gecko-dev/dom/media/webaudio/AudioEventTimeline.cpp

398 строки
13 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioEventTimeline.h"
#include "mozilla/ErrorResult.h"
static float LinearInterpolate(double t0, float v0, double t1, float v1, double t)
{
return v0 + (v1 - v0) * ((t - t0) / (t1 - t0));
}
static float ExponentialInterpolate(double t0, float v0, double t1, float v1, double t)
{
return v0 * powf(v1 / v0, (t - t0) / (t1 - t0));
}
static float ExponentialApproach(double t0, double v0, float v1, double timeConstant, double t)
{
return v1 + (v0 - v1) * expf(-(t - t0) / timeConstant);
}
static float ExtractValueFromCurve(double startTime, float* aCurve, uint32_t aCurveLength, double duration, double t)
{
if (t >= startTime + duration) {
// After the duration, return the last curve value
return aCurve[aCurveLength - 1];
}
double ratio = std::max((t - startTime) / duration, 0.0);
if (ratio >= 1.0) {
return aCurve[aCurveLength - 1];
}
return aCurve[uint32_t(aCurveLength * ratio)];
}
namespace mozilla {
namespace dom {
template <class ErrorResult> bool
AudioEventTimeline::ValidateEvent(AudioTimelineEvent& aEvent,
ErrorResult& aRv)
{
MOZ_ASSERT(NS_IsMainThread());
auto TimeOf = [](const AudioTimelineEvent& aEvent) -> double {
return aEvent.template Time<double>();
};
// Validate the event itself
if (!WebAudioUtils::IsTimeValid(TimeOf(aEvent)) ||
!WebAudioUtils::IsTimeValid(aEvent.mTimeConstant)) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
if (aEvent.mType == AudioTimelineEvent::SetValueCurve) {
if (!aEvent.mCurve || !aEvent.mCurveLength) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
for (uint32_t i = 0; i < aEvent.mCurveLength; ++i) {
if (!IsValid(aEvent.mCurve[i])) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
}
}
if (aEvent.mType == AudioTimelineEvent::SetTarget &&
WebAudioUtils::FuzzyEqual(aEvent.mTimeConstant, 0.0)) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
bool timeAndValueValid = IsValid(aEvent.mValue) &&
IsValid(aEvent.mDuration);
if (!timeAndValueValid) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
// Make sure that non-curve events don't fall within the duration of a
// curve event.
for (unsigned i = 0; i < mEvents.Length(); ++i) {
if (mEvents[i].mType == AudioTimelineEvent::SetValueCurve &&
!(aEvent.mType == AudioTimelineEvent::SetValueCurve &&
TimeOf(aEvent) == TimeOf(mEvents[i])) &&
TimeOf(mEvents[i]) <= TimeOf(aEvent) &&
TimeOf(mEvents[i]) + mEvents[i].mDuration >= TimeOf(aEvent)) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
}
// Make sure that curve events don't fall in a range which includes other
// events.
if (aEvent.mType == AudioTimelineEvent::SetValueCurve) {
for (unsigned i = 0; i < mEvents.Length(); ++i) {
// In case we have two curve at the same time
if (mEvents[i].mType == AudioTimelineEvent::SetValueCurve &&
TimeOf(mEvents[i]) == TimeOf(aEvent)) {
continue;
}
if (TimeOf(mEvents[i]) > TimeOf(aEvent) &&
TimeOf(mEvents[i]) < TimeOf(aEvent) + aEvent.mDuration) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
}
}
// Make sure that invalid values are not used for exponential curves
if (aEvent.mType == AudioTimelineEvent::ExponentialRamp) {
if (aEvent.mValue <= 0.f) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
const AudioTimelineEvent* previousEvent = GetPreviousEvent(TimeOf(aEvent));
if (previousEvent) {
if (previousEvent->mValue <= 0.f) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
} else {
if (mValue <= 0.f) {
aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
return false;
}
}
}
return true;
}
template bool
AudioEventTimeline::ValidateEvent(AudioTimelineEvent& aEvent,
ErrorResult& aRv);
// This method computes the AudioParam value at a given time based on the event timeline
template<class TimeType> void
AudioEventTimeline::GetValuesAtTimeHelper(TimeType aTime, float* aBuffer,
const size_t aSize)
{
MOZ_ASSERT(aBuffer);
MOZ_ASSERT(aSize);
auto TimeOf = [](const AudioTimelineEvent& aEvent) -> TimeType {
return aEvent.template Time<TimeType>();
};
size_t eventIndex = 0;
const AudioTimelineEvent* previous = nullptr;
// Let's remove old events except the last one: we need it to calculate some curves.
