зеркало из https://github.com/mozilla/gecko-dev.git
3492 строки
122 KiB
C++
3492 строки
122 KiB
C++
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifdef XP_WIN
|
|
// Include Windows headers required for enabling high precision timers.
|
|
#include "windows.h"
|
|
#include "mmsystem.h"
|
|
#endif
|
|
|
|
#include "mozilla/DebugOnly.h"
|
|
#include <stdint.h>
|
|
|
|
#include "MediaDecoderStateMachine.h"
|
|
#include "MediaTimer.h"
|
|
#include "AudioSink.h"
|
|
#include "nsTArray.h"
|
|
#include "MediaDecoder.h"
|
|
#include "MediaDecoderReader.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
#include "mozilla/mozalloc.h"
|
|
#include "VideoUtils.h"
|
|
#include "TimeUnits.h"
|
|
#include "nsDeque.h"
|
|
#include "AudioSegment.h"
|
|
#include "VideoSegment.h"
|
|
#include "ImageContainer.h"
|
|
#include "nsComponentManagerUtils.h"
|
|
#include "nsITimer.h"
|
|
#include "nsContentUtils.h"
|
|
#include "MediaShutdownManager.h"
|
|
#include "SharedThreadPool.h"
|
|
#include "MediaTaskQueue.h"
|
|
#include "nsIEventTarget.h"
|
|
#include "prenv.h"
|
|
#include "mozilla/Preferences.h"
|
|
#include "gfx2DGlue.h"
|
|
#include "nsPrintfCString.h"
|
|
#include "DOMMediaStream.h"
|
|
#include "DecodedStream.h"
|
|
|
|
#include <algorithm>
|
|
|
|
namespace mozilla {
|
|
|
|
using namespace mozilla::dom;
|
|
using namespace mozilla::gfx;
|
|
using namespace mozilla::layers;
|
|
using namespace mozilla::media;
|
|
|
|
#define NS_DispatchToMainThread(...) CompileError_UseAbstractThreadDispatchInstead
|
|
|
|
// avoid redefined macro in unified build
|
|
#undef LOG
|
|
#undef DECODER_LOG
|
|
#undef VERBOSE_LOG
|
|
|
|
extern PRLogModuleInfo* gMediaDecoderLog;
|
|
extern PRLogModuleInfo* gMediaSampleLog;
|
|
#define LOG(m, l, x, ...) \
|
|
MOZ_LOG(m, l, ("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__))
|
|
#define DECODER_LOG(x, ...) \
|
|
LOG(gMediaDecoderLog, LogLevel::Debug, x, ##__VA_ARGS__)
|
|
#define VERBOSE_LOG(x, ...) \
|
|
LOG(gMediaDecoderLog, LogLevel::Verbose, x, ##__VA_ARGS__)
|
|
#define SAMPLE_LOG(x, ...) \
|
|
LOG(gMediaSampleLog, LogLevel::Debug, x, ##__VA_ARGS__)
|
|
|
|
// Somehow MSVC doesn't correctly delete the comma before ##__VA_ARGS__
|
|
// when __VA_ARGS__ expands to nothing. This is a workaround for it.
|
|
#define DECODER_WARN_HELPER(a, b) NS_WARNING b
|
|
#define DECODER_WARN(x, ...) \
|
|
DECODER_WARN_HELPER(0, (nsPrintfCString("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__).get()))
|
|
|
|
// Certain constants get stored as member variables and then adjusted by various
|
|
// scale factors on a per-decoder basis. We want to make sure to avoid using these
|
|
// constants directly, so we put them in a namespace.
|
|
namespace detail {
|
|
|
|
// If audio queue has less than this many usecs of decoded audio, we won't risk
|
|
// trying to decode the video, we'll skip decoding video up to the next
|
|
// keyframe. We may increase this value for an individual decoder if we
|
|
// encounter video frames which take a long time to decode.
|
|
static const uint32_t LOW_AUDIO_USECS = 300000;
|
|
|
|
// If more than this many usecs of decoded audio is queued, we'll hold off
|
|
// decoding more audio. If we increase the low audio threshold (see
|
|
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
|
|
// less than the low audio threshold.
|
|
const int64_t AMPLE_AUDIO_USECS = 1000000;
|
|
|
|
} // namespace detail
|
|
|
|
// When we're only playing audio and we don't have a video stream, we divide
|
|
// AMPLE_AUDIO_USECS and LOW_AUDIO_USECS by the following value. This reduces
|
|
// the amount of decoded audio we buffer, reducing our memory usage. We only
|
|
// need to decode far ahead when we're decoding video using software decoding,
|
|
// as otherwise a long video decode could cause an audio underrun.
|
|
const int64_t NO_VIDEO_AMPLE_AUDIO_DIVISOR = 8;
|
|
|
|
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
|
|
// we're not "prerolling video", we'll skip the video up to the next keyframe
|
|
// which is at or after the current playback position.
|
|
static const uint32_t LOW_VIDEO_FRAMES = 1;
|
|
|
|
// Threshold in usecs that used to check if we are low on decoded video.
|
|
// If the last video frame's end time |mDecodedVideoEndTime| is more than
|
|
// |LOW_VIDEO_THRESHOLD_USECS*mPlaybackRate| after the current clock in
|
|
// Advanceframe(), the video decode is lagging, and we skip to next keyframe.
|
|
static const int32_t LOW_VIDEO_THRESHOLD_USECS = 60000;
|
|
|
|
// Arbitrary "frame duration" when playing only audio.
|
|
static const int AUDIO_DURATION_USECS = 40000;
|
|
|
|
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
|
|
// use this as a factor in all our calculations. Increasing this will cause
|
|
// us to be more likely to increase our low audio threshold, and to
|
|
// increase it by more.
|
|
static const int THRESHOLD_FACTOR = 2;
|
|
|
|
namespace detail {
|
|
|
|
// If we have less than this much undecoded data available, we'll consider
|
|
// ourselves to be running low on undecoded data. We determine how much
|
|
// undecoded data we have remaining using the reader's GetBuffered()
|
|
// implementation.
|
|
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;
|
|
|
|
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
|
|
// the skip-to-keyframe logic can activate when we're running low on data.
|
|
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
|
|
"LOW_DATA_THRESHOLD_USECS is too small");
|
|
|
|
} // namespace detail
|
|
|
|
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
|
|
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 60000;
|
|
|
|
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
|
|
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
|
|
// normal buffering mode. This exists so that if the decode-ahead exhausts the
|
|
// downloaded data while decode/playback is just starting up (for example
|
|
// after a seek while the media is still playing, or when playing a media
|
|
// as soon as it's load started), we won't necessarily stop for 30s and wait
|
|
// for buffering. We may actually be able to playback in this case, so exit
|
|
// buffering early and try to play. If it turns out we can't play, we'll fall
|
|
// back to buffering normally.
|
|
static const uint32_t QUICK_BUFFER_THRESHOLD_USECS = 2000000;
|
|
|
|
namespace detail {
|
|
|
|
// If we're quick buffering, we'll remain in buffering mode while we have less than
|
|
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
|
|
static const uint32_t QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
|
|
|
|
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
|
|
// quick buffering in a timely fashion, as the decode pauses when it
|
|
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
|
|
// QUICK_BUFFERING_LOW_DATA_USECS.
|
|
static_assert(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS,
|
|
"QUICK_BUFFERING_LOW_DATA_USECS is too large");
|
|
|
|
} // namespace detail
|
|
|
|
static TimeDuration UsecsToDuration(int64_t aUsecs) {
|
|
return TimeDuration::FromMicroseconds(aUsecs);
|
|
}
|
|
|
|
static int64_t DurationToUsecs(TimeDuration aDuration) {
|
|
return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
|
|
}
|
|
|
|
static const uint32_t MIN_VIDEO_QUEUE_SIZE = 3;
|
|
static const uint32_t MAX_VIDEO_QUEUE_SIZE = 10;
|
|
|
|
static uint32_t sVideoQueueDefaultSize = MAX_VIDEO_QUEUE_SIZE;
|
|
static uint32_t sVideoQueueHWAccelSize = MIN_VIDEO_QUEUE_SIZE;
|
|
|
|
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
|
|
MediaDecoderReader* aReader,
|
|
bool aRealTime) :
|
|
mDecoder(aDecoder),
|
|
mTaskQueue(new MediaTaskQueue(GetMediaThreadPool(MediaThreadType::PLAYBACK),
|
|
/* aSupportsTailDispatch = */ true)),
|
|
mWatchManager(this, mTaskQueue),
|
|
mRealTime(aRealTime),
|
|
mDispatchedStateMachine(false),
|
|
mDelayedScheduler(this),
|
|
mState(DECODER_STATE_DECODING_NONE, "MediaDecoderStateMachine::mState"),
|
|
mPlayDuration(0),
|
|
mStartTime(-1),
|
|
mEndTime(-1),
|
|
mDurationSet(false),
|
|
mEstimatedDuration(mTaskQueue, NullableTimeUnit(),
|
|
"MediaDecoderStateMachine::EstimatedDuration (Mirror)"),
|
|
mExplicitDuration(mTaskQueue, Maybe<double>(),
|
|
"MediaDecoderStateMachine::mExplicitDuration (Mirror)"),
|
|
mObservedDuration(TimeUnit(), "MediaDecoderStateMachine::mObservedDuration"),
|
|
mPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_LOADING,
|
|
"MediaDecoderStateMachine::mPlayState (Mirror)"),
|
|
mNextPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_PAUSED,
|
|
"MediaDecoderStateMachine::mNextPlayState (Mirror)"),
|
|
mLogicallySeeking(mTaskQueue, false,
|
|
"MediaDecoderStateMachine::mLogicallySeeking (Mirror)"),
|
|
mNextFrameStatus(mTaskQueue, MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED,
|
|
"MediaDecoderStateMachine::mNextFrameStatus (Canonical)"),
|
|
mFragmentEndTime(-1),
|
|
mReader(aReader),
|
|
mCurrentPosition(mTaskQueue, 0, "MediaDecoderStateMachine::mCurrentPosition (Canonical)"),
|
|
mStreamStartTime(-1),
|
|
mAudioStartTime(-1),
|
|
mAudioEndTime(-1),
|
|
mDecodedAudioEndTime(-1),
|
|
mVideoFrameEndTime(-1),
|
|
mDecodedVideoEndTime(-1),
|
|
mVolume(mTaskQueue, 1.0, "MediaDecoderStateMachine::mVolume (Mirror)"),
|
|
mPlaybackRate(1.0),
|
|
mLogicalPlaybackRate(mTaskQueue, 1.0, "MediaDecoderStateMachine::mLogicalPlaybackRate (Mirror)"),
|
|
mPreservesPitch(mTaskQueue, true, "MediaDecoderStateMachine::mPreservesPitch (Mirror)"),
|
|
mLowAudioThresholdUsecs(detail::LOW_AUDIO_USECS),
|
|
mAmpleAudioThresholdUsecs(detail::AMPLE_AUDIO_USECS),
|
|
mQuickBufferingLowDataThresholdUsecs(detail::QUICK_BUFFERING_LOW_DATA_USECS),
|
|
mIsAudioPrerolling(false),
|
|
mIsVideoPrerolling(false),
|
|
mAudioCaptured(false),
|
|
mPositionChangeQueued(false),
|
|
mAudioCompleted(false, "MediaDecoderStateMachine::mAudioCompleted"),
|
|
mGotDurationFromMetaData(false),
|
|
mDispatchedEventToDecode(false),
|
|
mQuickBuffering(false),
|
|
mMinimizePreroll(false),
|
|
mDecodeThreadWaiting(false),
|
|
mDropAudioUntilNextDiscontinuity(false),
|
|
mDropVideoUntilNextDiscontinuity(false),
|
|
mDecodeToSeekTarget(false),
|
|
mCurrentTimeBeforeSeek(0),
|
|
mCorruptFrames(30),
|
|
mDisabledHardwareAcceleration(false),
|
|
mDecodingFrozenAtStateDecoding(false),
|
|
mSentLoadedMetadataEvent(false),
|
|
mSentFirstFrameLoadedEvent(false),
|
|
mSentPlaybackEndedEvent(false),
|
|
mDecodedStream(mDecoder->GetReentrantMonitor())
|
|
{
|
|
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
|
|
// Dispatch initialization that needs to happen on that task queue.
|
|
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(this, &MediaDecoderStateMachine::InitializationTask);
|
|
mTaskQueue->Dispatch(r.forget());
|
|
|
|
static bool sPrefCacheInit = false;
|
|
if (!sPrefCacheInit) {
|
|
sPrefCacheInit = true;
|
|
Preferences::AddUintVarCache(&sVideoQueueDefaultSize,
|
|
"media.video-queue.default-size",
|
|
MAX_VIDEO_QUEUE_SIZE);
|
|
Preferences::AddUintVarCache(&sVideoQueueHWAccelSize,
|
|
"media.video-queue.hw-accel-size",
|
|
MIN_VIDEO_QUEUE_SIZE);
|
|
}
|
|
|
|
mBufferingWait = IsRealTime() ? 0 : 15;
|
|
mLowDataThresholdUsecs = IsRealTime() ? 0 : detail::LOW_DATA_THRESHOLD_USECS;
|
|
|
|
#ifdef XP_WIN
|
|
// Ensure high precision timers are enabled on Windows, otherwise the state
|
|
// machine isn't woken up at reliable intervals to set the next frame,
|
|
// and we drop frames while painting. Note that multiple calls to this
|
|
// function per-process is OK, provided each call is matched by a corresponding
|
|
// timeEndPeriod() call.
|
|
timeBeginPeriod(1);
|
|
#endif
|
|
|
|
AudioQueue().AddPopListener(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::OnAudioPopped),
|
|
mTaskQueue);
|
|
|
|
VideoQueue().AddPopListener(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::OnVideoPopped),
|
|
mTaskQueue);
|
|
}
|
|
|
|
MediaDecoderStateMachine::~MediaDecoderStateMachine()
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
|
|
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
|
|
|
|
mReader = nullptr;
|
|
|
|
#ifdef XP_WIN
|
|
timeEndPeriod(1);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::InitializationTask()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
|
|
// Connect mirrors.
|
|
mEstimatedDuration.Connect(mDecoder->CanonicalEstimatedDuration());
|
|
mExplicitDuration.Connect(mDecoder->CanonicalExplicitDuration());
|
|
mPlayState.Connect(mDecoder->CanonicalPlayState());
|
|
mNextPlayState.Connect(mDecoder->CanonicalNextPlayState());
|
|
mLogicallySeeking.Connect(mDecoder->CanonicalLogicallySeeking());
|
|
mVolume.Connect(mDecoder->CanonicalVolume());
|
|
mLogicalPlaybackRate.Connect(mDecoder->CanonicalPlaybackRate());
|
|
mPreservesPitch.Connect(mDecoder->CanonicalPreservesPitch());
|
|
|
|
// Initialize watchers.
|
|
mWatchManager.Watch(mState, &MediaDecoderStateMachine::UpdateNextFrameStatus);
|
|
mWatchManager.Watch(mAudioCompleted, &MediaDecoderStateMachine::UpdateNextFrameStatus);
|
|
mWatchManager.Watch(mVolume, &MediaDecoderStateMachine::VolumeChanged);
|
|
mWatchManager.Watch(mLogicalPlaybackRate, &MediaDecoderStateMachine::LogicalPlaybackRateChanged);
|
|
mWatchManager.Watch(mPreservesPitch, &MediaDecoderStateMachine::PreservesPitchChanged);
|
|
mWatchManager.Watch(mEstimatedDuration, &MediaDecoderStateMachine::RecomputeDuration);
|
|
mWatchManager.Watch(mExplicitDuration, &MediaDecoderStateMachine::RecomputeDuration);
|
|
mWatchManager.Watch(mObservedDuration, &MediaDecoderStateMachine::RecomputeDuration);
|
|
mWatchManager.Watch(mPlayState, &MediaDecoderStateMachine::PlayStateChanged);
|
|
mWatchManager.Watch(mLogicallySeeking, &MediaDecoderStateMachine::LogicallySeekingChanged);
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasFutureAudio()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
|
|
// We've got audio ready to play if:
|
|
// 1. We've not completed playback of audio, and
|
|
// 2. we either have more than the threshold of decoded audio available, or
|
|
// we've completely decoded all audio (but not finished playing it yet
|
|
// as per 1).
