зеркало из https://github.com/mozilla/gecko-dev.git
372 строки
11 KiB
C++
372 строки
11 KiB
C++
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "test/av1_txfm_test.h"
|
|
|
|
namespace libaom_test {
|
|
|
|
int get_txfm1d_size(TX_SIZE tx_size) { return tx_size_wide[tx_size]; }
|
|
|
|
void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) {
|
|
switch (txfm2d_type) {
|
|
case DCT_DCT:
|
|
*type0 = TYPE_DCT;
|
|
*type1 = TYPE_DCT;
|
|
break;
|
|
case ADST_DCT:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_DCT;
|
|
break;
|
|
case DCT_ADST:
|
|
*type0 = TYPE_DCT;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case ADST_ADST:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case FLIPADST_DCT:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_DCT;
|
|
break;
|
|
case DCT_FLIPADST:
|
|
*type0 = TYPE_DCT;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case FLIPADST_FLIPADST:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case ADST_FLIPADST:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case FLIPADST_ADST:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case IDTX:
|
|
*type0 = TYPE_IDTX;
|
|
*type1 = TYPE_IDTX;
|
|
break;
|
|
case H_DCT:
|
|
*type0 = TYPE_IDTX;
|
|
*type1 = TYPE_DCT;
|
|
break;
|
|
case V_DCT:
|
|
*type0 = TYPE_DCT;
|
|
*type1 = TYPE_IDTX;
|
|
break;
|
|
case H_ADST:
|
|
*type0 = TYPE_IDTX;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case V_ADST:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_IDTX;
|
|
break;
|
|
case H_FLIPADST:
|
|
*type0 = TYPE_IDTX;
|
|
*type1 = TYPE_ADST;
|
|
break;
|
|
case V_FLIPADST:
|
|
*type0 = TYPE_ADST;
|
|
*type1 = TYPE_IDTX;
|
|
break;
|
|
default:
|
|
*type0 = TYPE_DCT;
|
|
*type1 = TYPE_DCT;
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
double Sqrt2 = pow(2, 0.5);
|
|
double invSqrt2 = 1 / pow(2, 0.5);
|
|
|
|
double dct_matrix(double n, double k, int size) {
|
|
return cos(M_PI * (2 * n + 1) * k / (2 * size));
|
|
}
|
|
|
|
void reference_dct_1d(const double *in, double *out, int size) {
|
|
for (int k = 0; k < size; ++k) {
|
|
out[k] = 0;
|
|
for (int n = 0; n < size; ++n) {
|
|
out[k] += in[n] * dct_matrix(n, k, size);
|
|
}
|
|
if (k == 0) out[k] = out[k] * invSqrt2;
|
|
}
|
|
}
|
|
|
|
void reference_idct_1d(const double *in, double *out, int size) {
|
|
for (int k = 0; k < size; ++k) {
|
|
out[k] = 0;
|
|
for (int n = 0; n < size; ++n) {
|
|
if (n == 0)
|
|
out[k] += invSqrt2 * in[n] * dct_matrix(k, n, size);
|
|
else
|
|
out[k] += in[n] * dct_matrix(k, n, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(any): Copied from the old 'fadst4' (same as the new 'av1_fadst4_new'
|
|
// function). Should be replaced by a proper reference function that takes
|
|
// 'double' input & output.
|
|
static void fadst4_new(const tran_low_t *input, tran_low_t *output) {
|
|
tran_high_t x0, x1, x2, x3;
|
|
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
|
|
|
|
x0 = input[0];
|
|
x1 = input[1];
|
|
x2 = input[2];
|
|
x3 = input[3];
|
|
|
|
if (!(x0 | x1 | x2 | x3)) {
|
|
output[0] = output[1] = output[2] = output[3] = 0;
|
|
return;
|
|
}
|
|
|
|
s0 = sinpi_1_9 * x0;
|
|
s1 = sinpi_4_9 * x0;
|
|
s2 = sinpi_2_9 * x1;
|
|
s3 = sinpi_1_9 * x1;
|
|
s4 = sinpi_3_9 * x2;
|
|
s5 = sinpi_4_9 * x3;
|
|
s6 = sinpi_2_9 * x3;
|
|
s7 = x0 + x1 - x3;
|
|
|
|
x0 = s0 + s2 + s5;
|
|
x1 = sinpi_3_9 * s7;
|
|
x2 = s1 - s3 + s6;
|
|
x3 = s4;
|
|
|
|
s0 = x0 + x3;
|
|
s1 = x1;
|
|
s2 = x2 - x3;
|
|
s3 = x2 - x0 + x3;
|
|
|
|
// 1-D transform scaling factor is sqrt(2).
