gecko-dev/ipc/glue/MessageLink.cpp

378 строки
11 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: sw=2 ts=4 et :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ipc/MessageLink.h"
#include "mozilla/ipc/MessageChannel.h"
#include "mozilla/ipc/BrowserProcessSubThread.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "chrome/common/ipc_channel.h"
#include "mozilla/Assertions.h"
#include "mozilla/DebugOnly.h"
#include "nsDebug.h"
#include "nsExceptionHandler.h"
#include "nsISupportsImpl.h"
#include "nsPrintfCString.h"
#include "nsXULAppAPI.h"
using namespace mozilla;
using namespace std;
// We rely on invariants about the lifetime of the transport:
//
// - outlives this MessageChannel
// - deleted on the IO thread
//
// These invariants allow us to send messages directly through the
// transport without having to worry about orphaned Send() tasks on
// the IO thread touching MessageChannel memory after it's been deleted
// on the worker thread. We also don't need to refcount the
// Transport, because whatever task triggers its deletion only runs on
// the IO thread, and only runs after this MessageChannel is done with
// the Transport.
namespace mozilla {
namespace ipc {
MessageLink::MessageLink(MessageChannel *aChan) : mChan(aChan) {}
MessageLink::~MessageLink() {
#ifdef DEBUG
mChan = nullptr;
#endif
}
ProcessLink::ProcessLink(MessageChannel *aChan)
: MessageLink(aChan),
mTransport(nullptr),
mIOLoop(nullptr),
mExistingListener(nullptr) {}
ProcessLink::~ProcessLink() {
#ifdef DEBUG
mTransport = nullptr;
mIOLoop = nullptr;
mExistingListener = nullptr;
#endif
}
void ProcessLink::Open(mozilla::ipc::Transport *aTransport,
MessageLoop *aIOLoop, Side aSide) {
mChan->AssertWorkerThread();
MOZ_ASSERT(aTransport, "need transport layer");
// FIXME need to check for valid channel
mTransport = aTransport;
// FIXME figure out whether we're in parent or child, grab IO loop
// appropriately
bool needOpen = true;
if (aIOLoop) {
// We're a child or using the new arguments. Either way, we
// need an open.
needOpen = true;
mChan->mSide = (aSide == UnknownSide) ? ChildSide : aSide;
} else {
MOZ_ASSERT(aSide == UnknownSide, "expected default side arg");
// parent
mChan->mSide = ParentSide;
needOpen = false;
aIOLoop = XRE_GetIOMessageLoop();
}
mIOLoop = aIOLoop;
NS_ASSERTION(mIOLoop, "need an IO loop");
NS_ASSERTION(mChan->mWorkerLoop, "need a worker loop");
// If we were never able to open the transport, immediately post an error
// message.
if (mTransport->Unsound_IsClosed()) {
mIOLoop->PostTask(
NewNonOwningRunnableMethod("ipc::ProcessLink::OnChannelConnectError",
this, &ProcessLink::OnChannelConnectError));
return;
}
{
MonitorAutoLock lock(*mChan->mMonitor);
if (needOpen) {
// Transport::Connect() has not been called. Call it so
// we start polling our pipe and processing outgoing
// messages.
mIOLoop->PostTask(
NewNonOwningRunnableMethod("ipc::ProcessLink::OnChannelOpened", this,
&ProcessLink::OnChannelOpened));
} else {
// Transport::Connect() has already been called. Take
// over the channel from the previous listener and process
// any queued messages.
mIOLoop->PostTask(NewNonOwningRunnableMethod(
"ipc::ProcessLink::OnTakeConnectedChannel", this,
&ProcessLink::OnTakeConnectedChannel));
}
// Wait until one of the runnables above changes the state of the
// channel. Note that the state could be changed again after that (to
// ChannelClosing, for example, by the IO thread). We can rely on it not
// changing back to Closed: only the worker thread changes it to closed,
// and we're on the worker thread, blocked.
while (mChan->mChannelState == ChannelClosed) {
mChan->mMonitor->Wait();
}
}
}
void ProcessLink::EchoMessage(Message *msg) {
mChan->AssertWorkerThread();
mChan->mMonitor->AssertCurrentThreadOwns();
mIOLoop->PostTask(NewNonOwningRunnableMethod<Message *>(
"ipc::ProcessLink::OnEchoMessage", this, &ProcessLink::OnEchoMessage,
msg));
// OnEchoMessage takes ownership of |msg|
}
void ProcessLink::SendMessage(Message *msg) {
if (msg->size() > IPC::Channel::kMaximumMessageSize) {
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCMessageName,
nsDependentCString(msg->name()));
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCMessageSize,
static_cast<int>(msg->size()));
MOZ_CRASH("IPC message size is too large");
}
if (!mChan->mIsPostponingSends) {
mChan->AssertWorkerThread();
}
mChan->mMonitor->AssertCurrentThreadOwns();
mIOLoop->PostTask(NewNonOwningRunnableMethod<Message *>(
"IPC::Channel::Send", mTransport, &Transport::Send, msg));
}
void ProcessLink::SendClose() {
mChan->AssertWorkerThread();
mChan->mMonitor->AssertCurrentThreadOwns();
mIOLoop->PostTask(NewNonOwningRunnableMethod(
"ipc::ProcessLink::OnCloseChannel", this, &ProcessLink::OnCloseChannel));
}
ThreadLink::ThreadLink(MessageChannel *aChan, MessageChannel *aTargetChan)
: MessageLink(aChan), mTargetChan(aTargetChan) {}
ThreadLink::~ThreadLink() {
MOZ_ASSERT(mChan);
MOZ_ASSERT(mChan->mMonitor);
MonitorAutoLock lock(*mChan->mMonitor);
// Bug 848949: We need to prevent the other side
// from sending us any more messages to avoid Use-After-Free.