|
|
return !mAudioCompleted &&
|
|
(AudioDecodedUsecs() >
|
|
mLowAudioThresholdUsecs * mPlaybackRate ||
|
|
AudioQueue().IsFinished());
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HaveNextFrameData()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
return (!HasAudio() || HasFutureAudio()) &&
|
|
(!HasVideo() || VideoQueue().GetSize() > 0);
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetDecodedAudioDuration()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
int64_t audioDecoded = AudioQueue().Duration();
|
|
if (mAudioEndTime != -1) {
|
|
audioDecoded += mAudioEndTime - GetMediaTime();
|
|
}
|
|
return audioDecoded;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SendStreamAudio(AudioData* aAudio,
|
|
DecodedStreamData* aStream,
|
|
AudioSegment* aOutput)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
// This logic has to mimic AudioSink closely to make sure we write
|
|
// the exact same silences
|
|
CheckedInt64 audioWrittenOffset = aStream->mAudioFramesWritten +
|
|
UsecsToFrames(mInfo.mAudio.mRate, mStreamStartTime);
|
|
CheckedInt64 frameOffset = UsecsToFrames(mInfo.mAudio.mRate, aAudio->mTime);
|
|
|
|
if (!audioWrittenOffset.isValid() ||
|
|
!frameOffset.isValid() ||
|
|
// ignore packet that we've already processed
|
|
frameOffset.value() + aAudio->mFrames <= audioWrittenOffset.value()) {
|
|
return;
|
|
}
|
|
|
|
if (audioWrittenOffset.value() < frameOffset.value()) {
|
|
int64_t silentFrames = frameOffset.value() - audioWrittenOffset.value();
|
|
// Write silence to catch up
|
|
VERBOSE_LOG("writing %lld frames of silence to MediaStream", silentFrames);
|
|
AudioSegment silence;
|
|
silence.InsertNullDataAtStart(silentFrames);
|
|
aStream->mAudioFramesWritten += silentFrames;
|
|
audioWrittenOffset += silentFrames;
|
|
aOutput->AppendFrom(&silence);
|
|
}
|
|
|
|
MOZ_ASSERT(audioWrittenOffset.value() >= frameOffset.value());
|
|
|
|
int64_t offset = audioWrittenOffset.value() - frameOffset.value();
|
|
size_t framesToWrite = aAudio->mFrames - offset;
|
|
|
|
aAudio->EnsureAudioBuffer();
|
|
nsRefPtr<SharedBuffer> buffer = aAudio->mAudioBuffer;
|
|
AudioDataValue* bufferData = static_cast<AudioDataValue*>(buffer->Data());
|
|
nsAutoTArray<const AudioDataValue*,2> channels;
|
|
for (uint32_t i = 0; i < aAudio->mChannels; ++i) {
|
|
channels.AppendElement(bufferData + i*aAudio->mFrames + offset);
|
|
}
|
|
aOutput->AppendFrames(buffer.forget(), channels, framesToWrite);
|
|
VERBOSE_LOG("writing %u frames of data to MediaStream for AudioData at %lld",
|
|
static_cast<unsigned>(framesToWrite),
|
|
aAudio->mTime);
|
|
aStream->mAudioFramesWritten += framesToWrite;
|
|
aOutput->ApplyVolume(mVolume);
|
|
|
|
aStream->mNextAudioTime = aAudio->GetEndTime();
|
|
}
|
|
|
|
static void WriteVideoToMediaStream(MediaStream* aStream,
|
|
layers::Image* aImage,
|
|
int64_t aEndMicroseconds,
|
|
int64_t aStartMicroseconds,
|
|
const IntSize& aIntrinsicSize,
|
|
VideoSegment* aOutput)
|
|
{
|
|
nsRefPtr<layers::Image> image = aImage;
|
|
StreamTime duration =
|
|
aStream->MicrosecondsToStreamTimeRoundDown(aEndMicroseconds) -
|
|
aStream->MicrosecondsToStreamTimeRoundDown(aStartMicroseconds);
|
|
aOutput->AppendFrame(image.forget(), duration, aIntrinsicSize);
|
|
}
|
|
|
|
static bool ZeroDurationAtLastChunk(VideoSegment& aInput)
|
|
{
|
|
// Get the last video frame's start time in VideoSegment aInput.
|
|
// If the start time is equal to the duration of aInput, means the last video
|
|
// frame's duration is zero.
|
|
StreamTime lastVideoStratTime;
|
|
aInput.GetLastFrame(&lastVideoStratTime);
|
|
return lastVideoStratTime == aInput.GetDuration();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SendStreamData()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(!mAudioSink, "Should've been stopped in RunStateMachine()");
|
|
MOZ_ASSERT(mStreamStartTime != -1);
|
|
|
|
DecodedStreamData* stream = GetDecodedStream();
|
|
|
|
bool finished =
|
|
(!mInfo.HasAudio() || AudioQueue().IsFinished()) &&
|
|
(!mInfo.HasVideo() || VideoQueue().IsFinished());
|
|
if (mDecoder->IsSameOriginMedia()) {
|
|
SourceMediaStream* mediaStream = stream->mStream;
|
|
StreamTime endPosition = 0;
|
|
|
|
if (!stream->mStreamInitialized) {
|
|
if (mInfo.HasAudio()) {
|
|
TrackID audioTrackId = mInfo.mAudio.mTrackId;
|
|
AudioSegment* audio = new AudioSegment();
|
|
mediaStream->AddAudioTrack(audioTrackId, mInfo.mAudio.mRate, 0, audio,
|
|
SourceMediaStream::ADDTRACK_QUEUED);
|
|
stream->mNextAudioTime = mStreamStartTime;
|
|
}
|
|
if (mInfo.HasVideo()) {
|
|
TrackID videoTrackId = mInfo.mVideo.mTrackId;
|
|
VideoSegment* video = new VideoSegment();
|
|
mediaStream->AddTrack(videoTrackId, 0, video,
|
|
SourceMediaStream::ADDTRACK_QUEUED);
|
|
stream->mNextVideoTime = mStreamStartTime;
|
|
}
|
|
mediaStream->FinishAddTracks();
|
|
stream->mStreamInitialized = true;
|
|
}
|
|
|
|
if (mInfo.HasAudio()) {
|
|
MOZ_ASSERT(stream->mNextAudioTime != -1, "Should've been initialized");
|
|
TrackID audioTrackId = mInfo.mAudio.mTrackId;
|
|
nsAutoTArray<nsRefPtr<AudioData>,10> audio;
|
|
// It's OK to hold references to the AudioData because AudioData
|
|
// is ref-counted.
|
|
AudioQueue().GetElementsAfter(stream->mNextAudioTime, &audio);
|
|
AudioSegment output;
|
|
for (uint32_t i = 0; i < audio.Length(); ++i) {
|
|
SendStreamAudio(audio[i], stream, &output);
|
|
}
|
|
// |mNextAudioTime| is updated as we process each audio sample in
|
|
// SendStreamAudio(). This is consistent with how |mNextVideoTime|
|
|
// is updated for video samples.
|
|
if (output.GetDuration() > 0) {
|
|
mediaStream->AppendToTrack(audioTrackId, &output);
|
|
}
|
|
if (AudioQueue().IsFinished() && !stream->mHaveSentFinishAudio) {
|
|
mediaStream->EndTrack(audioTrackId);
|
|
stream->mHaveSentFinishAudio = true;
|
|
}
|
|
endPosition = std::max(endPosition,
|
|
mediaStream->TicksToTimeRoundDown(mInfo.mAudio.mRate,
|
|
stream->mAudioFramesWritten));
|
|
|
|
CheckedInt64 playedUsecs = mStreamStartTime +
|
|
FramesToUsecs(stream->mAudioFramesWritten, mInfo.mAudio.mRate);
|
|
if (playedUsecs.isValid()) {
|
|
OnAudioEndTimeUpdate(playedUsecs.value());
|
|
}
|
|
}
|
|
|
|
if (mInfo.HasVideo()) {
|
|
MOZ_ASSERT(stream->mNextVideoTime != -1, "Should've been initialized");
|
|
TrackID videoTrackId = mInfo.mVideo.mTrackId;
|
|
nsAutoTArray<nsRefPtr<VideoData>,10> video;
|
|
// It's OK to hold references to the VideoData because VideoData
|
|
// is ref-counted.
|
|
VideoQueue().GetElementsAfter(stream->mNextVideoTime, &video);
|
|
VideoSegment output;
|
|
for (uint32_t i = 0; i < video.Length(); ++i) {
|
|
VideoData* v = video[i];
|
|
if (stream->mNextVideoTime < v->mTime) {
|
|
VERBOSE_LOG("writing last video to MediaStream %p for %lldus",
|
|
mediaStream, v->mTime - stream->mNextVideoTime);
|
|
// Write last video frame to catch up. mLastVideoImage can be null here
|
|
// which is fine, it just means there's no video.
|
|
|
|
// TODO: |mLastVideoImage| should come from the last image rendered
|
|
// by the state machine. This will avoid the black frame when capture
|
|
// happens in the middle of playback (especially in th middle of a
|
|
// video frame). E.g. if we have a video frame that is 30 sec long
|
|
// and capture happens at 15 sec, we'll have to append a black frame
|
|
// that is 15 sec long.
|
|
WriteVideoToMediaStream(mediaStream, stream->mLastVideoImage,
|
|
v->mTime, stream->mNextVideoTime, stream->mLastVideoImageDisplaySize,
|
|
&output);
|
|
stream->mNextVideoTime = v->mTime;
|
|
}
|
|
if (stream->mNextVideoTime < v->GetEndTime()) {
|
|
VERBOSE_LOG("writing video frame %lldus to MediaStream %p for %lldus",
|
|
v->mTime, mediaStream, v->GetEndTime() - stream->mNextVideoTime);
|
|
WriteVideoToMediaStream(mediaStream, v->mImage,
|
|
v->GetEndTime(), stream->mNextVideoTime, v->mDisplay,
|
|
&output);
|
|
stream->mNextVideoTime = v->GetEndTime();
|
|
stream->mLastVideoImage = v->mImage;
|
|
stream->mLastVideoImageDisplaySize = v->mDisplay;
|
|
} else {
|
|
VERBOSE_LOG("skipping writing video frame %lldus (end %lldus) to MediaStream",
|
|
v->mTime, v->GetEndTime());
|
|
}
|
|
}
|
|
// Check the output is not empty.
|
|
if (output.GetLastFrame()) {
|
|
stream->mEOSVideoCompensation = ZeroDurationAtLastChunk(output);
|
|
}
|
|
if (output.GetDuration() > 0) {
|
|
mediaStream->AppendToTrack(videoTrackId, &output);
|
|
}
|
|
if (VideoQueue().IsFinished() && !stream->mHaveSentFinishVideo) {
|
|
if (stream->mEOSVideoCompensation) {
|
|
VideoSegment endSegment;
|
|
// Calculate the deviation clock time from DecodedStream.
|
|
int64_t deviation_usec = mediaStream->StreamTimeToMicroseconds(1);
|
|
WriteVideoToMediaStream(mediaStream, stream->mLastVideoImage,
|
|
stream->mNextVideoTime + deviation_usec, stream->mNextVideoTime,
|
|
stream->mLastVideoImageDisplaySize, &endSegment);
|
|
stream->mNextVideoTime += deviation_usec;
|
|
MOZ_ASSERT(endSegment.GetDuration() > 0);
|
|
mediaStream->AppendToTrack(videoTrackId, &endSegment);
|
|
}
|
|
mediaStream->EndTrack(videoTrackId);
|
|
stream->mHaveSentFinishVideo = true;
|
|
}
|
|
endPosition = std::max(endPosition,
|
|
mediaStream->MicrosecondsToStreamTimeRoundDown(
|
|
stream->mNextVideoTime - mStreamStartTime));
|
|
}
|
|
|
|
if (!stream->mHaveSentFinish) {
|
|
stream->mStream->AdvanceKnownTracksTime(endPosition);
|
|
}
|
|
|
|
if (finished && !stream->mHaveSentFinish) {
|
|
stream->mHaveSentFinish = true;
|
|
stream->mStream->Finish();
|
|
}
|
|
}
|
|
|
|
const auto clockTime = GetClock();
|
|
while (true) {
|
|
const AudioData* a = AudioQueue().PeekFront();
|
|
// If we discard audio samples fed to the stream immediately, we will
|
|
// keep decoding audio samples till the end and consume a lot of memory.
|
|
// Therefore we only discard those behind the stream clock to throttle
|
|
// the decoding speed.
|
|
if (a && a->mTime <= clockTime) {
|
|
nsRefPtr<AudioData> releaseMe = AudioQueue().PopFront();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// To be consistent with AudioSink, |mAudioCompleted| is not set
|
|
// until all samples are drained.
|
|
if (finished && AudioQueue().GetSize() == 0) {
|
|
mAudioCompleted = true;
|
|
}
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HaveEnoughDecodedAudio(int64_t aAmpleAudioUSecs)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (AudioQueue().GetSize() == 0 ||
|
|
GetDecodedAudioDuration() < aAmpleAudioUSecs) {
|
|
return false;
|
|
}
|
|
if (!mAudioCaptured) {
|
|
return true;
|
|
}
|
|
|
|
DecodedStreamData* stream = GetDecodedStream();
|
|
|
|
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishAudio) {
|
|
MOZ_ASSERT(mInfo.HasAudio());
|
|
TrackID audioTrackId = mInfo.mAudio.mTrackId;
|
|
if (!stream->mStream->HaveEnoughBuffered(audioTrackId)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (static_cast<uint32_t>(VideoQueue().GetSize()) < GetAmpleVideoFrames() * mPlaybackRate) {
|
|
return false;
|
|
}
|
|
|
|
DecodedStreamData* stream = GetDecodedStream();
|
|
|
|
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishVideo) {
|
|
MOZ_ASSERT(mInfo.HasVideo());
|
|
TrackID videoTrackId = mInfo.mVideo.mTrackId;
|
|
if (!stream->mStream->HaveEnoughBuffered(videoTrackId)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::NeedToDecodeVideo()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
return IsVideoDecoding() &&
|
|
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
|
|
(mState == DECODER_STATE_DECODING_FIRSTFRAME &&
|
|
IsVideoDecoding() && VideoQueue().GetSize() == 0) ||
|
|
(!mMinimizePreroll && !HaveEnoughDecodedVideo()));
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::NeedToSkipToNextKeyframe()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if (mState == DECODER_STATE_DECODING_FIRSTFRAME) {
|
|
return false;
|
|
}
|
|
MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
|
|
mState == DECODER_STATE_BUFFERING ||
|
|
mState == DECODER_STATE_SEEKING);
|
|
|
|
// We are in seeking or buffering states, don't skip frame.
|
|
if (!IsVideoDecoding() || mState == DECODER_STATE_BUFFERING ||
|
|
mState == DECODER_STATE_SEEKING) {
|
|
return false;
|
|
}
|
|
|
|
// Don't skip frame for video-only decoded stream because the clock time of
|
|
// the stream relies on the video frame.
|
|
if (mAudioCaptured && !HasAudio()) {
|
|
return false;
|
|
}
|
|
|
|
// We'll skip the video decode to the next keyframe if we're low on
|
|
// audio, or if we're low on video, provided we're not running low on
|
|
// data to decode. If we're running low on downloaded data to decode,
|
|
// we won't start keyframe skipping, as we'll be pausing playback to buffer
|
|
// soon anyway and we'll want to be able to display frames immediately
|
|
// after buffering finishes. We ignore the low audio calculations for
|
|
// readers that are async, as since their audio decode runs on a different
|
|
// task queue it should never run low and skipping won't help their decode.