|
|
output[0] = (tran_low_t)fdct_round_shift(s0);
|
|
output[1] = (tran_low_t)fdct_round_shift(s1);
|
|
output[2] = (tran_low_t)fdct_round_shift(s2);
|
|
output[3] = (tran_low_t)fdct_round_shift(s3);
|
|
}
|
|
|
|
void reference_adst_1d(const double *in, double *out, int size) {
|
|
if (size == 4) { // Special case.
|
|
tran_low_t int_input[4];
|
|
for (int i = 0; i < 4; ++i) {
|
|
int_input[i] = static_cast<tran_low_t>(round(in[i]));
|
|
}
|
|
tran_low_t int_output[4];
|
|
fadst4_new(int_input, int_output);
|
|
for (int i = 0; i < 4; ++i) {
|
|
out[i] = int_output[i];
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (int k = 0; k < size; ++k) {
|
|
out[k] = 0;
|
|
for (int n = 0; n < size; ++n) {
|
|
out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
|
|
}
|
|
}
|
|
}
|
|
|
|
void reference_idtx_1d(const double *in, double *out, int size) {
|
|
double scale = 0;
|
|
if (size == 4)
|
|
scale = Sqrt2;
|
|
else if (size == 8)
|
|
scale = 2;
|
|
else if (size == 16)
|
|
scale = 2 * Sqrt2;
|
|
else if (size == 32)
|
|
scale = 4;
|
|
else if (size == 64)
|
|
scale = 4 * Sqrt2;
|
|
for (int k = 0; k < size; ++k) {
|
|
out[k] = in[k] * scale;
|
|
}
|
|
}
|
|
|
|
void reference_hybrid_1d(double *in, double *out, int size, int type) {
|
|
if (type == TYPE_DCT)
|
|
reference_dct_1d(in, out, size);
|
|
else if (type == TYPE_ADST)
|
|
reference_adst_1d(in, out, size);
|
|
else
|
|
reference_idtx_1d(in, out, size);
|
|
}
|
|
|
|
double get_amplification_factor(TX_TYPE tx_type, TX_SIZE tx_size) {
|
|
TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
|
|
av1_get_fwd_txfm_cfg(tx_type, tx_size, &fwd_txfm_flip_cfg);
|
|
const int tx_width = tx_size_wide[fwd_txfm_flip_cfg.tx_size];
|
|
const int tx_height = tx_size_high[fwd_txfm_flip_cfg.tx_size];
|
|
const int8_t *shift = fwd_txfm_flip_cfg.shift;
|
|
const int amplify_bit = shift[0] + shift[1] + shift[2];
|
|
double amplify_factor =
|
|
amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit));
|
|
|
|
// For rectangular transforms, we need to multiply by an extra factor.
|
|
const int rect_type = get_rect_tx_log_ratio(tx_width, tx_height);
|
|
if (abs(rect_type) == 1) {
|
|
amplify_factor *= pow(2, 0.5);
|
|
}
|
|
return amplify_factor;
|
|
}
|
|
|
|
void reference_hybrid_2d(double *in, double *out, TX_TYPE tx_type,
|
|
TX_SIZE tx_size) {
|
|
// Get transform type and size of each dimension.
|
|
TYPE_TXFM type0;
|
|
TYPE_TXFM type1;
|
|
get_txfm1d_type(tx_type, &type0, &type1);
|
|
const int tx_width = tx_size_wide[tx_size];
|
|
const int tx_height = tx_size_high[tx_size];
|
|
|
|
double *const temp_in = new double[AOMMAX(tx_width, tx_height)];
|
|
double *const temp_out = new double[AOMMAX(tx_width, tx_height)];
|
|
double *const out_interm = new double[tx_width * tx_height];
|
|
const int stride = tx_width;
|
|
|
|
// Transform columns.
|
|
for (int c = 0; c < tx_width; ++c) {
|
|
for (int r = 0; r < tx_height; ++r) {
|
|
temp_in[r] = in[r * stride + c];
|
|
}
|
|
reference_hybrid_1d(temp_in, temp_out, tx_height, type0);
|
|
for (int r = 0; r < tx_height; ++r) {
|
|
out_interm[r * stride + c] = temp_out[r];
|
|
}
|
|
}
|
|
|
|
// Transform rows.
|
|
for (int r = 0; r < tx_height; ++r) {
|
|
reference_hybrid_1d(out_interm + r * stride, out + r * stride, tx_width,
|
|
type1);
|
|
}
|
|
|
|
delete[] temp_in;
|
|
delete[] temp_out;
|
|
delete[] out_interm;
|
|
|
|
// These transforms use an approximate 2D DCT transform, by only keeping the
|
|
// top-left quarter of the coefficients, and repacking them in the first
|
|
// quarter indices.
