormat GetFormat() const { return mFormat; }
IntSize GetSize() const { return mPacker.GetBounds().Size(); }
size_t UsedBytes() const {
return TextureHandle::UsedBytes(GetFormat(), GetSize());
}
bool HasAllocatedHandles() const { return mAllocatedHandles > 0; }
const RefPtr<WebGLTextureJS>& GetWebGLTexture() const { return mTexture; }
private:
TexturePacker mPacker;
SurfaceFormat mFormat;
RefPtr<WebGLTextureJS> mTexture;
size_t mAllocatedHandles = 0;
};
// SharedTextureHandle is an allocated region within a large SharedTexture page
// that owns it.
class SharedTextureHandle : public TextureHandle {
friend class SharedTexture;
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(SharedTextureHandle, override)
SharedTextureHandle(const IntRect& aBounds, SharedTexture* aTexture);
Type GetType() const override { return Type::SHARED; }
const RefPtr<WebGLTextureJS>& GetWebGLTexture() const override {
return mTexture->GetWebGLTexture();
}
IntRect GetBounds() const override { return mBounds; }
IntSize GetBackingSize() const override { return mTexture->GetSize(); }
SurfaceFormat GetFormat() const override { return mTexture->GetFormat(); }
size_t UsedBytes() const override {
return TextureHandle::UsedBytes(GetFormat(), mBounds.Size());
}
void Cleanup(DrawTargetWebgl::SharedContext& aContext) override;
const RefPtr<SharedTexture>& GetOwner() const { return mTexture; }
private:
IntRect mBounds;
RefPtr<SharedTexture> mTexture;
};
// StandaloneTexture is a texture that can not be effectively shared within
// a SharedTexture page, such that it is better to assign it its own WebGL
// texture.
class StandaloneTexture : public TextureHandle {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(StandaloneTexture, override)
StandaloneTexture(const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<WebGLTextureJS>& aTexture);
Type GetType() const override { return Type::STANDALONE; }
SurfaceFormat GetFormat() const override { return mFormat; }
const RefPtr<WebGLTextureJS>& GetWebGLTexture() const override {
return mTexture;
}
IntRect GetBounds() const override { return IntRect(IntPoint(0, 0), mSize); }
IntSize GetBackingSize() const override { return mSize; }
size_t UsedBytes() const override {
return TextureHandle::UsedBytes(mFormat, mSize);
}
void UpdateSize(const IntSize& aSize) override { mSize = aSize; }
void Cleanup(DrawTargetWebgl::SharedContext& aContext) override;
private:
IntSize mSize;
SurfaceFormat mFormat;
RefPtr<WebGLTextureJS> mTexture;
};
// GlyphCacheEntry stores rendering metadata for a rendered text run, as well
// the handle to the texture it was rendered into, so that it can be located
// for reuse under similar rendering circumstances.
class GlyphCacheEntry : public CacheEntryImpl<GlyphCacheEntry> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(GlyphCacheEntry, override)
GlyphCacheEntry(const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aBounds, const IntRect& aFullBounds,
HashNumber aHash);
~GlyphCacheEntry();
const GlyphBuffer& GetGlyphBuffer() const { return mBuffer; }
bool MatchesGlyphs(const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeOffset,
const IntPoint& aBoundsOffset, const IntRect& aClipRect,
HashNumber aHash);
static HashNumber HashGlyphs(const GlyphBuffer& aBuffer,
const Matrix& aTransform,
const IntPoint& aQuantizeScale);
private:
// The glyph keys used to render the text run.
GlyphBuffer mBuffer = {nullptr, 0};
// The color of the text run.
DeviceColor mColor;
// The full bounds of the text run without any clipping applied.
IntRect mFullBounds;
};
// GlyphCache maintains a list of GlyphCacheEntry's representing previously
// rendered text runs. The cache is searched to see if a given incoming text
// run has already been rendered to a texture, and if so, just reuses it.
// Otherwise, the text run will be rendered to a new texture handle and
// inserted into a new GlyphCacheEntry to represent it.
class GlyphCache : public LinkedListElement<GlyphCache>,
public CacheImpl<GlyphCacheEntry> {
public:
explicit GlyphCache(ScaledFont* aFont);
ScaledFont* GetFont() const { return mFont; }
already_AddRefed<GlyphCacheEntry> FindEntry(const GlyphBuffer& aBuffer,
const DeviceColor& aColor,
const Matrix& aTransform,
const IntPoint& aQuantizeScale,
const IntRect& aClipRect,
HashNumber aHash);
already_AddRefed<GlyphCacheEntry> InsertEntry(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aBounds, const IntRect& aFullBounds, HashNumber aHash);
private:
// Weak pointer to the owning font
ScaledFont* mFont;
};
// PathCacheEntry stores a rasterized version of a supplied path with a given
// pattern.
class PathCacheEntry : public CacheEntryImpl<PathCacheEntry> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(PathCacheEntry, override)
PathCacheEntry(const SkPath& aPath, Pattern* aPattern,
StoredStrokeOptions* aStrokeOptions, const Matrix& aTransform,
const IntRect& aBounds, const Point& aOrigin, HashNumber aHash,
float aSigma = -1.0f);
bool MatchesPath(const SkPath& aPath, const Pattern* aPattern,
const StrokeOptions* aStrokeOptions,
const Matrix& aTransform, const IntRect& aBounds,
const Point& aOrigin, HashNumber aHash, float aSigma);
static HashNumber HashPath(const SkPath& aPath, const Pattern* aPattern,
const Matrix& aTransform, const IntRect& aBounds);
const Point& GetOrigin() const { return mOrigin; }
// Valid if either a mask (no pattern) or there is valid pattern.
bool IsValid() const override { return !mPattern || mPattern->IsValid(); }
private:
// The actual path geometry supplied
SkPath mPath;
// The transformed origin of the path
Point mOrigin;
// The pattern used to rasterize the path, if not a mask
UniquePtr<Pattern> mPattern;
// The StrokeOptions used for stroked paths, if applicable
UniquePtr<StoredStrokeOptions> mStrokeOptions;
// The shadow blur sigma
float mSigma;
};
class PathCache : public CacheImpl<PathCacheEntry> {
public:
PathCache() = default;
already_AddRefed<PathCacheEntry> FindOrInsertEntry(
const SkPath& aPath, const Pattern* aPattern,
const StrokeOptions* aStrokeOptions, const Matrix& aTransform,
const IntRect& aBounds, const Point& aOrigin, float aSigma = -1.0f);
};
} // namespace mozilla::gfx
#endif // _MOZILLA_GFX_DRAWTARGETWEBGL_INTERNAL_H