|
|
bool isLowOnDecodedAudio = !mReader->IsAsync() &&
|
|
!mIsAudioPrerolling && IsAudioDecoding() &&
|
|
(GetDecodedAudioDuration() <
|
|
mLowAudioThresholdUsecs * mPlaybackRate);
|
|
bool isLowOnDecodedVideo = !mIsVideoPrerolling &&
|
|
((GetClock() - mDecodedVideoEndTime) * mPlaybackRate >
|
|
LOW_VIDEO_THRESHOLD_USECS);
|
|
bool lowUndecoded = HasLowUndecodedData();
|
|
|
|
if ((isLowOnDecodedAudio || isLowOnDecodedVideo) && !lowUndecoded) {
|
|
DECODER_LOG("Skipping video decode to the next keyframe lowAudio=%d lowVideo=%d lowUndecoded=%d async=%d",
|
|
isLowOnDecodedAudio, isLowOnDecodedVideo, lowUndecoded, mReader->IsAsync());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::NeedToDecodeAudio()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
SAMPLE_LOG("NeedToDecodeAudio() isDec=%d decToTar=%d minPrl=%d seek=%d enufAud=%d",
|
|
IsAudioDecoding(), mDecodeToSeekTarget, mMinimizePreroll,
|
|
mState == DECODER_STATE_SEEKING,
|
|
HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate));
|
|
|
|
return IsAudioDecoding() &&
|
|
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
|
|
(mState == DECODER_STATE_DECODING_FIRSTFRAME &&
|
|
IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
|
|
(!mMinimizePreroll &&
|
|
!HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate) &&
|
|
(mState != DECODER_STATE_SEEKING || mDecodeToSeekTarget)));
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsAudioSeekComplete()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
SAMPLE_LOG("IsAudioSeekComplete() curTarVal=%d mAudDis=%d aqFin=%d aqSz=%d",
|
|
mCurrentSeek.Exists(), mDropAudioUntilNextDiscontinuity, AudioQueue().IsFinished(), AudioQueue().GetSize());
|
|
return
|
|
!HasAudio() ||
|
|
(mCurrentSeek.Exists() &&
|
|
!mDropAudioUntilNextDiscontinuity &&
|
|
(AudioQueue().IsFinished() || AudioQueue().GetSize() > 0));
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsVideoSeekComplete()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
SAMPLE_LOG("IsVideoSeekComplete() curTarVal=%d mVidDis=%d vqFin=%d vqSz=%d",
|
|
mCurrentSeek.Exists(), mDropVideoUntilNextDiscontinuity, VideoQueue().IsFinished(), VideoQueue().GetSize());
|
|
return
|
|
!HasVideo() ||
|
|
(mCurrentSeek.Exists() &&
|
|
!mDropVideoUntilNextDiscontinuity &&
|
|
(VideoQueue().IsFinished() || VideoQueue().GetSize() > 0));
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnAudioDecoded(AudioData* aAudioSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
nsRefPtr<AudioData> audio(aAudioSample);
|
|
MOZ_ASSERT(audio);
|
|
mAudioDataRequest.Complete();
|
|
mDecodedAudioEndTime = audio->GetEndTime();
|
|
|
|
SAMPLE_LOG("OnAudioDecoded [%lld,%lld] disc=%d",
|
|
(audio ? audio->mTime : -1),
|
|
(audio ? audio->GetEndTime() : -1),
|
|
(audio ? audio->mDiscontinuity : 0));
|
|
|
|
switch (mState) {
|
|
case DECODER_STATE_DECODING_FIRSTFRAME: {
|
|
Push(audio);
|
|
MaybeFinishDecodeFirstFrame();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING: {
|
|
// If we're buffering, this may be the sample we need to stop buffering.
|
|
// Save it and schedule the state machine.
|
|
Push(audio);
|
|
ScheduleStateMachine();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_DECODING: {
|
|
Push(audio);
|
|
if (mIsAudioPrerolling && DonePrerollingAudio()) {
|
|
StopPrerollingAudio();
|
|
}
|
|
// Schedule the state machine to send stream data as soon as possible.
|
|
if (mAudioCaptured) {
|
|
ScheduleStateMachine();
|
|
}
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_SEEKING: {
|
|
if (!mCurrentSeek.Exists()) {
|
|
// We've received a sample from a previous decode. Discard it.
|
|
return;
|
|
}
|
|
if (audio->mDiscontinuity) {
|
|
mDropAudioUntilNextDiscontinuity = false;
|
|
}
|
|
if (!mDropAudioUntilNextDiscontinuity) {
|
|
// We must be after the discontinuity; we're receiving samples
|
|
// at or after the seek target.
|
|
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
|
|
mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
|
|
audio->mTime < mCurrentTimeBeforeSeek) {
|
|
// We are doing a fastSeek, but we ended up *before* the previous
|
|
// playback position. This is surprising UX, so switch to an accurate
|
|
// seek and decode to the seek target. This is not conformant to the
|
|
// spec, fastSeek should always be fast, but until we get the time to
|
|
// change all Readers to seek to the keyframe after the currentTime
|
|
// in this case, we'll just decode forward. Bug 1026330.
|
|
mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
|
|
}
|
|
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint) {
|
|
// Non-precise seek; we can stop the seek at the first sample.
|
|
Push(audio);
|
|
} else {
|
|
// We're doing an accurate seek. We must discard
|
|
// MediaData up to the one containing exact seek target.
|
|
if (NS_FAILED(DropAudioUpToSeekTarget(audio))) {
|
|
DecodeError();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
CheckIfSeekComplete();
|
|
return;
|
|
}
|
|
default: {
|
|
// Ignore other cases.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::Push(AudioData* aSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
MOZ_ASSERT(aSample);
|
|
// TODO: Send aSample to MSG and recalculate readystate before pushing,
|
|
// otherwise AdvanceFrame may pop the sample before we have a chance
|
|
// to reach playing.
|
|
AudioQueue().Push(aSample);
|
|
UpdateNextFrameStatus();
|
|
DispatchDecodeTasksIfNeeded();
|
|
|
|
// XXXbholley - Still necessary?
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::PushFront(AudioData* aSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
MOZ_ASSERT(aSample);
|
|
|
|
AudioQueue().PushFront(aSample);
|
|
UpdateNextFrameStatus();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::Push(VideoData* aSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
MOZ_ASSERT(aSample);
|
|
// TODO: Send aSample to MSG and recalculate readystate before pushing,
|
|
// otherwise AdvanceFrame may pop the sample before we have a chance
|
|
// to reach playing.
|
|
VideoQueue().Push(aSample);
|
|
UpdateNextFrameStatus();
|
|
DispatchDecodeTasksIfNeeded();
|
|
|
|
// XXXbholley - Is this still necessary?
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::PushFront(VideoData* aSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
MOZ_ASSERT(aSample);
|
|
|
|
VideoQueue().PushFront(aSample);
|
|
UpdateNextFrameStatus();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnAudioPopped()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
UpdateNextFrameStatus();
|
|
DispatchAudioDecodeTaskIfNeeded();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnVideoPopped()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
UpdateNextFrameStatus();
|
|
DispatchVideoDecodeTaskIfNeeded();
|
|
// Notify the decode thread that the video queue's buffers may have
|
|
// free'd up space for more frames.
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnNotDecoded(MediaData::Type aType,
|
|
MediaDecoderReader::NotDecodedReason aReason)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
SAMPLE_LOG("OnNotDecoded (aType=%u, aReason=%u)", aType, aReason);
|
|
bool isAudio = aType == MediaData::AUDIO_DATA;
|
|
MOZ_ASSERT_IF(!isAudio, aType == MediaData::VIDEO_DATA);
|
|
|
|
if (isAudio) {
|
|
mAudioDataRequest.Complete();
|
|
} else {
|
|
mVideoDataRequest.Complete();
|
|
}
|
|
if (IsShutdown()) {
|
|
// Already shutdown;
|
|
return;
|
|
}
|
|
|
|
// If this is a decode error, delegate to the generic error path.
|
|
if (aReason == MediaDecoderReader::DECODE_ERROR) {
|
|
DecodeError();
|
|
return;
|
|
}
|
|
|
|
// If the decoder is waiting for data, we tell it to call us back when the
|
|
// data arrives.
|
|
if (aReason == MediaDecoderReader::WAITING_FOR_DATA) {
|
|
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
|
|
"Readers that send WAITING_FOR_DATA need to implement WaitForData");
|
|
nsRefPtr<MediaDecoderStateMachine> self = this;
|
|
WaitRequestRef(aType).Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
|
|
&MediaDecoderReader::WaitForData, aType)
|
|
->Then(TaskQueue(), __func__,
|
|
[self] (MediaData::Type aType) -> void {
|
|
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
|
|
self->WaitRequestRef(aType).Complete();
|
|
self->DispatchDecodeTasksIfNeeded();
|
|
},
|
|
[self] (WaitForDataRejectValue aRejection) -> void {
|
|
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
|
|
self->WaitRequestRef(aRejection.mType).Complete();
|
|
}));
|
|
|
|
return;
|
|
}
|
|
|
|
if (aReason == MediaDecoderReader::CANCELED) {
|
|
DispatchDecodeTasksIfNeeded();
|
|
return;
|
|
}
|
|
|
|
// This is an EOS. Finish off the queue, and then handle things based on our
|
|
// state.
|
|
MOZ_ASSERT(aReason == MediaDecoderReader::END_OF_STREAM);
|
|
if (!isAudio && mState == DECODER_STATE_SEEKING &&
|
|
mCurrentSeek.Exists() && mFirstVideoFrameAfterSeek) {
|
|
// Null sample. Hit end of stream. If we have decoded a frame,
|
|
// insert it into the queue so that we have something to display.
|
|
// We make sure to do this before invoking VideoQueue().Finish()
|
|
// below.
|
|
Push(mFirstVideoFrameAfterSeek);
|
|
mFirstVideoFrameAfterSeek = nullptr;
|
|
}
|
|
if (isAudio) {
|
|
AudioQueue().Finish();
|
|
StopPrerollingAudio();
|
|
} else {
|
|
VideoQueue().Finish();
|
|
StopPrerollingVideo();
|
|
}
|
|
switch (mState) {
|
|
case DECODER_STATE_DECODING_FIRSTFRAME: {
|
|
MaybeFinishDecodeFirstFrame();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING:
|
|
case DECODER_STATE_DECODING: {
|
|
CheckIfDecodeComplete();
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
// Schedule the state machine to notify track ended as soon as possible.
|
|
if (mAudioCaptured) {
|
|
ScheduleStateMachine();
|
|
}
|
|
return;
|
|
}
|
|
case DECODER_STATE_SEEKING: {
|
|
if (!mCurrentSeek.Exists()) {
|
|
// We've received a sample from a previous decode. Discard it.
|
|
return;
|
|
}
|
|
|
|
if (isAudio) {
|
|
mDropAudioUntilNextDiscontinuity = false;
|
|
} else {
|
|
mDropVideoUntilNextDiscontinuity = false;
|
|
}
|
|
|
|
CheckIfSeekComplete();
|
|
return;
|
|
}
|
|
default: {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::MaybeFinishDecodeFirstFrame()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if ((IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
|
|
(IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
|
|
return;
|
|
}
|
|
if (NS_FAILED(FinishDecodeFirstFrame())) {
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnVideoDecoded(VideoData* aVideoSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
nsRefPtr<VideoData> video(aVideoSample);
|
|
mVideoDataRequest.Complete();
|
|
mDecodedVideoEndTime = video ? video->GetEndTime() : mDecodedVideoEndTime;
|
|
|
|
SAMPLE_LOG("OnVideoDecoded [%lld,%lld] disc=%d",
|
|
(video ? video->mTime : -1),
|
|
(video ? video->GetEndTime() : -1),
|
|
(video ? video->mDiscontinuity : 0));
|
|
|
|
switch (mState) {
|
|
case DECODER_STATE_DECODING_FIRSTFRAME: {
|
|
Push(video);
|
|
MaybeFinishDecodeFirstFrame();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING: {
|
|
// If we're buffering, this may be the sample we need to stop buffering.
|
|
// Save it and schedule the state machine.
|
|
Push(video);
|
|
ScheduleStateMachine();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_DECODING: {
|
|
Push(video);
|
|
if (mIsVideoPrerolling && DonePrerollingVideo()) {
|
|
StopPrerollingVideo();
|
|
}
|
|
|
|
// Schedule the state machine to send stream data as soon as possible or
|
|
// the VideoQueue() is empty before the Push().
|
|
// VideoQueue() is empty implies the state machine thread doesn't have
|
|
// precise time information about video frames. Once the first video
|
|
// frame pushed in the queue, schedule the state machine as soon as
|
|
// possible to render the video frame or delay the state machine thread
|
|
// accurately.
|
|
if (mAudioCaptured || VideoQueue().GetSize() == 1) {
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
// For non async readers, if the requested video sample was slow to
|
|
// arrive, increase the amount of audio we buffer to ensure that we
|
|
// don't run out of audio. This is unnecessary for async readers,
|
|
// since they decode audio and video on different threads so they
|
|
// are unlikely to run out of decoded audio.
|
|
if (mReader->IsAsync()) {
|
|
return;
|
|
}
|
|
TimeDuration decodeTime = TimeStamp::Now() - mVideoDecodeStartTime;
|
|
if (THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > mLowAudioThresholdUsecs &&
|
|
!HasLowUndecodedData())
|
|
{
|
|
mLowAudioThresholdUsecs =
|
|
std::min(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), mAmpleAudioThresholdUsecs);
|
|
mAmpleAudioThresholdUsecs = std::max(THRESHOLD_FACTOR * mLowAudioThresholdUsecs,
|
|
mAmpleAudioThresholdUsecs);
|
|
DECODER_LOG("Slow video decode, set mLowAudioThresholdUsecs=%lld mAmpleAudioThresholdUsecs=%lld",
|
|
mLowAudioThresholdUsecs, mAmpleAudioThresholdUsecs);
|
|
}
|
|
return;
|
|
}
|
|
case DECODER_STATE_SEEKING: {
|
|
if (!mCurrentSeek.Exists()) {
|
|
// We've received a sample from a previous decode. Discard it.
|
|
return;
|
|
}
|
|
if (mDropVideoUntilNextDiscontinuity) {
|
|
if (video->mDiscontinuity) {
|
|
mDropVideoUntilNextDiscontinuity = false;
|
|
}
|
|
}
|
|
if (!mDropVideoUntilNextDiscontinuity) {
|
|
// We must be after the discontinuity; we're receiving samples
|
|
// at or after the seek target.
|
|
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
|
|
mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
|
|
video->mTime < mCurrentTimeBeforeSeek) {
|
|
// We are doing a fastSeek, but we ended up *before* the previous
|
|
// playback position. This is surprising UX, so switch to an accurate
|
|
// seek and decode to the seek target. This is not conformant to the
|
|
// spec, fastSeek should always be fast, but until we get the time to
|
|
// change all Readers to seek to the keyframe after the currentTime
|
|
// in this case, we'll just decode forward. Bug 1026330.
|
|
mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
|
|
}
|
|
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint) {
|
|
// Non-precise seek; we can stop the seek at the first sample.
|
|
Push(video);
|
|
} else {
|
|
// We're doing an accurate seek. We still need to discard
|
|
// MediaData up to the one containing exact seek target.
|
|
if (NS_FAILED(DropVideoUpToSeekTarget(video))) {
|
|
DecodeError();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
CheckIfSeekComplete();
|
|
return;
|
|
}
|
|
default: {
|
|
// Ignore other cases.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::CheckIfSeekComplete()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
|
|
|
|
const bool videoSeekComplete = IsVideoSeekComplete();
|
|
if (HasVideo() && !videoSeekComplete) {
|
|
// We haven't reached the target. Ensure we have requested another sample.
|
|
if (NS_FAILED(EnsureVideoDecodeTaskQueued())) {
|
|
DECODER_WARN("Failed to request video during seek");
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
const bool audioSeekComplete = IsAudioSeekComplete();
|
|
if (HasAudio() && !audioSeekComplete) {
|
|
// We haven't reached the target. Ensure we have requested another sample.
|
|
if (NS_FAILED(EnsureAudioDecodeTaskQueued())) {
|
|
DECODER_WARN("Failed to request audio during seek");
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
SAMPLE_LOG("CheckIfSeekComplete() audioSeekComplete=%d videoSeekComplete=%d",
|
|
audioSeekComplete, videoSeekComplete);
|
|
|
|
if (audioSeekComplete && videoSeekComplete) {
|
|
mDecodeToSeekTarget = false;
|
|
SeekCompleted();
|
|
}
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsAudioDecoding()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
return HasAudio() && !AudioQueue().IsFinished();
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsVideoDecoding()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
return HasVideo() && !VideoQueue().IsFinished();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::CheckIfDecodeComplete()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if (IsShutdown() ||
|
|
mState == DECODER_STATE_SEEKING ||
|
|
mState == DECODER_STATE_COMPLETED) {
|
|
// Don't change our state if we've already been shutdown, or we're seeking,
|
|
// since we don't want to abort the shutdown or seek processes.
|
|
return;
|
|
}
|
|
if (!IsVideoDecoding() && !IsAudioDecoding()) {
|
|
// We've finished decoding all active streams,
|
|
// so move to COMPLETED state.
|
|
SetState(DECODER_STATE_COMPLETED);
|
|
DispatchDecodeTasksIfNeeded();
|
|
ScheduleStateMachine();
|
|
}
|
|
DECODER_LOG("CheckIfDecodeComplete %scompleted",
|
|
((mState == DECODER_STATE_COMPLETED) ? "" : "NOT "));
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsPlaying() const
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
return !mPlayStartTime.IsNull();
|
|
}
|
|
|
|
nsresult MediaDecoderStateMachine::Init(MediaDecoderStateMachine* aCloneDonor)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
MediaDecoderReader* cloneReader = nullptr;
|
|
if (aCloneDonor) {
|
|
cloneReader = aCloneDonor->mReader;
|
|
}
|
|
|
|
nsresult rv = mReader->Init(cloneReader);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StopPlayback()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
DECODER_LOG("StopPlayback()");
|
|
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mDecoder->NotifyPlaybackStopped();
|
|
|
|
if (IsPlaying()) {
|
|
mPlayDuration = GetClock() - mStartTime;
|
|
SetPlayStartTime(TimeStamp());
|
|
}
|
|
// Notify the audio sink, so that it notices that we've stopped playing,
|
|
// so it can pause audio playback.