|
|
// TODO(urvang): Refactor this code.
|
|
if (tx_width == 64 && tx_height == 64) { // tx_size == TX_64X64
|
|
// Zero out top-right 32x32 area.
|
|
for (int row = 0; row < 32; ++row) {
|
|
memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
|
|
}
|
|
// Zero out the bottom 64x32 area.
|
|
memset(out + 32 * 64, 0, 32 * 64 * sizeof(*out));
|
|
// Re-pack non-zero coeffs in the first 32x32 indices.
|
|
for (int row = 1; row < 32; ++row) {
|
|
memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
|
|
}
|
|
} else if (tx_width == 32 && tx_height == 64) { // tx_size == TX_32X64
|
|
// Zero out the bottom 32x32 area.
|
|
memset(out + 32 * 32, 0, 32 * 32 * sizeof(*out));
|
|
// Note: no repacking needed here.
|
|
} else if (tx_width == 64 && tx_height == 32) { // tx_size == TX_64X32
|
|
// Zero out right 32x32 area.
|
|
for (int row = 0; row < 32; ++row) {
|
|
memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
|
|
}
|
|
// Re-pack non-zero coeffs in the first 32x32 indices.
|
|
for (int row = 1; row < 32; ++row) {
|
|
memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
|
|
}
|
|
} else if (tx_width == 16 && tx_height == 64) { // tx_size == TX_16X64
|
|
// Zero out the bottom 16x32 area.
|
|
memset(out + 16 * 32, 0, 16 * 32 * sizeof(*out));
|
|
// Note: no repacking needed here.
|
|
} else if (tx_width == 64 && tx_height == 16) { // tx_size == TX_64X16
|
|
// Zero out right 32x16 area.
|
|
for (int row = 0; row < 16; ++row) {
|
|
memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
|
|
}
|
|
// Re-pack non-zero coeffs in the first 32x16 indices.
|
|
for (int row = 1; row < 16; ++row) {
|
|
memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
|
|
}
|
|
}
|
|
|
|
// Apply appropriate scale.
|
|
const double amplify_factor = get_amplification_factor(tx_type, tx_size);
|
|
for (int c = 0; c < tx_width; ++c) {
|
|
for (int r = 0; r < tx_height; ++r) {
|
|
out[r * stride + c] *= amplify_factor;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Type>
|
|
void fliplr(Type *dest, int width, int height, int stride) {
|
|
for (int r = 0; r < height; ++r) {
|
|
for (int c = 0; c < width / 2; ++c) {
|
|
const Type tmp = dest[r * stride + c];
|
|
dest[r * stride + c] = dest[r * stride + width - 1 - c];
|
|
dest[r * stride + width - 1 - c] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Type>
|
|
void flipud(Type *dest, int width, int height, int stride) {
|
|
for (int c = 0; c < width; ++c) {
|
|
for (int r = 0; r < height / 2; ++r) {
|
|
const Type tmp = dest[r * stride + c];
|
|
dest[r * stride + c] = dest[(height - 1 - r) * stride + c];
|
|
dest[(height - 1 - r) * stride + c] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Type>
|
|
void fliplrud(Type *dest, int width, int height, int stride) {
|
|
for (int r = 0; r < height / 2; ++r) {
|
|
for (int c = 0; c < width; ++c) {
|
|
const Type tmp = dest[r * stride + c];
|
|
dest[r * stride + c] = dest[(height - 1 - r) * stride + width - 1 - c];
|
|
dest[(height - 1 - r) * stride + width - 1 - c] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
template void fliplr<double>(double *dest, int width, int height, int stride);
|
|
template void flipud<double>(double *dest, int width, int height, int stride);
|
|
template void fliplrud<double>(double *dest, int width, int height, int stride);
|
|
|
|
int bd_arr[BD_NUM] = { 8, 10, 12 };
|
|
|
|
int8_t low_range_arr[BD_NUM] = { 18, 32, 32 };
|
|
int8_t high_range_arr[BD_NUM] = { 32, 32, 32 };
|
|
|
|
void txfm_stage_range_check(const int8_t *stage_range, int stage_num,
|
|
int8_t cos_bit, int low_range, int high_range) {
|
|
for (int i = 0; i < stage_num; ++i) {
|
|
EXPECT_LE(stage_range[i], low_range);
|
|
ASSERT_LE(stage_range[i] + cos_bit, high_range) << "stage = " << i;
|
|
}
|
|
for (int i = 0; i < stage_num - 1; ++i) {
|
|
// make sure there is no overflow while doing half_btf()
|
|
ASSERT_LE(stage_range[i + 1] + cos_bit, high_range) << "stage = " << i;
|
|
}
|
|
}
|
|
} // namespace libaom_test
|