gecko-dev/servo/components/layout/sequential.rs

170 строки
6.6 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Implements sequential traversals over the DOM and flow trees.
use app_units::Au;
use context::LayoutContext;
use display_list_builder::DisplayListBuildState;
use euclid::{Point2D, Vector2D};
use floats::SpeculatedFloatPlacement;
use flow::{self, Flow, ImmutableFlowUtils, InorderFlowTraversal, MutableFlowUtils};
use flow::{PostorderFlowTraversal, PreorderFlowTraversal};
use flow::IS_ABSOLUTELY_POSITIONED;
use fragment::{FragmentBorderBoxIterator, CoordinateSystem};
use generated_content::ResolveGeneratedContent;
use incremental::RelayoutMode;
use servo_config::opts;
use style::servo::restyle_damage::{REFLOW, REFLOW_OUT_OF_FLOW, STORE_OVERFLOW};
use traversal::{AssignBSizes, AssignISizes, BubbleISizes, BuildDisplayList};
pub use style::sequential::traverse_dom;
pub fn resolve_generated_content(root: &mut Flow, layout_context: &LayoutContext) {
fn doit(flow: &mut Flow, level: u32, traversal: &mut ResolveGeneratedContent) {
if !traversal.should_process(flow) {
return;
}
traversal.process(flow, level);
for kid in flow::mut_base(flow).children.iter_mut() {
doit(kid, level + 1, traversal)
}
}
let mut traversal = ResolveGeneratedContent::new(&layout_context);
doit(root, 0, &mut traversal)
}
pub fn traverse_flow_tree_preorder(root: &mut Flow, layout_context: &LayoutContext, relayout_mode: RelayoutMode) {
fn doit(flow: &mut Flow,
assign_inline_sizes: AssignISizes,
assign_block_sizes: AssignBSizes,
relayout_mode: RelayoutMode) {
// Force reflow children during this traversal. This is needed when we failed
// the float speculation of a block formatting context and need to fix it.
if relayout_mode == RelayoutMode::Force {
flow::mut_base(flow)
.restyle_damage
.insert(REFLOW_OUT_OF_FLOW | REFLOW);
}
if assign_inline_sizes.should_process(flow) {
assign_inline_sizes.process(flow);
}
for kid in flow::child_iter_mut(flow) {
doit(kid, assign_inline_sizes, assign_block_sizes, relayout_mode);
}
if assign_block_sizes.should_process(flow) {
assign_block_sizes.process(flow);
}
}
if opts::get().bubble_inline_sizes_separately {
let bubble_inline_sizes = BubbleISizes {
layout_context: &layout_context,
};
{
let root: &mut Flow = root;
root.traverse_postorder(&bubble_inline_sizes);
}
}
let assign_inline_sizes = AssignISizes {
layout_context: &layout_context,
};
let assign_block_sizes = AssignBSizes {
layout_context: &layout_context,
};
doit(root, assign_inline_sizes, assign_block_sizes, relayout_mode);
}
pub fn build_display_list_for_subtree<'a>(flow_root: &mut Flow,
layout_context: &'a LayoutContext)
-> DisplayListBuildState<'a> {
let mut state = DisplayListBuildState::new(layout_context);
flow_root.collect_stacking_contexts(&mut state);
let mut build_display_list = BuildDisplayList {
state: state,
};
build_display_list.traverse(flow_root);
build_display_list.state
}
pub fn iterate_through_flow_tree_fragment_border_boxes(root: &mut Flow, iterator: &mut FragmentBorderBoxIterator) {
fn doit(flow: &mut Flow,
level: i32,
iterator: &mut FragmentBorderBoxIterator,
stacking_context_position: &Point2D<Au>) {
flow.iterate_through_fragment_border_boxes(iterator, level, stacking_context_position);
for kid in flow::mut_base(flow).child_iter_mut() {
let mut stacking_context_position = *stacking_context_position;
if kid.is_block_flow() && kid.as_block().fragment.establishes_stacking_context() {
stacking_context_position = Point2D::new(kid.as_block().fragment.margin.inline_start, Au(0)) +
flow::base(kid).stacking_relative_position +
stacking_context_position.to_vector();
let relative_position = kid.as_block()
.stacking_relative_position(CoordinateSystem::Own);
if let Some(matrix) = kid.as_block()
.fragment
.transform_matrix(&relative_position) {
let transform_matrix = matrix.transform_point2d(&Point2D::zero());
stacking_context_position = stacking_context_position +
Vector2D::new(Au::from_f32_px(transform_matrix.x),
Au::from_f32_px(transform_matrix.y))
}
}
doit(kid, level + 1, iterator, &stacking_context_position);
}
}
doit(root, 0, iterator, &Point2D::zero());
}
pub fn store_overflow(layout_context: &LayoutContext, flow: &mut Flow) {
if !flow::base(flow).restyle_damage.contains(STORE_OVERFLOW) {
return;
}
for mut kid in flow::mut_base(flow).child_iter_mut() {
store_overflow(layout_context, kid);
}
flow.store_overflow(layout_context);
flow::mut_base(flow)
.restyle_damage
.remove(STORE_OVERFLOW);
}
/// Guesses how much inline size will be taken up by floats on the left and right sides of the
/// given flow. This is needed to speculatively calculate the inline sizes of block formatting
/// contexts. The speculation typically succeeds, but if it doesn't we have to lay it out again.
pub fn guess_float_placement(flow: &mut Flow) {
if !flow::base(flow).restyle_damage.intersects(REFLOW) {
return;
}
let mut floats_in = SpeculatedFloatPlacement::compute_floats_in_for_first_child(flow);
for kid in flow::mut_base(flow).child_iter_mut() {
if flow::base(kid).flags.contains(IS_ABSOLUTELY_POSITIONED) {
// Do not propagate floats in or out, but do propogate between kids.
guess_float_placement(kid);
} else {
floats_in.compute_floats_in(kid);
flow::mut_base(kid).speculated_float_placement_in = floats_in;
guess_float_placement(kid);
floats_in = flow::base(kid).speculated_float_placement_out;
}
}
floats_in.compute_floats_out(flow);
flow::mut_base(flow).speculated_float_placement_out = floats_in
}