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
NS_ASSERTION(!IsPlaying(), "Should report not playing at end of StopPlayback()");
|
|
|
|
DispatchDecodeTasksIfNeeded();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::MaybeStartPlayback()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if (IsPlaying()) {
|
|
// Logging this case is really spammy - don't do it.
|
|
return;
|
|
}
|
|
|
|
bool playStatePermits = mPlayState == MediaDecoder::PLAY_STATE_PLAYING;
|
|
bool decodeStatePermits = mState == DECODER_STATE_DECODING || mState == DECODER_STATE_COMPLETED;
|
|
if (!playStatePermits || !decodeStatePermits || mIsAudioPrerolling || mIsVideoPrerolling) {
|
|
DECODER_LOG("Not starting playback [playStatePermits: %d, decodeStatePermits: %d, "
|
|
"mIsAudioPrerolling: %d, mIsVideoPrerolling: %d]", (int) playStatePermits,
|
|
(int) decodeStatePermits, (int) mIsAudioPrerolling, (int) mIsVideoPrerolling);
|
|
return;
|
|
}
|
|
|
|
if (mDecoder->CheckDecoderCanOffloadAudio()) {
|
|
DECODER_LOG("Offloading playback");
|
|
return;
|
|
}
|
|
|
|
DECODER_LOG("MaybeStartPlayback() starting playback");
|
|
|
|
mDecoder->NotifyPlaybackStarted();
|
|
SetPlayStartTime(TimeStamp::Now());
|
|
MOZ_ASSERT(IsPlaying());
|
|
|
|
nsresult rv = StartAudioThread();
|
|
NS_ENSURE_SUCCESS_VOID(rv);
|
|
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
DispatchDecodeTasksIfNeeded();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
SAMPLE_LOG("UpdatePlaybackPositionInternal(%lld) (mStartTime=%lld)", aTime, mStartTime);
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
NS_ASSERTION(mStartTime >= 0, "Should have positive mStartTime");
|
|
mCurrentPosition = aTime - mStartTime;
|
|
NS_ASSERTION(mCurrentPosition >= 0, "CurrentTime should be positive!");
|
|
mObservedDuration = std::max(mObservedDuration.Ref(),
|
|
TimeUnit::FromMicroseconds(mCurrentPosition.Ref()));
|
|
}
|
|
|
|
void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
UpdatePlaybackPositionInternal(aTime);
|
|
|
|
bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
|
|
mMetadataManager.DispatchMetadataIfNeeded(mDecoder, aTime);
|
|
|
|
if (fragmentEnded) {
|
|
StopPlayback();
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::ClearPositionChangeFlag()
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mPositionChangeQueued = false;
|
|
}
|
|
|
|
static const char* const gMachineStateStr[] = {
|
|
"NONE",
|
|
"DECODING_METADATA",
|
|
"WAIT_FOR_RESOURCES",
|
|
"WAIT_FOR_CDM",
|
|
"DECODING_FIRSTFRAME",
|
|
"DORMANT",
|
|
"DECODING",
|
|
"SEEKING",
|
|
"BUFFERING",
|
|
"COMPLETED",
|
|
"SHUTDOWN",
|
|
"ERROR"
|
|
};
|
|
|
|
void MediaDecoderStateMachine::SetState(State aState)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if (mState == aState) {
|
|
return;
|
|
}
|
|
DECODER_LOG("Change machine state from %s to %s",
|
|
gMachineStateStr[mState], gMachineStateStr[aState]);
|
|
|
|
mState = aState;
|
|
|
|
// Clear state-scoped state.
|
|
mSentPlaybackEndedEvent = false;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::VolumeChanged()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (mAudioSink) {
|
|
mAudioSink->SetVolume(mVolume);
|
|
}
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsRealTime() const
|
|
{
|
|
return mRealTime;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetDuration()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mEndTime == -1 || mStartTime == -1)
|
|
return -1;
|
|
return mEndTime - mStartTime;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetEndTime()
|
|
{
|
|
if (mEndTime == -1 && mDurationSet) {
|
|
return INT64_MAX;
|
|
}
|
|
return mEndTime;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::RecomputeDuration()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
// We dispatch DurationChanged to the MediaDecoder when the duration changes
|
|
// sometime after initialization, unless it has already been fired by the code
|
|
// that set the new duration.
|
|
bool fireDurationChanged = false;
|
|
|
|
TimeUnit duration;
|
|
if (mExplicitDuration.Ref().isSome()) {
|
|
double d = mExplicitDuration.Ref().ref();
|
|
if (IsNaN(d)) {
|
|
// We have an explicit duration (which means that we shouldn't look at
|
|
// any other duration sources), but the duration isn't ready yet.
|
|
return;
|
|
}
|
|
// We don't fire duration changed for this case because it should have
|
|
// already been fired on the main thread when the explicit duration was set.
|
|
duration = TimeUnit::FromSeconds(d);
|
|
} else if (mEstimatedDuration.Ref().isSome()) {
|
|
duration = mEstimatedDuration.Ref().ref();
|
|
fireDurationChanged = true;
|
|
} else if (mInfo.mMetadataDuration.isSome()) {
|
|
duration = mInfo.mMetadataDuration.ref();
|
|
} else if (mInfo.mMetadataEndTime.isSome() && mStartTime >= 0) {
|
|
duration = mInfo.mMetadataEndTime.ref() - TimeUnit::FromMicroseconds(mStartTime);
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
if (duration < mObservedDuration.Ref()) {
|
|
duration = mObservedDuration;
|
|
fireDurationChanged = true;
|
|
}
|
|
|
|
fireDurationChanged = fireDurationChanged && duration.ToMicroseconds() != GetDuration();
|
|
SetDuration(duration);
|
|
|
|
if (fireDurationChanged) {
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethodWithArg<TimeUnit>(mDecoder, &MediaDecoder::DurationChanged, duration);
|
|
AbstractThread::MainThread()->Dispatch(event.forget());
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetDuration(TimeUnit aDuration)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
MOZ_ASSERT(aDuration.ToMicroseconds() >= 0);
|
|
mDurationSet = true;
|
|
|
|
if (mStartTime == -1) {
|
|
SetStartTime(0);
|
|
}
|
|
|
|
if (aDuration.IsInfinite()) {
|
|
mEndTime = -1;
|
|
return;
|
|
}
|
|
|
|
mEndTime = mStartTime + aDuration.ToMicroseconds();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetFragmentEndTime(int64_t aEndTime)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mFragmentEndTime = aEndTime < 0 ? aEndTime : aEndTime + mStartTime;
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsDormantNeeded()
|
|
{
|
|
return mReader->IsDormantNeeded();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetDormant(bool aDormant)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
if (IsShutdown()) {
|
|
return;
|
|
}
|
|
|
|
if (!mReader) {
|
|
return;
|
|
}
|
|
|
|
DECODER_LOG("SetDormant=%d", aDormant);
|
|
|
|
if (aDormant) {
|
|
if (mState == DECODER_STATE_SEEKING) {
|
|
if (mQueuedSeek.Exists()) {
|
|
// Keep latest seek target
|
|
} else if (mPendingSeek.Exists()) {
|
|
mQueuedSeek.Steal(mPendingSeek);
|
|
} else if (mCurrentSeek.Exists()) {
|
|
mQueuedSeek.Steal(mCurrentSeek);
|
|
} else {
|
|
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
|
|
SeekTarget::Accurate,
|
|
MediaDecoderEventVisibility::Suppressed);
|
|
// XXXbholley - Nobody is listening to this promise. Do we need to pass it
|
|
// back to MediaDecoder when we come out of dormant?
|
|
nsRefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
|
|
}
|
|
} else {
|
|
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
|
|
SeekTarget::Accurate,
|
|
MediaDecoderEventVisibility::Suppressed);
|
|
// XXXbholley - Nobody is listening to this promise. Do we need to pass it
|
|
// back to MediaDecoder when we come out of dormant?
|
|
nsRefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
|
|
}
|
|
mPendingSeek.RejectIfExists(__func__);
|
|
mCurrentSeek.RejectIfExists(__func__);
|
|
SetState(DECODER_STATE_DORMANT);
|
|
if (IsPlaying()) {
|
|
StopPlayback();
|
|
}
|
|
|
|
Reset();
|
|
|
|
// Note that we do not wait for the decode task queue to go idle before
|
|
// queuing the ReleaseMediaResources task - instead, we disconnect promises,
|
|
// reset state, and put a ResetDecode in the decode task queue. Any tasks
|
|
// that run after ResetDecode are supposed to run with a clean slate. We rely
|
|
// on that in other places (i.e. seeking), so it seems reasonable to rely on
|
|
// it here as well.
|
|
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(mReader, &MediaDecoderReader::ReleaseMediaResources);
|
|
DecodeTaskQueue()->Dispatch(r.forget());
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
} else if ((aDormant != true) && (mState == DECODER_STATE_DORMANT)) {
|
|
mDecodingFrozenAtStateDecoding = true;
|
|
ScheduleStateMachine();
|
|
mCurrentPosition = 0;
|
|
SetState(DECODER_STATE_DECODING_NONE);
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::Shutdown()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
|
|
// Once we've entered the shutdown state here there's no going back.
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
// Change state before issuing shutdown request to threads so those
|
|
// threads can start exiting cleanly during the Shutdown call.
|
|
ScheduleStateMachine();
|
|
SetState(DECODER_STATE_SHUTDOWN);
|
|
if (mAudioSink) {
|
|
mAudioSink->PrepareToShutdown();
|
|
}
|
|
|
|
mQueuedSeek.RejectIfExists(__func__);
|
|
mPendingSeek.RejectIfExists(__func__);
|
|
mCurrentSeek.RejectIfExists(__func__);
|
|
|
|
if (IsPlaying()) {
|
|
StopPlayback();
|
|
}
|
|
|
|
Reset();
|
|
|
|
// Put a task in the decode queue to shutdown the reader.
|
|
// the queue to spin down.
|
|
ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__, &MediaDecoderReader::Shutdown)
|
|
->Then(TaskQueue(), __func__, this,
|
|
&MediaDecoderStateMachine::FinishShutdown,
|
|
&MediaDecoderStateMachine::FinishShutdown);
|
|
DECODER_LOG("Shutdown started");
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StartDecoding()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (mState == DECODER_STATE_DECODING) {
|
|
return;
|
|
}
|
|
SetState(DECODER_STATE_DECODING);
|
|
|
|
mDecodeStartTime = TimeStamp::Now();
|
|
|
|
CheckIfDecodeComplete();
|
|
if (mState == DECODER_STATE_COMPLETED) {
|
|
return;
|
|
}
|
|
|
|
// Reset other state to pristine values before starting decode.
|
|
mIsAudioPrerolling = !DonePrerollingAudio();
|
|
mIsVideoPrerolling = !DonePrerollingVideo();
|
|
|
|
// Ensure that we've got tasks enqueued to decode data if we need to.
|
|
DispatchDecodeTasksIfNeeded();
|
|
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::NotifyWaitingForResourcesStatusChanged()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
DECODER_LOG("NotifyWaitingForResourcesStatusChanged");
|
|
|
|
if (mState == DECODER_STATE_WAIT_FOR_RESOURCES) {
|
|
// Try again.
|
|
SetState(DECODER_STATE_DECODING_NONE);
|
|
ScheduleStateMachine();
|
|
} else if (mState == DECODER_STATE_WAIT_FOR_CDM &&
|
|
!mReader->IsWaitingOnCDMResource()) {
|
|
SetState(DECODER_STATE_DECODING_FIRSTFRAME);
|
|
EnqueueDecodeFirstFrameTask();
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::PlayStateChanged()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
// This method used to be a Play() method invoked by MediaDecoder when the
|
|
// play state became PLAY_STATE_PLAYING. As such, it doesn't have any work to
|
|
// do for other state changes. That could change.
|
|
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
|
|
return;
|
|
}
|
|
|
|
// Once we start playing, we don't want to minimize our prerolling, as we
|
|
// assume the user is likely to want to keep playing in future. This needs to
|
|
// happen before we invoke StartDecoding().
|
|
if (mMinimizePreroll) {
|
|
mMinimizePreroll = false;
|
|
DispatchDecodeTasksIfNeeded();
|
|
}
|
|
|
|
if (mDecodingFrozenAtStateDecoding) {
|
|
mDecodingFrozenAtStateDecoding = false;
|
|
DispatchDecodeTasksIfNeeded();
|
|
}
|
|
|
|
// Some state transitions still happen synchronously on the main thread. So
|
|
// if the main thread invokes Play() and then Seek(), the seek will initiate
|
|
// synchronously on the main thread, and the asynchronous PlayInternal task
|
|
// will arrive when it's no longer valid. The proper thing to do is to move
|
|
// all state transitions to the state machine task queue, but for now we just
|
|
// make sure that none of the possible main-thread state transitions (Seek(),
|
|
// SetDormant(), and Shutdown()) have not occurred.
|
|
if (mState != DECODER_STATE_DECODING && mState != DECODER_STATE_BUFFERING &&
|
|
mState != DECODER_STATE_COMPLETED)
|
|
{
|
|
DECODER_LOG("Unexpected state - Bailing out of PlayInternal()");
|
|
return;
|
|
}
|
|
|
|
// When asked to play, switch to decoding state only if
|
|
// we are currently buffering. In other cases, we'll start playing anyway
|
|
// when the state machine notices the decoder's state change to PLAYING.
|
|
if (mState == DECODER_STATE_BUFFERING) {
|
|
StartDecoding();
|
|
}
|
|
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::LogicallySeekingChanged()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::NotifyDataArrived(const char* aBuffer,
|
|
uint32_t aLength,
|
|
int64_t aOffset)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
|
|
mReader->NotifyDataArrived(aBuffer, aLength, aOffset);
|
|
|
|
// While playing an unseekable stream of unknown duration, mEndTime is
|
|
// updated (in AdvanceFrame()) as we play. But if data is being downloaded
|
|
// faster than played, mEndTime won't reflect the end of playable data
|
|
// since we haven't played the frame at the end of buffered data. So update
|
|
// mEndTime here as new data is downloaded to prevent such a lag.
|
|
//
|
|
// Make sure to only do this if we have a start time, otherwise the reader
|
|
// doesn't know how to compute GetBuffered.
|
|
if (!mDecoder->IsInfinite() || mStartTime == -1) {
|
|
return;
|
|
}
|
|
media::TimeIntervals buffered{mDecoder->GetBuffered()};
|
|
if (!buffered.IsInvalid()) {
|
|
bool exists;
|
|
media::TimeUnit end{buffered.GetEnd(&exists)};
|
|
if (exists) {
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mEndTime = std::max<int64_t>(mEndTime, end.ToMicroseconds());
|
|
}
|
|
}
|
|
}
|
|
|
|
nsRefPtr<MediaDecoder::SeekPromise>
|
|
MediaDecoderStateMachine::Seek(SeekTarget aTarget)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
mDecodingFrozenAtStateDecoding = false;
|
|
|
|
if (IsShutdown()) {
|
|
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
|
|
}
|
|
|
|
// We need to be able to seek both at a transport level and at a media level
|
|
// to seek.
