gecko-dev/ipc/mscom/Ptr.h

307 строки
8.3 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_mscom_Ptr_h
#define mozilla_mscom_Ptr_h
#include "mozilla/Assertions.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/mscom/EnsureMTA.h"
#include "mozilla/SystemGroup.h"
#include "mozilla/UniquePtr.h"
#include "nsError.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include <objidl.h>
/**
* The glue code in mozilla::mscom often needs to pass around interface pointers
* belonging to a different apartment from the current one. We must not touch
* the reference counts of those objects on the wrong apartment. By using these
* UniquePtr specializations, we may ensure that the reference counts are always
* handled correctly.
*/
namespace mozilla {
namespace mscom {
namespace detail {
template <typename T>
struct MainThreadRelease {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
if (NS_IsMainThread()) {
aPtr->Release();
return;
}
DebugOnly<nsresult> rv = SystemGroup::Dispatch(
TaskCategory::Other,
NewNonOwningRunnableMethod("mscom::MainThreadRelease", aPtr,
&T::Release));
MOZ_ASSERT(NS_SUCCEEDED(rv));
}
};
template <typename T>
struct MTADelete {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
EnsureMTA::AsyncOperation([aPtr]() -> void { delete aPtr; });
}
};
template <typename T>
struct MTARelease {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
// Static analysis doesn't recognize that, even though aPtr escapes the
// current scope, we are in effect moving our strong ref into the lambda.
void* ptr = aPtr;
EnsureMTA::AsyncOperation(
[ptr]() -> void { reinterpret_cast<T*>(ptr)->Release(); });
}
};
template <typename T>
struct MTAReleaseInChildProcess {
void operator()(T* aPtr) {
if (!aPtr) {
return;
}
if (XRE_IsParentProcess()) {
MOZ_ASSERT(NS_IsMainThread());
aPtr->Release();
return;
}
// Static analysis doesn't recognize that, even though aPtr escapes the
// current scope, we are in effect moving our strong ref into the lambda.
void* ptr = aPtr;
EnsureMTA::AsyncOperation(
[ptr]() -> void { reinterpret_cast<T*>(ptr)->Release(); });
}
};
struct InterceptorTargetDeleter {
void operator()(IUnknown* aPtr) {
// We intentionally do not touch the refcounts of interceptor targets!
}
};
struct PreservedStreamDeleter {
void operator()(IStream* aPtr) {
if (!aPtr) {
return;
}
// Static analysis doesn't recognize that, even though aPtr escapes the
// current scope, we are in effect moving our strong ref into the lambda.
void* ptr = aPtr;
auto cleanup = [ptr]() -> void {
DebugOnly<HRESULT> hr =
::CoReleaseMarshalData(reinterpret_cast<LPSTREAM>(ptr));
MOZ_ASSERT(SUCCEEDED(hr));
reinterpret_cast<LPSTREAM>(ptr)->Release();
};
if (XRE_IsParentProcess()) {
MOZ_ASSERT(NS_IsMainThread());
cleanup();
return;
}
EnsureMTA::AsyncOperation(cleanup);
}
};
} // namespace detail
template <typename T>
using STAUniquePtr = mozilla::UniquePtr<T, detail::MainThreadRelease<T>>;
template <typename T>
using MTAUniquePtr = mozilla::UniquePtr<T, detail::MTARelease<T>>;
template <typename T>
using MTADeletePtr = mozilla::UniquePtr<T, detail::MTADelete<T>>;
template <typename T>
using ProxyUniquePtr =
mozilla::UniquePtr<T, detail::MTAReleaseInChildProcess<T>>;
template <typename T>
using InterceptorTargetPtr =
mozilla::UniquePtr<T, detail::InterceptorTargetDeleter>;
using PreservedStreamPtr =
mozilla::UniquePtr<IStream, detail::PreservedStreamDeleter>;
namespace detail {
// We don't have direct access to UniquePtr's storage, so we use mPtrStorage
// to receive the pointer and then set the target inside the destructor.