// The setup here is as shown:
//
// (Us) (Them)
// MessageChannel MessageChannel
// | ^ \ / ^ |
// | | X | |
// v | / \ | v
// ThreadLink ThreadLink
//
// We want to null out the diagonal link from their ThreadLink
// to our MessageChannel. Note that we must hold the monitor so
// that we do this atomically with respect to them trying to send
// us a message. Since the channels share the same monitor this
// also protects against the two ~ThreadLink() calls racing.
if (mTargetChan) {
MOZ_ASSERT(mTargetChan->mLink);
static_cast<ThreadLink *>(mTargetChan->mLink)->mTargetChan = nullptr;
}
mTargetChan = nullptr;
}
void ThreadLink::EchoMessage(Message *msg) {
mChan->AssertWorkerThread();
mChan->mMonitor->AssertCurrentThreadOwns();
mChan->OnMessageReceivedFromLink(std::move(*msg));
delete msg;
}
void ThreadLink::SendMessage(Message *msg) {
if (!mChan->mIsPostponingSends) {
mChan->AssertWorkerThread();
}
mChan->mMonitor->AssertCurrentThreadOwns();
if (mTargetChan) mTargetChan->OnMessageReceivedFromLink(std::move(*msg));
delete msg;
}
void ThreadLink::SendClose() {
mChan->AssertWorkerThread();
mChan->mMonitor->AssertCurrentThreadOwns();
mChan->mChannelState = ChannelClosed;
// In a ProcessLink, we would close our half the channel. This
// would show up on the other side as an error on the I/O thread.
// The I/O thread would then invoke OnChannelErrorFromLink().
// As usual, we skip that process and just invoke the
// OnChannelErrorFromLink() method directly.
if (mTargetChan) mTargetChan->OnChannelErrorFromLink();
}
bool ThreadLink::Unsound_IsClosed() const {
MonitorAutoLock lock(*mChan->mMonitor);
return mChan->mChannelState == ChannelClosed;
}
uint32_t ThreadLink::Unsound_NumQueuedMessages() const {
// ThreadLinks don't have a message queue.
return 0;
}
//
// The methods below run in the context of the IO thread
//
void ProcessLink::OnMessageReceived(Message &&msg) {
AssertIOThread();
NS_ASSERTION(mChan->mChannelState != ChannelError, "Shouldn't get here!");
MonitorAutoLock lock(*mChan->mMonitor);
mChan->OnMessageReceivedFromLink(std::move(msg));
}
void ProcessLink::OnEchoMessage(Message *msg) {
AssertIOThread();
OnMessageReceived(std::move(*msg));
delete msg;
}
void ProcessLink::OnChannelOpened() {
AssertIOThread();
{
MonitorAutoLock lock(*mChan->mMonitor);
mExistingListener = mTransport->set_listener(this);
#ifdef DEBUG
if (mExistingListener) {
std::queue<Message> pending;
mExistingListener->GetQueuedMessages(pending);
MOZ_ASSERT(pending.empty());
}
#endif // DEBUG
mChan->mChannelState = ChannelOpening;
lock.Notify();
}
/*assert*/ mTransport->Connect();
}
void ProcessLink::OnTakeConnectedChannel() {
AssertIOThread();
std::queue<Message> pending;
{
MonitorAutoLock lock(*mChan->mMonitor);
mChan->mChannelState = ChannelConnected;
mExistingListener = mTransport->set_listener(this);
if (mExistingListener) {
mExistingListener->GetQueuedMessages(pending);
}
lock.Notify();
}
// Dispatch whatever messages the previous listener had queued up.
while (!pending.empty()) {
OnMessageReceived(std::move(pending.front()));
pending.pop();
}
}
void ProcessLink::OnChannelConnected(int32_t peer_pid) {
AssertIOThread();
bool notifyChannel = false;
{
MonitorAutoLock lock(*mChan->mMonitor);
// Do not force it into connected if it has errored out, started
// closing, etc. Note that we can be in the Connected state already
// since the parent starts out Connected.
if (mChan->mChannelState == ChannelOpening ||
mChan->mChannelState == ChannelConnected) {
mChan->mChannelState = ChannelConnected;
mChan->mMonitor->Notify();
notifyChannel = true;
}
}
if (mExistingListener) {
mExistingListener->OnChannelConnected(peer_pid);
}
if (notifyChannel) {
mChan->OnChannelConnected(peer_pid);
}
}
void ProcessLink::OnChannelConnectError() {
AssertIOThread();
MonitorAutoLock lock(*mChan->mMonitor);
mChan->OnChannelErrorFromLink();
}
void ProcessLink::OnChannelError() {
AssertIOThread();
MonitorAutoLock lock(*mChan->mMonitor);
MOZ_ALWAYS_TRUE(this == mTransport->set_listener(mExistingListener));
mChan->OnChannelErrorFromLink();
}
void ProcessLink::OnCloseChannel() {
AssertIOThread();
mTransport->Close();
MonitorAutoLock lock(*mChan->mMonitor);
DebugOnly<IPC::Channel::Listener *> previousListener =
mTransport->set_listener(mExistingListener);
// OnChannelError may have reset the listener already.
MOZ_ASSERT(previousListener == this || previousListener == mExistingListener);
mChan->mChannelState = ChannelClosed;
mChan->mMonitor->Notify();
}
bool ProcessLink::Unsound_IsClosed() const {
return mTransport->Unsound_IsClosed();
}
uint32_t ProcessLink::Unsound_NumQueuedMessages() const {
return mTransport->Unsound_NumQueuedMessages();
}
} // namespace ipc
} // namespace mozilla