|
|
if (!mDecoder->IsMediaSeekable()) {
|
|
DECODER_WARN("Seek() function should not be called on a non-seekable state machine");
|
|
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
|
|
}
|
|
|
|
NS_ASSERTION(mState > DECODER_STATE_DECODING_METADATA,
|
|
"We should have got duration already");
|
|
|
|
if (mState < DECODER_STATE_DECODING) {
|
|
DECODER_LOG("Seek() Not Enough Data to continue at this stage, queuing seek");
|
|
mQueuedSeek.RejectIfExists(__func__);
|
|
mQueuedSeek.mTarget = aTarget;
|
|
return mQueuedSeek.mPromise.Ensure(__func__);
|
|
}
|
|
mQueuedSeek.RejectIfExists(__func__);
|
|
mPendingSeek.RejectIfExists(__func__);
|
|
mPendingSeek.mTarget = aTarget;
|
|
|
|
DECODER_LOG("Changed state to SEEKING (to %lld)", mPendingSeek.mTarget.mTime);
|
|
SetState(DECODER_STATE_SEEKING);
|
|
ScheduleStateMachine();
|
|
|
|
return mPendingSeek.mPromise.Ensure(__func__);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StopAudioThread()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mAudioSink) {
|
|
DECODER_LOG("Shutdown audio thread");
|
|
mAudioSink->PrepareToShutdown();
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
mAudioSink->Shutdown();
|
|
}
|
|
mAudioSink = nullptr;
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::EnqueueDecodeFirstFrameTask()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(mState == DECODER_STATE_DECODING_FIRSTFRAME);
|
|
|
|
nsCOMPtr<nsIRunnable> task(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::CallDecodeFirstFrame));
|
|
TaskQueue()->Dispatch(task.forget());
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::DispatchDecodeTasksIfNeeded()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mState != DECODER_STATE_DECODING &&
|
|
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
|
|
mState != DECODER_STATE_BUFFERING &&
|
|
mState != DECODER_STATE_SEEKING) {
|
|
return;
|
|
}
|
|
|
|
if (mState == DECODER_STATE_DECODING && mDecodingFrozenAtStateDecoding) {
|
|
DECODER_LOG("DispatchDecodeTasksIfNeeded return due to "
|
|
"mFreezeDecodingAtStateDecoding");
|
|
return;
|
|
}
|
|
// NeedToDecodeAudio() can go from false to true while we hold the
|
|
// monitor, but it can't go from true to false. This can happen because
|
|
// NeedToDecodeAudio() takes into account the amount of decoded audio
|
|
// that's been written to the AudioStream but not played yet. So if we
|
|
// were calling NeedToDecodeAudio() twice and we thread-context switch
|
|
// between the calls, audio can play, which can affect the return value
|
|
// of NeedToDecodeAudio() giving inconsistent results. So we cache the
|
|
// value returned by NeedToDecodeAudio(), and make decisions
|
|
// based on the cached value. If NeedToDecodeAudio() has
|
|
// returned false, and then subsequently returns true and we're not
|
|
// playing, it will probably be OK since we don't need to consume data
|
|
// anyway.
|
|
|
|
const bool needToDecodeAudio = NeedToDecodeAudio();
|
|
const bool needToDecodeVideo = NeedToDecodeVideo();
|
|
|
|
// If we're in completed state, we should not need to decode anything else.
|
|
MOZ_ASSERT(mState != DECODER_STATE_COMPLETED ||
|
|
(!needToDecodeAudio && !needToDecodeVideo));
|
|
|
|
bool needIdle = !IsLogicallyPlaying() &&
|
|
mState != DECODER_STATE_SEEKING &&
|
|
!needToDecodeAudio &&
|
|
!needToDecodeVideo &&
|
|
!IsPlaying();
|
|
|
|
SAMPLE_LOG("DispatchDecodeTasksIfNeeded needAudio=%d audioStatus=%s needVideo=%d videoStatus=%s needIdle=%d",
|
|
needToDecodeAudio, AudioRequestStatus(),
|
|
needToDecodeVideo, VideoRequestStatus(),
|
|
needIdle);
|
|
|
|
if (needToDecodeAudio) {
|
|
EnsureAudioDecodeTaskQueued();
|
|
}
|
|
if (needToDecodeVideo) {
|
|
EnsureVideoDecodeTaskQueued();
|
|
}
|
|
|
|
if (needIdle) {
|
|
DECODER_LOG("Dispatching SetIdle() audioQueue=%lld videoQueue=%lld",
|
|
GetDecodedAudioDuration(),
|
|
VideoQueue().Duration());
|
|
nsCOMPtr<nsIRunnable> task = NS_NewRunnableMethod(mReader, &MediaDecoderReader::SetIdle);
|
|
DecodeTaskQueue()->Dispatch(task.forget());
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::InitiateSeek()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mCurrentSeek.RejectIfExists(__func__);
|
|
mCurrentSeek.Steal(mPendingSeek);
|
|
|
|
// Bound the seek time to be inside the media range.
|
|
int64_t end = GetEndTime();
|
|
NS_ASSERTION(mStartTime != -1, "Should know start time by now");
|
|
NS_ASSERTION(end != -1, "Should know end time by now");
|
|
int64_t seekTime = mCurrentSeek.mTarget.mTime + mStartTime;
|
|
seekTime = std::min(seekTime, end);
|
|
seekTime = std::max(mStartTime, seekTime);
|
|
NS_ASSERTION(seekTime >= mStartTime && seekTime <= end,
|
|
"Can only seek in range [0,duration]");
|
|
mCurrentSeek.mTarget.mTime = seekTime;
|
|
|
|
if (mAudioCaptured) {
|
|
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethodWithArgs<MediaStreamGraph*>(
|
|
this, &MediaDecoderStateMachine::RecreateDecodedStream, nullptr);
|
|
AbstractThread::MainThread()->Dispatch(r.forget());
|
|
}
|
|
|
|
mDropAudioUntilNextDiscontinuity = HasAudio();
|
|
mDropVideoUntilNextDiscontinuity = HasVideo();
|
|
|
|
mDecoder->StopProgressUpdates();
|
|
mCurrentTimeBeforeSeek = GetMediaTime();
|
|
|
|
// Stop playback now to ensure that while we're outside the monitor
|
|
// dispatching SeekingStarted, playback doesn't advance and mess with
|
|
// mCurrentPosition that we've setting to seekTime here.
|
|
StopPlayback();
|
|
UpdatePlaybackPositionInternal(mCurrentSeek.mTarget.mTime);
|
|
|
|
nsCOMPtr<nsIRunnable> startEvent =
|
|
NS_NewRunnableMethodWithArg<MediaDecoderEventVisibility>(
|
|
mDecoder,
|
|
&MediaDecoder::SeekingStarted,
|
|
mCurrentSeek.mTarget.mEventVisibility);
|
|
AbstractThread::MainThread()->Dispatch(startEvent.forget());
|
|
|
|
// Reset our state machine and decoding pipeline before seeking.
|
|
Reset();
|
|
|
|
// Do the seek.
|
|
nsRefPtr<MediaDecoderStateMachine> self = this;
|
|
mSeekRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
|
|
&MediaDecoderReader::Seek, mCurrentSeek.mTarget.mTime,
|
|
GetEndTime())
|
|
->Then(TaskQueue(), __func__,
|
|
[self] (int64_t) -> void {
|
|
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
|
|
self->mSeekRequest.Complete();
|
|
// We must decode the first samples of active streams, so we can determine
|
|
// the new stream time. So dispatch tasks to do that.
|
|
self->mDecodeToSeekTarget = true;
|
|
self->DispatchDecodeTasksIfNeeded();
|
|
}, [self] (nsresult aResult) -> void {
|
|
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
|
|
self->mSeekRequest.Complete();
|
|
MOZ_ASSERT(NS_FAILED(aResult), "Cancels should also disconnect mSeekRequest");
|
|
self->DecodeError();
|
|
}));
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
if (IsShutdown()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
if (NeedToDecodeAudio()) {
|
|
return EnsureAudioDecodeTaskQueued();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::EnsureAudioDecodeTaskQueued()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
SAMPLE_LOG("EnsureAudioDecodeTaskQueued isDecoding=%d status=%s",
|
|
IsAudioDecoding(), AudioRequestStatus());
|
|
|
|
if (mState != DECODER_STATE_DECODING &&
|
|
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
|
|
mState != DECODER_STATE_BUFFERING &&
|
|
mState != DECODER_STATE_SEEKING) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (!IsAudioDecoding() || mAudioDataRequest.Exists() ||
|
|
mAudioWaitRequest.Exists() || mSeekRequest.Exists()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
SAMPLE_LOG("Queueing audio task - queued=%i, decoder-queued=%o",
|
|
AudioQueue().GetSize(), mReader->SizeOfAudioQueueInFrames());
|
|
|
|
mAudioDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(),
|
|
__func__, &MediaDecoderReader::RequestAudioData)
|
|
->Then(TaskQueue(), __func__, this,
|
|
&MediaDecoderStateMachine::OnAudioDecoded,
|
|
&MediaDecoderStateMachine::OnAudioNotDecoded));
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
if (IsShutdown()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
if (NeedToDecodeVideo()) {
|
|
return EnsureVideoDecodeTaskQueued();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::EnsureVideoDecodeTaskQueued()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
SAMPLE_LOG("EnsureVideoDecodeTaskQueued isDecoding=%d status=%s",
|
|
IsVideoDecoding(), VideoRequestStatus());
|
|
|
|
if (mState != DECODER_STATE_DECODING &&
|
|
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
|
|
mState != DECODER_STATE_BUFFERING &&
|
|
mState != DECODER_STATE_SEEKING) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (!IsVideoDecoding() || mVideoDataRequest.Exists() ||
|
|
mVideoWaitRequest.Exists() || mSeekRequest.Exists()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
bool skipToNextKeyFrame = NeedToSkipToNextKeyframe();
|
|
int64_t currentTime = mState == DECODER_STATE_SEEKING ? 0 : GetMediaTime();
|
|
|
|
// Time the video decode, so that if it's slow, we can increase our low
|
|
// audio threshold to reduce the chance of an audio underrun while we're
|
|
// waiting for a video decode to complete.
|
|
mVideoDecodeStartTime = TimeStamp::Now();
|
|
|
|
SAMPLE_LOG("Queueing video task - queued=%i, decoder-queued=%o, skip=%i, time=%lld",
|
|
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames(), skipToNextKeyFrame,
|
|
currentTime);
|
|
|
|
mVideoDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
|
|
&MediaDecoderReader::RequestVideoData,
|
|
skipToNextKeyFrame, currentTime)
|
|
->Then(TaskQueue(), __func__, this,
|
|
&MediaDecoderStateMachine::OnVideoDecoded,
|
|
&MediaDecoderStateMachine::OnVideoNotDecoded));
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::StartAudioThread()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if (mAudioCaptured) {
|
|
MOZ_ASSERT(!mAudioSink);
|
|
return NS_OK;
|
|
}
|
|
|
|
if (HasAudio() && !mAudioSink) {
|
|
// The audio end time should always be at least the audio start time.
|
|
mAudioEndTime = mAudioStartTime;
|
|
MOZ_ASSERT(mAudioStartTime == GetMediaTime());
|
|
mAudioCompleted = false;
|
|
mAudioSink = new AudioSink(this, mAudioStartTime,
|
|
mInfo.mAudio, mDecoder->GetAudioChannel());
|
|
// OnAudioSinkError() will be called before Init() returns if an error
|
|
// occurs during initialization.
|
|
nsresult rv = mAudioSink->Init();
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
mAudioSink->SetVolume(mVolume);
|
|
mAudioSink->SetPlaybackRate(mPlaybackRate);
|
|
mAudioSink->SetPreservesPitch(mPreservesPitch);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::AudioDecodedUsecs()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
NS_ASSERTION(HasAudio(),
|
|
"Should only call AudioDecodedUsecs() when we have audio");
|
|
// The amount of audio we have decoded is the amount of audio data we've
|
|
// already decoded and pushed to the hardware, plus the amount of audio
|
|
// data waiting to be pushed to the hardware.
|
|
int64_t pushed = (mAudioEndTime != -1) ? (mAudioEndTime - GetMediaTime()) : 0;
|
|
|
|
// Currently for real time streams, AudioQueue().Duration() produce
|
|
// wrong values (Bug 1114434), so we use frame counts to calculate duration.
|
|
if (IsRealTime()) {
|
|
return pushed + FramesToUsecs(AudioQueue().FrameCount(), mInfo.mAudio.mRate).value();
|
|
}
|
|
return pushed + AudioQueue().Duration();
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasLowDecodedData(int64_t aAudioUsecs)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(mReader->UseBufferingHeuristics());
|
|
// We consider ourselves low on decoded data if we're low on audio,
|
|
// provided we've not decoded to the end of the audio stream, or
|
|
// if we're low on video frames, provided
|
|
// we've not decoded to the end of the video stream.
|
|
return ((IsAudioDecoding() && AudioDecodedUsecs() < aAudioUsecs) ||
|
|
(IsVideoDecoding() &&
|
|
static_cast<uint32_t>(VideoQueue().GetSize()) < LOW_VIDEO_FRAMES));
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::OutOfDecodedAudio()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
return IsAudioDecoding() && !AudioQueue().IsFinished() &&
|
|
AudioQueue().GetSize() == 0 &&
|
|
(!mAudioSink || !mAudioSink->HasUnplayedFrames());
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasLowUndecodedData()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
return HasLowUndecodedData(mLowDataThresholdUsecs);
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasLowUndecodedData(int64_t aUsecs)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(mState > DECODER_STATE_DECODING_FIRSTFRAME,
|
|
"Must have loaded first frame for GetBuffered() to work");
|
|
|
|
// If we don't have a duration, GetBuffered is probably not going to produce
|
|
// a useful buffered range. Return false here so that we don't get stuck in
|
|
// buffering mode for live streams.
|
|
if (GetDuration() < 0) {
|
|
return false;
|
|
}
|
|
|
|
media::TimeIntervals buffered{mReader->GetBuffered()};
|
|
if (buffered.IsInvalid()) {
|
|
return false;
|
|
}
|
|
|
|
int64_t endOfDecodedVideoData = INT64_MAX;
|
|
if (HasVideo() && !VideoQueue().AtEndOfStream()) {
|
|
endOfDecodedVideoData = VideoQueue().Peek() ? VideoQueue().Peek()->GetEndTime() : mVideoFrameEndTime;
|
|
}
|
|
int64_t endOfDecodedAudioData = INT64_MAX;
|
|
if (HasAudio() && !AudioQueue().AtEndOfStream()) {
|
|
// mDecodedAudioEndTime could be -1 when no audio samples are decoded.
|
|
// But that is fine since we consider ourself as low in decoded data when
|
|
// we don't have any decoded audio samples at all.
|
|
endOfDecodedAudioData = mDecodedAudioEndTime;
|
|
}
|
|
int64_t endOfDecodedData = std::min(endOfDecodedVideoData, endOfDecodedAudioData);
|
|
if (GetDuration() < endOfDecodedData) {
|
|
// Our duration is not up to date. No point buffering.
|
|
return false;
|
|
}
|
|
media::TimeInterval interval(media::TimeUnit::FromMicroseconds(endOfDecodedData),
|
|
media::TimeUnit::FromMicroseconds(std::min(endOfDecodedData + aUsecs, GetDuration())));
|
|
return endOfDecodedData != INT64_MAX && !buffered.Contains(interval);
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::DecodeError()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (IsShutdown()) {
|
|
// Already shutdown.
|
|
return;
|
|
}
|
|
|
|
// Change state to error, which will cause the state machine to wait until
|
|
// the MediaDecoder shuts it down.
|
|
SetState(DECODER_STATE_ERROR);
|
|
ScheduleStateMachine();
|
|
DECODER_WARN("Decode error, changed state to ERROR");
|
|
|
|
// XXXbholley - Is anybody actually waiting on this monitor, or is it just
|
|
// a leftover from when we used to do sync dispatch for the below?
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
|
|
// MediaDecoder::DecodeError notifies the owner, and then shuts down the state
|
|
// machine.