template <typename T, typename Deleter>
class UniquePtrGetterAddRefs {
public:
explicit UniquePtrGetterAddRefs(UniquePtr<T, Deleter>& aSmartPtr)
: mTargetSmartPtr(aSmartPtr), mPtrStorage(nullptr) {}
~UniquePtrGetterAddRefs() { mTargetSmartPtr.reset(mPtrStorage); }
operator void**() { return reinterpret_cast<void**>(&mPtrStorage); }
operator T**() { return &mPtrStorage; }
T*& operator*() { return mPtrStorage; }
private:
UniquePtr<T, Deleter>& mTargetSmartPtr;
T* mPtrStorage;
};
} // namespace detail
template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(RefPtr<T>&& aRefPtr) {
return STAUniquePtr<T>(aRefPtr.forget().take());
}
template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(const RefPtr<T>& aRefPtr) {
MOZ_ASSERT(NS_IsMainThread());
return STAUniquePtr<T>(do_AddRef(aRefPtr).take());
}
template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(T* aRawPtr) {
MOZ_ASSERT(NS_IsMainThread());
if (aRawPtr) {
aRawPtr->AddRef();
}
return STAUniquePtr<T>(aRawPtr);
}
template <typename T, typename U>
inline STAUniquePtr<T> ToSTAUniquePtr(const InterceptorTargetPtr<U>& aTarget) {
MOZ_ASSERT(NS_IsMainThread());
RefPtr<T> newRef(static_cast<T*>(aTarget.get()));
return ToSTAUniquePtr(std::move(newRef));
}
template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(RefPtr<T>&& aRefPtr) {
return MTAUniquePtr<T>(aRefPtr.forget().take());
}
template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(const RefPtr<T>& aRefPtr) {
MOZ_ASSERT(IsCurrentThreadMTA());
return MTAUniquePtr<T>(do_AddRef(aRefPtr).take());
}
template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(T* aRawPtr) {
MOZ_ASSERT(IsCurrentThreadMTA());
if (aRawPtr) {
aRawPtr->AddRef();
}
return MTAUniquePtr<T>(aRawPtr);
}
template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(RefPtr<T>&& aRefPtr) {
return ProxyUniquePtr<T>(aRefPtr.forget().take());
}
template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(const RefPtr<T>& aRefPtr) {
MOZ_ASSERT(IsProxy(aRefPtr));
MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
(XRE_IsContentProcess() && IsCurrentThreadMTA()));
return ProxyUniquePtr<T>(do_AddRef(aRefPtr).take());
}
template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(T* aRawPtr) {
MOZ_ASSERT(IsProxy(aRawPtr));
MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
(XRE_IsContentProcess() && IsCurrentThreadMTA()));
if (aRawPtr) {
aRawPtr->AddRef();
}
return ProxyUniquePtr<T>(aRawPtr);
}
template <typename T, typename Deleter>
inline InterceptorTargetPtr<T> ToInterceptorTargetPtr(
const UniquePtr<T, Deleter>& aTargetPtr) {
return InterceptorTargetPtr<T>(aTargetPtr.get());
}
inline PreservedStreamPtr ToPreservedStreamPtr(RefPtr<IStream>&& aStream) {
return PreservedStreamPtr(aStream.forget().take());
}
inline PreservedStreamPtr ToPreservedStreamPtr(
already_AddRefed<IStream>& aStream) {
return PreservedStreamPtr(aStream.take());
}
template <typename T, typename Deleter>
inline detail::UniquePtrGetterAddRefs<T, Deleter> getter_AddRefs(
UniquePtr<T, Deleter>& aSmartPtr) {
return detail::UniquePtrGetterAddRefs<T, Deleter>(aSmartPtr);
}
} // namespace mscom
} // namespace mozilla
// This block makes it possible for these smart pointers to be correctly
// applied in NewRunnableMethod and friends
namespace detail {
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::STAUniquePtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::STAUniquePtr<T>> Type;
};
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::MTAUniquePtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::MTAUniquePtr<T>> Type;
};
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::ProxyUniquePtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::ProxyUniquePtr<T>> Type;
};
template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::InterceptorTargetPtr<T>> {
typedef StoreCopyPassByRRef<mozilla::mscom::InterceptorTargetPtr<T>> Type;
};
template <>
struct SmartPointerStorageClass<mozilla::mscom::PreservedStreamPtr> {
typedef StoreCopyPassByRRef<mozilla::mscom::PreservedStreamPtr> Type;
};
} // namespace detail
#endif // mozilla_mscom_Ptr_h