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DecodeError);
|
|
AbstractThread::MainThread()->Dispatch(event.forget());
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnMetadataRead(MetadataHolder* aMetadata)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mMetadataRequest.Complete();
|
|
|
|
mDecoder->SetMediaSeekable(mReader->IsMediaSeekable());
|
|
mInfo = aMetadata->mInfo;
|
|
mMetadataTags = aMetadata->mTags.forget();
|
|
|
|
if (mInfo.mMetadataDuration.isSome() || mInfo.mMetadataEndTime.isSome()) {
|
|
RecomputeDuration();
|
|
}
|
|
|
|
if (HasVideo()) {
|
|
DECODER_LOG("Video decode isAsync=%d HWAccel=%d videoQueueSize=%d",
|
|
mReader->IsAsync(),
|
|
mReader->VideoIsHardwareAccelerated(),
|
|
GetAmpleVideoFrames());
|
|
}
|
|
|
|
mDecoder->StartProgressUpdates();
|
|
mGotDurationFromMetaData = (GetDuration() != -1) || mDurationSet;
|
|
if (mGotDurationFromMetaData) {
|
|
// We have all the information required: duration and size
|
|
// Inform the element that we've loaded the metadata.
|
|
EnqueueLoadedMetadataEvent();
|
|
}
|
|
|
|
if (mReader->IsWaitingOnCDMResource()) {
|
|
// Metadata parsing was successful but we're still waiting for CDM caps
|
|
// to become available so that we can build the correct decryptor/decoder.
|
|
SetState(DECODER_STATE_WAIT_FOR_CDM);
|
|
return;
|
|
}
|
|
|
|
SetState(DECODER_STATE_DECODING_FIRSTFRAME);
|
|
EnqueueDecodeFirstFrameTask();
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnMetadataNotRead(ReadMetadataFailureReason aReason)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mMetadataRequest.Complete();
|
|
|
|
if (aReason == ReadMetadataFailureReason::WAITING_FOR_RESOURCES) {
|
|
SetState(DECODER_STATE_WAIT_FOR_RESOURCES);
|
|
} else {
|
|
MOZ_ASSERT(aReason == ReadMetadataFailureReason::METADATA_ERROR);
|
|
DECODER_WARN("Decode metadata failed, shutting down decoder");
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::EnqueueLoadedMetadataEvent()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
nsAutoPtr<MediaInfo> info(new MediaInfo());
|
|
*info = mInfo;
|
|
MediaDecoderEventVisibility visibility = mSentLoadedMetadataEvent?
|
|
MediaDecoderEventVisibility::Suppressed :
|
|
MediaDecoderEventVisibility::Observable;
|
|
nsCOMPtr<nsIRunnable> metadataLoadedEvent =
|
|
new MetadataEventRunner(mDecoder, info, mMetadataTags, visibility);
|
|
AbstractThread::MainThread()->Dispatch(metadataLoadedEvent.forget());
|
|
mSentLoadedMetadataEvent = true;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::EnqueueFirstFrameLoadedEvent()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
nsAutoPtr<MediaInfo> info(new MediaInfo());
|
|
*info = mInfo;
|
|
MediaDecoderEventVisibility visibility = mSentFirstFrameLoadedEvent?
|
|
MediaDecoderEventVisibility::Suppressed :
|
|
MediaDecoderEventVisibility::Observable;
|
|
nsCOMPtr<nsIRunnable> event =
|
|
new FirstFrameLoadedEventRunner(mDecoder, info, visibility);
|
|
AbstractThread::MainThread()->Dispatch(event.forget());
|
|
mSentFirstFrameLoadedEvent = true;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::CallDecodeFirstFrame()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (mState != DECODER_STATE_DECODING_FIRSTFRAME) {
|
|
return;
|
|
}
|
|
if (NS_FAILED(DecodeFirstFrame())) {
|
|
DECODER_WARN("Decode failed to start, shutting down decoder");
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DecodeFirstFrame()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(mState == DECODER_STATE_DECODING_FIRSTFRAME);
|
|
DECODER_LOG("DecodeFirstFrame started");
|
|
|
|
if (IsRealTime()) {
|
|
SetStartTime(0);
|
|
nsresult res = FinishDecodeFirstFrame();
|
|
NS_ENSURE_SUCCESS(res, res);
|
|
} else if (mSentFirstFrameLoadedEvent) {
|
|
// We're resuming from dormant state, so we don't need to request
|
|
// the first samples in order to determine the media start time,
|
|
// we have the start time from last time we loaded.
|
|
SetStartTime(mStartTime);
|
|
nsresult res = FinishDecodeFirstFrame();
|
|
NS_ENSURE_SUCCESS(res, res);
|
|
} else {
|
|
if (HasAudio()) {
|
|
mAudioDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(),
|
|
__func__, &MediaDecoderReader::RequestAudioData)
|
|
->Then(TaskQueue(), __func__, this,
|
|
&MediaDecoderStateMachine::OnAudioDecoded,
|
|
&MediaDecoderStateMachine::OnAudioNotDecoded));
|
|
}
|
|
if (HasVideo()) {
|
|
mVideoDecodeStartTime = TimeStamp::Now();
|
|
mVideoDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(),
|
|
__func__, &MediaDecoderReader::RequestVideoData, false,
|
|
int64_t(0))
|
|
->Then(TaskQueue(), __func__, this,
|
|
&MediaDecoderStateMachine::OnVideoDecoded,
|
|
&MediaDecoderStateMachine::OnVideoNotDecoded));
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::FinishDecodeFirstFrame()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
DECODER_LOG("FinishDecodeFirstFrame");
|
|
|
|
if (IsShutdown()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
if (!IsRealTime() && !mSentFirstFrameLoadedEvent) {
|
|
const VideoData* v = VideoQueue().PeekFront();
|
|
const AudioData* a = AudioQueue().PeekFront();
|
|
SetStartTime(mReader->ComputeStartTime(v, a));
|
|
if (VideoQueue().GetSize()) {
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
RenderVideoFrame(VideoQueue().PeekFront(), TimeStamp::Now());
|
|
}
|
|
}
|
|
|
|
NS_ASSERTION(mStartTime != -1, "Must have start time");
|
|
MOZ_ASSERT(!(mDecoder->IsMediaSeekable() && mDecoder->IsTransportSeekable()) ||
|
|
(GetDuration() != -1) || mDurationSet,
|
|
"Seekable media should have duration");
|
|
DECODER_LOG("Media goes from %lld to %lld (duration %lld) "
|
|
"transportSeekable=%d, mediaSeekable=%d",
|
|
mStartTime, mEndTime, GetDuration(),
|
|
mDecoder->IsTransportSeekable(), mDecoder->IsMediaSeekable());
|
|
|
|
if (HasAudio() && !HasVideo()) {
|
|
// We're playing audio only. We don't need to worry about slow video
|
|
// decodes causing audio underruns, so don't buffer so much audio in
|
|
// order to reduce memory usage.
|
|
mAmpleAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
|
|
mLowAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
|
|
mQuickBufferingLowDataThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
|
|
}
|
|
|
|
// Get potentially updated metadata
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
mReader->ReadUpdatedMetadata(&mInfo);
|
|
}
|
|
|
|
nsAutoPtr<MediaInfo> info(new MediaInfo());
|
|
*info = mInfo;
|
|
if (!mGotDurationFromMetaData) {
|
|
// We now have a duration, we can fire the LoadedMetadata and
|
|
// FirstFrame event.
|
|
EnqueueLoadedMetadataEvent();
|
|
EnqueueFirstFrameLoadedEvent();
|
|
} else {
|
|
// Inform the element that we've loaded the first frame.
|
|
EnqueueFirstFrameLoadedEvent();
|
|
}
|
|
|
|
if (mState == DECODER_STATE_DECODING_FIRSTFRAME) {
|
|
StartDecoding();
|
|
}
|
|
|
|
// For very short media the first frame decode can decode the entire media.
|
|
// So we need to check if this has occurred, else our decode pipeline won't
|
|
// run (since it doesn't need to) and we won't detect end of stream.
|
|
CheckIfDecodeComplete();
|
|
MaybeStartPlayback();
|
|
|
|
if (mQueuedSeek.Exists()) {
|
|
mPendingSeek.Steal(mQueuedSeek);
|
|
SetState(DECODER_STATE_SEEKING);
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::SeekCompleted()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
|
|
|
|
int64_t seekTime = mCurrentSeek.mTarget.mTime;
|
|
int64_t newCurrentTime = seekTime;
|
|
|
|
// Setup timestamp state.
|
|
nsRefPtr<VideoData> video = VideoQueue().PeekFront();
|
|
if (seekTime == mEndTime) {
|
|
newCurrentTime = mAudioStartTime = seekTime;
|
|
} else if (HasAudio()) {
|
|
AudioData* audio = AudioQueue().PeekFront();
|
|
// Though we adjust the newCurrentTime in audio-based, and supplemented
|
|
// by video. For better UX, should NOT bind the slide position to
|
|
// the first audio data timestamp directly.
|
|
// While seeking to a position where there's only either audio or video, or
|
|
// seeking to a position lies before audio or video, we need to check if
|
|
// seekTime is bounded in suitable duration. See Bug 1112438.
|
|
int64_t videoStart = video ? video->mTime : seekTime;
|
|
int64_t audioStart = audio ? audio->mTime : seekTime;
|
|
newCurrentTime = mAudioStartTime = std::min(audioStart, videoStart);
|
|
} else {
|
|
newCurrentTime = video ? video->mTime : seekTime;
|
|
}
|
|
mStreamStartTime = newCurrentTime;
|
|
mPlayDuration = newCurrentTime - mStartTime;
|
|
|
|
mDecoder->StartProgressUpdates();
|
|
|
|
// Change state to DECODING or COMPLETED now. SeekingStopped will
|
|
// call MediaDecoderStateMachine::Seek to reset our state to SEEKING
|
|
// if we need to seek again.
|
|
|
|
bool isLiveStream = mDecoder->GetResource()->IsLiveStream();
|
|
if (mPendingSeek.Exists()) {
|
|
// A new seek target came in while we were processing the old one. No rest
|
|
// for the seeking.
|
|
DECODER_LOG("A new seek came along while we were finishing the old one - staying in SEEKING");
|
|
SetState(DECODER_STATE_SEEKING);
|
|
} else if (GetMediaTime() == mEndTime && !isLiveStream) {
|
|
// Seeked to end of media, move to COMPLETED state. Note we don't do
|
|
// this if we're playing a live stream, since the end of media will advance
|
|
// once we download more data!
|
|
DECODER_LOG("Changed state from SEEKING (to %lld) to COMPLETED", seekTime);
|
|
// Explicitly set our state so we don't decode further, and so
|
|
// we report playback ended to the media element.
|
|
SetState(DECODER_STATE_COMPLETED);
|
|
DispatchDecodeTasksIfNeeded();
|
|
} else {
|
|
DECODER_LOG("Changed state from SEEKING (to %lld) to DECODING", seekTime);
|
|
StartDecoding();
|
|
}
|
|
|
|
// Ensure timestamps are up to date.
|
|
UpdatePlaybackPositionInternal(newCurrentTime);
|
|
|
|
// Try to decode another frame to detect if we're at the end...
|
|
DECODER_LOG("Seek completed, mCurrentPosition=%lld", mCurrentPosition.Ref());
|
|
|
|
// Reset quick buffering status. This ensures that if we began the
|
|
// seek while quick-buffering, we won't bypass quick buffering mode
|
|
// if we need to buffer after the seek.
|
|
mQuickBuffering = false;
|
|
|
|
mCurrentSeek.Resolve(mState == DECODER_STATE_COMPLETED, __func__);
|
|
ScheduleStateMachine();
|
|
|
|
if (video) {
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
RenderVideoFrame(video, TimeStamp::Now());
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::Invalidate);
|
|
AbstractThread::MainThread()->Dispatch(event.forget());
|
|
}
|
|
}
|
|
|
|
class DecoderDisposer
|
|
{
|
|
public:
|
|
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(DecoderDisposer)
|
|
DecoderDisposer(MediaDecoder* aDecoder, MediaDecoderStateMachine* aStateMachine)
|
|
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
|
|
|
|
void OnTaskQueueShutdown()
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_ASSERT(mStateMachine);
|
|
MOZ_ASSERT(mDecoder);
|
|
mStateMachine->BreakCycles();
|
|
mDecoder->BreakCycles();
|
|
mStateMachine = nullptr;
|
|
mDecoder = nullptr;
|
|
}
|
|
|
|
private:
|
|
virtual ~DecoderDisposer() {}
|
|
nsRefPtr<MediaDecoder> mDecoder;
|
|
nsRefPtr<MediaDecoderStateMachine> mStateMachine;
|
|
};
|
|
|
|
void
|
|
MediaDecoderStateMachine::FinishShutdown()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
// The reader's listeners hold references to the state machine,
|
|
// creating a cycle which keeps the state machine and its shared
|
|
// thread pools alive. So break it here.
|
|
AudioQueue().ClearListeners();
|
|
VideoQueue().ClearListeners();
|
|
|
|
// Disconnect canonicals and mirrors before shutting down our task queue.
|
|
mEstimatedDuration.DisconnectIfConnected();
|
|
mExplicitDuration.DisconnectIfConnected();
|
|
mPlayState.DisconnectIfConnected();
|
|
mNextPlayState.DisconnectIfConnected();
|
|
mLogicallySeeking.DisconnectIfConnected();
|
|
mVolume.DisconnectIfConnected();
|
|
mLogicalPlaybackRate.DisconnectIfConnected();
|
|
mPreservesPitch.DisconnectIfConnected();
|
|
mNextFrameStatus.DisconnectAll();
|
|
mCurrentPosition.DisconnectAll();
|
|
|
|
// Shut down the watch manager before shutting down our task queue.
|
|
mWatchManager.Shutdown();
|
|
|
|
MOZ_ASSERT(mState == DECODER_STATE_SHUTDOWN,
|
|
"How did we escape from the shutdown state?");
|
|
// We must daisy-chain these events to destroy the decoder. We must
|
|
// destroy the decoder on the main thread, but we can't destroy the
|
|
// decoder while this thread holds the decoder monitor. We can't
|
|
// dispatch an event to the main thread to destroy the decoder from
|
|
// here, as the event may run before the dispatch returns, and we
|
|
// hold the decoder monitor here. We also want to guarantee that the
|
|
// state machine is destroyed on the main thread, and so the
|
|
// event runner running this function (which holds a reference to the
|
|
// state machine) needs to finish and be released in order to allow
|
|
// that. So we dispatch an event to run after this event runner has
|
|
// finished and released its monitor/references. That event then will
|
|
// dispatch an event to the main thread to release the decoder and
|
|
// state machine.
|
|
DECODER_LOG("Shutting down state machine task queue");
|
|
RefPtr<DecoderDisposer> disposer = new DecoderDisposer(mDecoder, this);
|
|
TaskQueue()->BeginShutdown()->Then(AbstractThread::MainThread(), __func__,
|
|
disposer.get(),
|
|
&DecoderDisposer::OnTaskQueueShutdown,
|
|
&DecoderDisposer::OnTaskQueueShutdown);
|
|
}
|
|
|
|
nsresult MediaDecoderStateMachine::RunStateMachine()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
mDelayedScheduler.Reset(); // Must happen on state machine task queue.
|
|
mDispatchedStateMachine = false;
|
|
|
|
MediaResource* resource = mDecoder->GetResource();
|
|
NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);
|
|
|
|
switch (mState) {
|
|
case DECODER_STATE_ERROR:
|
|
case DECODER_STATE_SHUTDOWN:
|
|
case DECODER_STATE_DORMANT:
|
|
case DECODER_STATE_WAIT_FOR_CDM:
|
|
case DECODER_STATE_WAIT_FOR_RESOURCES:
|
|
return NS_OK;
|
|
|
|
case DECODER_STATE_DECODING_NONE: {
|
|
SetState(DECODER_STATE_DECODING_METADATA);
|
|
ScheduleStateMachine();
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_DECODING_METADATA: {
|
|
if (!mMetadataRequest.Exists()) {
|
|
DECODER_LOG("Dispatching AsyncReadMetadata");
|
|
mMetadataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
|
|
&MediaDecoderReader::AsyncReadMetadata)
|
|
->Then(TaskQueue(), __func__, this,
|
|
&MediaDecoderStateMachine::OnMetadataRead,
|
|
&MediaDecoderStateMachine::OnMetadataNotRead));
|
|
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_DECODING_FIRSTFRAME: {
|
|
// DECODER_STATE_DECODING_FIRSTFRAME will be started by OnMetadataRead.
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_DECODING: {
|
|
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying())
|
|
{
|
|
// We're playing, but the element/decoder is in paused state. Stop
|
|
// playing!
|
|
StopPlayback();
|
|
}
|
|
|
|
// Start playback if necessary so that the clock can be properly queried.
|
|
MaybeStartPlayback();
|
|
|
|
AdvanceFrame();
|
|
NS_ASSERTION(!IsPlaying() ||
|
|
mLogicallySeeking ||
|
|
IsStateMachineScheduled() ||
|
|
mPlaybackRate == 0.0, "Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING: {
|
|
TimeStamp now = TimeStamp::Now();
|
|
NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");
|
|
|
|
// With buffering heuristics we will remain in the buffering state if
|
|
// we've not decoded enough data to begin playback, or if we've not
|
|
// downloaded a reasonable amount of data inside our buffering time.
|
|
if (mReader->UseBufferingHeuristics()) {
|
|
TimeDuration elapsed = now - mBufferingStart;
|
|
bool isLiveStream = resource->IsLiveStream();
|
|
if ((isLiveStream || !mDecoder->CanPlayThrough()) &&
|
|
elapsed < TimeDuration::FromSeconds(mBufferingWait * mPlaybackRate) &&
|
|
(mQuickBuffering ? HasLowDecodedData(mQuickBufferingLowDataThresholdUsecs)
|
|
: HasLowUndecodedData(mBufferingWait * USECS_PER_S)) &&
|
|
mDecoder->IsExpectingMoreData())
|
|
{
|
|
DECODER_LOG("Buffering: wait %ds, timeout in %.3lfs %s",
|
|
mBufferingWait, mBufferingWait - elapsed.ToSeconds(),
|
|
(mQuickBuffering ? "(quick exit)" : ""));
|
|
ScheduleStateMachineIn(USECS_PER_S);
|
|
return NS_OK;
|
|
}
|
|
} else if (OutOfDecodedAudio() || OutOfDecodedVideo()) {
|
|
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
|
|
"Don't yet have a strategy for non-heuristic + non-WaitForData");
|
|
DispatchDecodeTasksIfNeeded();
|
|
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedAudio(), mAudioDataRequest.Exists() || mAudioWaitRequest.Exists());
|
|
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedVideo(), mVideoDataRequest.Exists() || mVideoWaitRequest.Exists());
|
|
DECODER_LOG("In buffering mode, waiting to be notified: outOfAudio: %d, "
|
|
"mAudioStatus: %s, outOfVideo: %d, mVideoStatus: %s",
|
|
OutOfDecodedAudio(), AudioRequestStatus(),
|
|
OutOfDecodedVideo(), VideoRequestStatus());
|
|
return NS_OK;
|
|
}
|
|
|
|
DECODER_LOG("Changed state from BUFFERING to DECODING");
|
|
DECODER_LOG("Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
|
|
StartDecoding();
|
|
|
|
// Notify to allow blocked decoder thread to continue
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
MaybeStartPlayback();
|
|
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_SEEKING: {
|
|
if (mPendingSeek.Exists()) {
|
|
InitiateSeek();
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_COMPLETED: {
|
|
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying()) {
|
|
StopPlayback();
|
|
}
|
|
// Play the remaining media. We want to run AdvanceFrame() at least
|
|
// once to ensure the current playback position is advanced to the
|
|
// end of the media, and so that we update the readyState.
|
|
if (VideoQueue().GetSize() > 0 ||
|
|
(HasAudio() && !mAudioCompleted) ||
|
|
(mAudioCaptured && !GetDecodedStream()->IsFinished()))
|
|
{
|
|
// Start playback if necessary to play the remaining media.
|
|
MaybeStartPlayback();
|
|
AdvanceFrame();
|
|
NS_ASSERTION(!IsPlaying() ||
|
|
mLogicallySeeking ||
|
|
mPlaybackRate == 0 || IsStateMachineScheduled(),
|
|
"Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
// StopPlayback in order to reset the IsPlaying() state so audio
|
|
// is restarted correctly.
|
|
StopPlayback();
|
|
|
|
if (mState != DECODER_STATE_COMPLETED) {
|
|
// While we're presenting a frame we can change state. Whatever changed
|
|
// our state should have scheduled another state machine run.
|
|
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
StopAudioThread();
|
|
|
|
if (mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
|
|
!mSentPlaybackEndedEvent)
|
|
{
|
|
int64_t clockTime = std::max(mAudioEndTime, mVideoFrameEndTime);
|
|
clockTime = std::max(int64_t(0), std::max(clockTime, mEndTime));
|
|
UpdatePlaybackPosition(clockTime);
|
|
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackEnded);
|
|
AbstractThread::MainThread()->Dispatch(event.forget());
|
|
|
|
mSentPlaybackEndedEvent = true;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::Reset()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
DECODER_LOG("MediaDecoderStateMachine::Reset");
|
|
|
|
// We should be resetting because we're seeking, shutting down, or entering
|
|
// dormant state. We could also be in the process of going dormant, and have
|
|
// just switched to exiting dormant before we finished entering dormant,
|
|
// hence the DECODING_NONE case below.
|
|
MOZ_ASSERT(IsShutdown() ||
|
|
mState == DECODER_STATE_SEEKING ||
|
|
mState == DECODER_STATE_DORMANT ||
|
|
mState == DECODER_STATE_DECODING_NONE);
|
|
|
|
// Stop the audio thread. Otherwise, AudioSink might be accessing AudioQueue
|
|
// outside of the decoder monitor while we are clearing the queue and causes
|
|
// crash for no samples to be popped.
|
|
StopAudioThread();
|
|
|
|
mVideoFrameEndTime = -1;
|
|
mDecodedVideoEndTime = -1;
|
|
mStreamStartTime = -1;
|
|
mAudioStartTime = -1;
|
|
mAudioEndTime = -1;
|
|
mDecodedAudioEndTime = -1;
|
|
mAudioCompleted = false;
|
|
AudioQueue().Reset();
|
|
VideoQueue().Reset();
|
|
mFirstVideoFrameAfterSeek = nullptr;
|
|
mDropAudioUntilNextDiscontinuity = true;
|
|
mDropVideoUntilNextDiscontinuity = true;
|
|
mDecodeToSeekTarget = false;
|
|
|
|
mMetadataRequest.DisconnectIfExists();
|
|
mAudioDataRequest.DisconnectIfExists();
|
|
mAudioWaitRequest.DisconnectIfExists();
|
|
mVideoDataRequest.DisconnectIfExists();
|
|
mVideoWaitRequest.DisconnectIfExists();
|
|
mSeekRequest.DisconnectIfExists();
|
|
|
|
nsCOMPtr<nsIRunnable> resetTask =
|
|
NS_NewRunnableMethod(mReader, &MediaDecoderReader::ResetDecode);
|
|
DecodeTaskQueue()->Dispatch(resetTask.forget());
|
|
}
|
|
|
|
void MediaDecoderStateMachine::RenderVideoFrame(VideoData* aData,
|
|
TimeStamp aTarget)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
mDecoder->GetReentrantMonitor().AssertNotCurrentThreadIn();
|
|
|
|
if (aData->mDuplicate) {
|
|
return;
|
|
}
|
|
|
|
VERBOSE_LOG("playing video frame %lld (queued=%i, state-machine=%i, decoder-queued=%i)",
|
|
aData->mTime, VideoQueue().GetSize() + mReader->SizeOfVideoQueueInFrames(),
|
|
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames());
|
|
|
|
VideoFrameContainer* container = mDecoder->GetVideoFrameContainer();
|
|
if (container) {
|
|
if (aData->mImage && !aData->mImage->IsValid()) {
|
|
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
|
|
frameStats.NotifyCorruptFrame();
|
|
// If more than 10% of the last 30 frames have been corrupted, then try disabling
|
|
// hardware acceleration. We use 10 as the corrupt value because RollingMean<>
|
|
// only supports integer types.
|
|
mCorruptFrames.insert(10);
|
|
if (!mDisabledHardwareAcceleration &&
|
|
mReader->VideoIsHardwareAccelerated() &&
|
|
frameStats.GetPresentedFrames() > 30 &&
|
|
mCorruptFrames.mean() >= 1 /* 10% */) {
|
|
nsCOMPtr<nsIRunnable> task =
|
|
NS_NewRunnableMethod(mReader, &MediaDecoderReader::DisableHardwareAcceleration);
|
|
DecodeTaskQueue()->Dispatch(task.forget());
|
|
mDisabledHardwareAcceleration = true;
|
|
}
|
|
} else {
|
|
mCorruptFrames.insert(0);
|
|
}
|
|
container->SetCurrentFrame(aData->mDisplay, aData->mImage, aTarget);
|
|
MOZ_ASSERT(container->GetFrameDelay() >= 0 || IsRealTime());
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::ResyncAudioClock()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if (IsPlaying()) {
|
|
SetPlayStartTime(TimeStamp::Now());
|
|
mPlayDuration = GetAudioClock() - mStartTime;
|
|
}
|
|
}
|
|
|
|
int64_t
|
|
MediaDecoderStateMachine::GetAudioClock() const
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
// We must hold the decoder monitor while using the audio stream off the
|
|
// audio sink to ensure that it doesn't get destroyed on the audio sink
|
|
// while we're using it.
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(HasAudio() && !mAudioCompleted);
|
|
return mAudioStartTime +
|
|
(mAudioSink ? mAudioSink->GetPosition() : 0);
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetStreamClock() const
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(mStreamStartTime != -1);
|
|
return mStreamStartTime + GetDecodedStream()->GetPosition();
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetVideoStreamPosition() const
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (!IsPlaying()) {
|
|
return mPlayDuration + mStartTime;
|
|
}
|
|
|
|
// Time elapsed since we started playing.
|
|
int64_t delta = DurationToUsecs(TimeStamp::Now() - mPlayStartTime);
|
|
// Take playback rate into account.
|
|
delta *= mPlaybackRate;
|
|
return mStartTime + mPlayDuration + delta;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetClock() const
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
// Determine the clock time. If we've got audio, and we've not reached
|
|
// the end of the audio, use the audio clock. However if we've finished
|
|
// audio, or don't have audio, use the system clock. If our output is being
|
|
// fed to a MediaStream, use that stream as the source of the clock.
|
|
int64_t clock_time = -1;
|
|
if (!IsPlaying()) {
|
|
clock_time = mPlayDuration + mStartTime;
|
|
} else {
|
|
if (mAudioCaptured) {
|
|
clock_time = GetStreamClock();
|
|
} else if (HasAudio() && !mAudioCompleted) {
|
|
clock_time = GetAudioClock();
|
|
} else {
|
|
// Audio is disabled on this system. Sync to the system clock.
|
|
clock_time = GetVideoStreamPosition();
|
|
}
|
|
NS_ASSERTION(GetMediaTime() <= clock_time || mPlaybackRate <= 0,
|
|
"Clock should go forwards.");
|
|
}
|
|
|
|
return clock_time;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::AdvanceFrame()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(!HasAudio() || mAudioStartTime != -1,
|
|
"Should know audio start time if we have audio.");
|
|
|
|
if (!IsPlaying() || mLogicallySeeking) {
|
|
return;
|
|
}
|
|
|
|
// If playbackRate is 0.0, we should stop the progress, but not be in paused
|
|
// state, per spec.
|
|
if (mPlaybackRate == 0.0) {
|
|
return;
|
|
}
|
|
|
|
if (mAudioCaptured) {
|
|
SendStreamData();
|
|
}
|
|
|
|
const int64_t clock_time = GetClock();
|
|
TimeStamp nowTime = TimeStamp::Now();
|
|
// Skip frames up to the frame at the playback position, and figure out
|
|
// the time remaining until it's time to display the next frame.
|
|
int64_t remainingTime = AUDIO_DURATION_USECS;
|
|
NS_ASSERTION(clock_time >= mStartTime, "Should have positive clock time.");
|
|
nsRefPtr<VideoData> currentFrame;
|
|
if (VideoQueue().GetSize() > 0) {
|
|
VideoData* frame = VideoQueue().PeekFront();
|
|
int32_t droppedFrames = 0;
|
|
while (IsRealTime() || clock_time >= frame->mTime) {
|
|
mVideoFrameEndTime = frame->GetEndTime();
|
|
if (currentFrame) {
|
|
mDecoder->NotifyDecodedFrames(0, 0, 1);
|
|
VERBOSE_LOG("discarding video frame mTime=%lld clock_time=%lld (%d so far)",
|
|
currentFrame->mTime, clock_time, ++droppedFrames);
|
|
}
|
|
currentFrame = frame;
|
|
nsRefPtr<VideoData> releaseMe = VideoQueue().PopFront();
|
|
OnPlaybackOffsetUpdate(frame->mOffset);
|
|
if (VideoQueue().GetSize() == 0)
|
|
break;
|
|
frame = VideoQueue().PeekFront();
|
|
}
|
|
// Current frame has already been presented, wait until it's time to
|
|
// present the next frame.
|
|
if (frame && !currentFrame) {
|
|
remainingTime = frame->mTime - clock_time;
|
|
}
|
|
}
|
|
|
|
// Check to see if we don't have enough data to play up to the next frame.
|
|
// If we don't, switch to buffering mode.
|
|
if (mState == DECODER_STATE_DECODING &&
|
|
mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
|
|
mDecoder->IsExpectingMoreData()) {
|
|
bool shouldBuffer;
|
|
if (mReader->UseBufferingHeuristics()) {
|
|
shouldBuffer = HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_USECS) &&
|
|
(JustExitedQuickBuffering() || HasLowUndecodedData());
|
|
} else {
|
|
MOZ_ASSERT(mReader->IsWaitForDataSupported());
|
|
shouldBuffer = (OutOfDecodedAudio() && mAudioWaitRequest.Exists()) ||
|
|
(OutOfDecodedVideo() && mVideoWaitRequest.Exists());
|
|
}
|
|
if (shouldBuffer) {
|
|
if (currentFrame) {
|
|
PushFront(currentFrame);
|
|
}
|
|
StartBuffering();
|
|
// Don't go straight back to the state machine loop since that might
|
|
// cause us to start decoding again and we could flip-flop between
|
|
// decoding and quick-buffering.
|
|
ScheduleStateMachineIn(USECS_PER_S);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We've got enough data to keep playing until at least the next frame.
|
|
// Start playing now if need be.
|
|
if ((mFragmentEndTime >= 0 && clock_time < mFragmentEndTime) || mFragmentEndTime < 0) {
|
|
MaybeStartPlayback();
|
|
}
|
|
|
|
// Cap the current time to the larger of the audio and video end time.
|
|
// This ensures that if we're running off the system clock, we don't
|
|
// advance the clock to after the media end time.
|
|
if (mVideoFrameEndTime != -1 || mAudioEndTime != -1) {
|
|
// These will be non -1 if we've displayed a video frame, or played an audio frame.
|
|
int64_t t = std::min(clock_time, std::max(mVideoFrameEndTime, mAudioEndTime));
|
|
// FIXME: Bug 1091422 - chained ogg files hit this assertion.
|
|
//MOZ_ASSERT(t >= GetMediaTime());
|
|
if (t > GetMediaTime()) {
|
|
UpdatePlaybackPosition(t);
|
|
}
|
|
}
|
|
// Note we have to update playback position before releasing the monitor.
|
|
// Otherwise, MediaDecoder::AddOutputStream could kick in when we are outside
|
|
// the monitor and get a staled value from GetCurrentTimeUs() which hits the
|
|
// assertion in GetClock().
|
|
|
|
if (currentFrame) {
|
|
// Decode one frame and display it.
|
|
int64_t delta = currentFrame->mTime - clock_time;
|
|
TimeStamp presTime = nowTime + TimeDuration::FromMicroseconds(delta / mPlaybackRate);
|
|
NS_ASSERTION(currentFrame->mTime >= mStartTime, "Should have positive frame time");
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
// If we have video, we want to increment the clock in steps of the frame
|
|
// duration.
|
|
RenderVideoFrame(currentFrame, presTime);
|
|
}
|
|
MOZ_ASSERT(IsPlaying());
|
|
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
|
|
frameStats.NotifyPresentedFrame();
|
|
remainingTime = currentFrame->GetEndTime() - clock_time;
|
|
currentFrame = nullptr;
|
|
}
|
|
|
|
// The remainingTime is negative (include zero):
|
|
// 1. When the clock_time is larger than the latest video frame's endtime.
|
|
// All the video frames should be rendered or dropped, nothing left in
|
|
// VideoQueue. And since the VideoQueue is empty, we don't need to wake up
|
|
// statemachine thread immediately, so set the remainingTime to default value.
|
|
// 2. Current frame's endtime is smaller than clock_time but there still exist
|
|
// newer frames in queue. Re-calculate the remainingTime.
|
|
if (remainingTime <= 0) {
|
|
VideoData* nextFrame = VideoQueue().PeekFront();
|
|
if (nextFrame) {
|
|
remainingTime = nextFrame->mTime - clock_time;
|
|
} else {
|
|
remainingTime = AUDIO_DURATION_USECS;
|
|
}
|
|
}
|
|
|
|
int64_t delay = remainingTime / mPlaybackRate;
|
|
if (delay > 0) {
|
|
ScheduleStateMachineIn(delay);
|
|
} else {
|
|
ScheduleStateMachine();
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DropVideoUpToSeekTarget(VideoData* aSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
nsRefPtr<VideoData> video(aSample);
|
|
MOZ_ASSERT(video);
|
|
DECODER_LOG("DropVideoUpToSeekTarget() frame [%lld, %lld] dup=%d",
|
|
video->mTime, video->GetEndTime(), video->mDuplicate);
|
|
MOZ_ASSERT(mCurrentSeek.Exists());
|
|
const int64_t target = mCurrentSeek.mTarget.mTime;
|
|
|
|
// Duplicate handling: if we're dropping frames up the seek target, we must
|
|
// be wary of Theora duplicate frames. They don't have an image, so if the
|
|
// target frame is in a run of duplicates, we won't have an image to draw
|
|
// after the seek. So store the last frame encountered while dropping, and
|
|
// copy its Image forward onto duplicate frames, so that every frame has
|
|
// an Image.
|
|
if (video->mDuplicate &&
|
|
mFirstVideoFrameAfterSeek &&
|
|
!mFirstVideoFrameAfterSeek->mDuplicate) {
|
|
nsRefPtr<VideoData> temp =
|
|
VideoData::ShallowCopyUpdateTimestampAndDuration(mFirstVideoFrameAfterSeek,
|
|
video->mTime,
|
|
video->mDuration);
|
|
video = temp;
|
|
}
|
|
|
|
// If the frame end time is less than the seek target, we won't want
|
|
// to display this frame after the seek, so discard it.
|
|
if (target >= video->GetEndTime()) {
|
|
DECODER_LOG("DropVideoUpToSeekTarget() pop video frame [%lld, %lld] target=%lld",
|
|
video->mTime, video->GetEndTime(), target);
|
|
mFirstVideoFrameAfterSeek = video;
|
|
} else {
|
|
if (target >= video->mTime && video->GetEndTime() >= target) {
|
|
// The seek target lies inside this frame's time slice. Adjust the frame's
|
|
// start time to match the seek target. We do this by replacing the
|
|
// first frame with a shallow copy which has the new timestamp.
|
|
nsRefPtr<VideoData> temp = VideoData::ShallowCopyUpdateTimestamp(video, target);
|
|
video = temp;
|
|
}
|
|
mFirstVideoFrameAfterSeek = nullptr;
|
|
|
|
DECODER_LOG("DropVideoUpToSeekTarget() found video frame [%lld, %lld] containing target=%lld",
|
|
video->mTime, video->GetEndTime(), target);
|
|
|
|
PushFront(video);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DropAudioUpToSeekTarget(AudioData* aSample)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
nsRefPtr<AudioData> audio(aSample);
|
|
MOZ_ASSERT(audio &&
|
|
mCurrentSeek.Exists() &&
|
|
mCurrentSeek.mTarget.mType == SeekTarget::Accurate);
|
|
|
|
CheckedInt64 startFrame = UsecsToFrames(audio->mTime,
|
|
mInfo.mAudio.mRate);
|
|
CheckedInt64 targetFrame = UsecsToFrames(mCurrentSeek.mTarget.mTime,
|
|
mInfo.mAudio.mRate);
|
|
if (!startFrame.isValid() || !targetFrame.isValid()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
if (startFrame.value() + audio->mFrames <= targetFrame.value()) {
|
|
// Our seek target lies after the frames in this AudioData. Don't
|
|
// push it onto the audio queue, and keep decoding forwards.
|
|
return NS_OK;
|
|
}
|
|
if (startFrame.value() > targetFrame.value()) {
|
|
// The seek target doesn't lie in the audio block just after the last
|
|
// audio frames we've seen which were before the seek target. This
|
|
// could have been the first audio data we've seen after seek, i.e. the
|
|
// seek terminated after the seek target in the audio stream. Just
|
|
// abort the audio decode-to-target, the state machine will play
|
|
// silence to cover the gap. Typically this happens in poorly muxed
|
|
// files.
|
|
DECODER_WARN("Audio not synced after seek, maybe a poorly muxed file?");
|
|
Push(audio);
|
|
return NS_OK;
|
|
}
|
|
|
|
// The seek target lies somewhere in this AudioData's frames, strip off
|
|
// any frames which lie before the seek target, so we'll begin playback
|
|
// exactly at the seek target.
|
|
NS_ASSERTION(targetFrame.value() >= startFrame.value(),
|
|
"Target must at or be after data start.");
|
|
NS_ASSERTION(targetFrame.value() < startFrame.value() + audio->mFrames,
|
|
"Data must end after target.");
|
|
|
|
int64_t framesToPrune = targetFrame.value() - startFrame.value();
|
|
if (framesToPrune > audio->mFrames) {
|
|
// We've messed up somehow. Don't try to trim frames, the |frames|
|
|
// variable below will overflow.
|
|
DECODER_WARN("Can't prune more frames that we have!");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
uint32_t frames = audio->mFrames - static_cast<uint32_t>(framesToPrune);
|
|
uint32_t channels = audio->mChannels;
|
|
nsAutoArrayPtr<AudioDataValue> audioData(new AudioDataValue[frames * channels]);
|
|
memcpy(audioData.get(),
|
|
audio->mAudioData.get() + (framesToPrune * channels),
|
|
frames * channels * sizeof(AudioDataValue));
|
|
CheckedInt64 duration = FramesToUsecs(frames, mInfo.mAudio.mRate);
|
|
if (!duration.isValid()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
nsRefPtr<AudioData> data(new AudioData(audio->mOffset,
|
|
mCurrentSeek.mTarget.mTime,
|
|
duration.value(),
|
|
frames,
|
|
audioData.forget(),
|
|
channels,
|
|
audio->mRate));
|
|
PushFront(data);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetStartTime(int64_t aStartTimeUsecs)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
DECODER_LOG("SetStartTime(%lld)", aStartTimeUsecs);
|
|
mStartTime = 0;
|
|
if (aStartTimeUsecs != 0) {
|
|
mStartTime = aStartTimeUsecs;
|
|
if (mGotDurationFromMetaData && GetEndTime() != INT64_MAX) {
|
|
NS_ASSERTION(mEndTime != -1,
|
|
"We should have mEndTime as supplied duration here");
|
|
// We were specified a duration from a Content-Duration HTTP header.
|
|
// Adjust mEndTime so that mEndTime-mStartTime matches the specified
|
|
// duration.
|
|
mEndTime = mStartTime + mEndTime;
|
|
}
|
|
}
|
|
|
|
// Pass along this immutable value to the reader so that it can make
|
|
// calculations independently of the state machine.
|
|
mReader->SetStartTime(mStartTime);
|
|
|
|
// Set the audio start time to be start of media. If this lies before the
|
|
// first actual audio frame we have, we'll inject silence during playback
|
|
// to ensure the audio starts at the correct time.
|
|
mAudioStartTime = mStartTime;
|
|
mStreamStartTime = mStartTime;
|
|
DECODER_LOG("Set media start time to %lld", mStartTime);
|
|
|
|
RecomputeDuration();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::UpdateNextFrameStatus()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
MediaDecoderOwner::NextFrameStatus status;
|
|
const char* statusString;
|
|
if (mState <= DECODER_STATE_DECODING_FIRSTFRAME) {
|
|
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
|
|
statusString = "NEXT_FRAME_UNAVAILABLE";
|
|
} else if (IsBuffering()) {
|
|
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING;
|
|
statusString = "NEXT_FRAME_UNAVAILABLE_BUFFERING";
|
|
} else if (IsSeeking()) {
|
|
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING;
|
|
statusString = "NEXT_FRAME_UNAVAILABLE_SEEKING";
|
|
} else if (HaveNextFrameData()) {
|
|
status = MediaDecoderOwner::NEXT_FRAME_AVAILABLE;
|
|
statusString = "NEXT_FRAME_AVAILABLE";
|
|
} else {
|
|
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
|
|
statusString = "NEXT_FRAME_UNAVAILABLE";
|
|
}
|
|
|
|
if (status != mNextFrameStatus) {
|
|
DECODER_LOG("Changed mNextFrameStatus to %s", statusString);
|
|
}
|
|
|
|
mNextFrameStatus = status;
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::JustExitedQuickBuffering()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
return !mDecodeStartTime.IsNull() &&
|
|
mQuickBuffering &&
|
|
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromMicroseconds(QUICK_BUFFER_THRESHOLD_USECS);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StartBuffering()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
if (mState != DECODER_STATE_DECODING) {
|
|
// We only move into BUFFERING state if we're actually decoding.
|
|
// If we're currently doing something else, we don't need to buffer,
|
|
// and more importantly, we shouldn't overwrite mState to interrupt
|
|
// the current operation, as that could leave us in an inconsistent
|
|
// state!
|
|
return;
|
|
}
|
|
|
|
if (IsPlaying()) {
|
|
StopPlayback();
|
|
}
|
|
|
|
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
|
|
// Go into quick buffering mode provided we've not just left buffering using
|
|
// a "quick exit". This stops us flip-flopping between playing and buffering
|
|
// when the download speed is similar to the decode speed.
|
|
mQuickBuffering =
|
|
!JustExitedQuickBuffering() &&
|
|
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
|
|
mBufferingStart = TimeStamp::Now();
|
|
|
|
SetState(DECODER_STATE_BUFFERING);
|
|
DECODER_LOG("Changed state from DECODING to BUFFERING, decoded for %.3lfs",
|
|
decodeDuration.ToSeconds());
|
|
MediaDecoder::Statistics stats = mDecoder->GetStatistics();
|
|
DECODER_LOG("Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
|
|
stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
|
|
stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)");
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetPlayStartTime(const TimeStamp& aTimeStamp)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
mPlayStartTime = aTimeStamp;
|
|
|
|
if (mAudioSink) {
|
|
mAudioSink->SetPlaying(!mPlayStartTime.IsNull());
|
|
} else if (mAudioCaptured) {
|
|
mDecodedStream.SetPlaying(!mPlayStartTime.IsNull());
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
DispatchAudioDecodeTaskIfNeeded();
|
|
DispatchVideoDecodeTaskIfNeeded();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::ScheduleStateMachine()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
if (mDispatchedStateMachine) {
|
|
return;
|
|
}
|
|
mDispatchedStateMachine = true;
|
|
|
|
nsCOMPtr<nsIRunnable> task =
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::RunStateMachine);
|
|
TaskQueue()->Dispatch(task.forget());
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::ScheduleStateMachineIn(int64_t aMicroseconds)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
MOZ_ASSERT(OnTaskQueue()); // mDelayedScheduler.Ensure() may Disconnect()
|
|
// the promise, which must happen on the state
|
|
// machine task queue.
|
|
MOZ_ASSERT(aMicroseconds > 0);
|
|
if (mDispatchedStateMachine) {
|
|
return;
|
|
}
|
|
|
|
// Real-time weirdness.
|
|
if (IsRealTime()) {
|
|
aMicroseconds = std::min(aMicroseconds, int64_t(40000));
|
|
}
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
TimeStamp target = now + TimeDuration::FromMicroseconds(aMicroseconds);
|
|
|
|
SAMPLE_LOG("Scheduling state machine for %lf ms from now", (target - now).ToMilliseconds());
|
|
mDelayedScheduler.Ensure(target);
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::OnDecodeTaskQueue() const
|
|
{
|
|
return !DecodeTaskQueue() || DecodeTaskQueue()->IsCurrentThreadIn();
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::OnTaskQueue() const
|
|
{
|
|
return TaskQueue()->IsCurrentThreadIn();
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsStateMachineScheduled() const
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
return mDispatchedStateMachine || mDelayedScheduler.IsScheduled();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::LogicalPlaybackRateChanged()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
if (mLogicalPlaybackRate == 0) {
|
|
// This case is handled in MediaDecoder by pausing playback.
|
|
return;
|
|
}
|
|
|
|
// AudioStream will handle playback rate change when we have audio.
|
|
// Do nothing while we are not playing. Change in playback rate will
|
|
// take effect next time we start playing again.
|
|
if (!HasAudio() && IsPlaying()) {
|
|
// Remember how much time we've spent in playing the media
|
|
// for playback rate will change from now on.
|
|
mPlayDuration = GetVideoStreamPosition() - mStartTime;
|
|
SetPlayStartTime(TimeStamp::Now());
|
|
}
|
|
|
|
mPlaybackRate = mLogicalPlaybackRate;
|
|
if (mAudioSink) {
|
|
mAudioSink->SetPlaybackRate(mPlaybackRate);
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::PreservesPitchChanged()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
if (mAudioSink) {
|
|
mAudioSink->SetPreservesPitch(mPreservesPitch);
|
|
}
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsShutdown()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
return mState == DECODER_STATE_ERROR ||
|
|
mState == DECODER_STATE_SHUTDOWN;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::QueueMetadata(int64_t aPublishTime,
|
|
nsAutoPtr<MediaInfo> aInfo,
|
|
nsAutoPtr<MetadataTags> aTags)
|
|
{
|
|
MOZ_ASSERT(OnDecodeTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
TimedMetadata* metadata = new TimedMetadata;
|
|
metadata->mPublishTime = aPublishTime;
|
|
metadata->mInfo = aInfo.forget();
|
|
metadata->mTags = aTags.forget();
|
|
mMetadataManager.QueueMetadata(metadata);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::OnAudioEndTimeUpdate(int64_t aAudioEndTime)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
MOZ_ASSERT(aAudioEndTime >= mAudioEndTime);
|
|
mAudioEndTime = aAudioEndTime;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::OnPlaybackOffsetUpdate(int64_t aPlaybackOffset)
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mDecoder->UpdatePlaybackOffset(aPlaybackOffset);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::OnAudioSinkComplete()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (mAudioCaptured) {
|
|
return;
|
|
}
|
|
ResyncAudioClock();
|
|
mAudioCompleted = true;
|
|
// Kick the decode thread; it may be sleeping waiting for this to finish.
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::OnAudioSinkError()
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
// AudioSink not used with captured streams, so ignore errors in this case.
|
|
if (mAudioCaptured) {
|
|
return;
|
|
}
|
|
|
|
ResyncAudioClock();
|
|
mAudioCompleted = true;
|
|
|
|
// Make the best effort to continue playback when there is video.
|
|
if (HasVideo()) {
|
|
return;
|
|
}
|
|
|
|
// Otherwise notify media decoder/element about this error for it makes
|
|
// no sense to play an audio-only file without sound output.
|
|
DecodeError();
|
|
}
|
|
|
|
uint32_t MediaDecoderStateMachine::GetAmpleVideoFrames() const
|
|
{
|
|
MOZ_ASSERT(OnTaskQueue());
|
|
AssertCurrentThreadInMonitor();
|
|
return (mReader->IsAsync() && mReader->VideoIsHardwareAccelerated())
|
|
? std::max<uint32_t>(sVideoQueueHWAccelSize, MIN_VIDEO_QUEUE_SIZE)
|
|
: std::max<uint32_t>(sVideoQueueDefaultSize, MIN_VIDEO_QUEUE_SIZE);
|
|
}
|
|
|
|
DecodedStreamData* MediaDecoderStateMachine::GetDecodedStream() const
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
return mDecodedStream.GetData();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::DispatchAudioCaptured()
|
|
{
|
|
nsRefPtr<MediaDecoderStateMachine> self = this;
|
|
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction([self] () -> void
|
|
{
|
|
MOZ_ASSERT(self->OnTaskQueue());
|
|
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
|
|
if (!self->mAudioCaptured) {
|
|
// Stop the audio sink if it's running.
|
|
self->StopAudioThread();
|
|
// GetMediaTime() could return -1 because we haven't decoded
|
|
// the 1st frame. But this is OK since we will update mStreamStartTime
|
|
// again in SetStartTime().
|
|
self->mStreamStartTime = self->GetMediaTime();
|
|
// Reset mAudioEndTime which will be updated as we send audio data to
|
|
// stream. Otherwise it will remain -1 if we don't have audio.
|
|
self->mAudioEndTime = -1;
|
|
self->mAudioCaptured = true;
|
|
self->ScheduleStateMachine();
|
|
}
|
|
});
|
|
TaskQueue()->Dispatch(r.forget());
|
|
}
|
|
|
|
void MediaDecoderStateMachine::AddOutputStream(ProcessedMediaStream* aStream,
|
|
bool aFinishWhenEnded)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
DECODER_LOG("AddOutputStream aStream=%p!", aStream);
|
|
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (!GetDecodedStream()) {
|
|
RecreateDecodedStream(aStream->Graph());
|
|
}
|
|
mDecodedStream.Connect(aStream, aFinishWhenEnded);
|
|
DispatchAudioCaptured();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::RecreateDecodedStream(MediaStreamGraph* aGraph)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mDecodedStream.RecreateData(aGraph);
|
|
mDecodedStream.SetPlaying(IsPlaying());
|
|
}
|
|
|
|
} // namespace mozilla
|
|
|
|
// avoid redefined macro in unified build
|
|
#undef LOG
|
|
#undef DECODER_LOG
|
|
#undef VERBOSE_LOG
|
|
#undef DECODER_WARN
|
|
#undef DECODER_WARN_HELPER
|
|
|
|
#undef NS_DispatchToMainThread
|