while (mEvents.Length() > 1 &&
aTime > TimeOf(mEvents[1])) {
mEvents.RemoveElementAt(0);
}
for (size_t bufferIndex = 0; bufferIndex < aSize; ++bufferIndex, ++aTime) {
bool timeMatchesEventIndex = false;
const AudioTimelineEvent* next;
for (; ; ++eventIndex) {
if (eventIndex >= mEvents.Length()) {
next = nullptr;
break;
}
next = &mEvents[eventIndex];
if (aTime < TimeOf(*next)) {
break;
}
#ifdef DEBUG
MOZ_ASSERT(next->mType == AudioTimelineEvent::SetValueAtTime ||
next->mType == AudioTimelineEvent::SetTarget ||
next->mType == AudioTimelineEvent::LinearRamp ||
next->mType == AudioTimelineEvent::ExponentialRamp ||
next->mType == AudioTimelineEvent::SetValueCurve);
#endif
if (TimesEqual(aTime, TimeOf(*next))) {
mLastComputedValue = mComputedValue;
// Find the last event with the same time
while (eventIndex < mEvents.Length() - 1 &&
TimesEqual(aTime, TimeOf(mEvents[eventIndex + 1]))) {
++eventIndex;
}
timeMatchesEventIndex = true;
break;
}
previous = next;
}
if (timeMatchesEventIndex) {
// The time matches one of the events exactly.
MOZ_ASSERT(TimesEqual(aTime, TimeOf(mEvents[eventIndex])));
switch (mEvents[eventIndex].mType) {
case AudioTimelineEvent::SetTarget:
// SetTarget nodes can be handled no matter what their next node is
// (if they have one).
// Follow the curve, without regard to the next event, starting at
// the last value of the last event.
mComputedValue =
ExponentialApproach(TimeOf(mEvents[eventIndex]),
mLastComputedValue, mEvents[eventIndex].mValue,
mEvents[eventIndex].mTimeConstant, aTime);
break;
case AudioTimelineEvent::SetValueCurve:
// SetValueCurve events can be handled no matter what their event
// node is (if they have one)
mComputedValue =
ExtractValueFromCurve(TimeOf(mEvents[eventIndex]),
mEvents[eventIndex].mCurve,
mEvents[eventIndex].mCurveLength,
mEvents[eventIndex].mDuration, aTime);
break;
default:
// For other event types
mComputedValue = mEvents[eventIndex].mValue;
}
} else {
mComputedValue = GetValuesAtTimeHelperInternal(aTime, previous, next);
}
aBuffer[bufferIndex] = mComputedValue;
}
}
template void
AudioEventTimeline::GetValuesAtTimeHelper(double aTime, float* aBuffer,
const size_t aSize);
template void
AudioEventTimeline::GetValuesAtTimeHelper(int64_t aTime, float* aBuffer,
const size_t aSize);
template<class TimeType> float
AudioEventTimeline::GetValuesAtTimeHelperInternal(TimeType aTime,
const AudioTimelineEvent* aPrevious,
const AudioTimelineEvent* aNext)
{
// If the requested time is before all of the existing events
if (!aPrevious) {
return mValue;
}
auto TimeOf = [](const AudioTimelineEvent* aEvent) -> TimeType {
return aEvent->template Time<TimeType>();
};
// SetTarget nodes can be handled no matter what their next node is (if
// they have one)
if (aPrevious->mType == AudioTimelineEvent::SetTarget) {
return ExponentialApproach(TimeOf(aPrevious),
mLastComputedValue, aPrevious->mValue,
aPrevious->mTimeConstant, aTime);
}
// SetValueCurve events can be handled no mattar what their next node is
// (if they have one)
if (aPrevious->mType == AudioTimelineEvent::SetValueCurve) {
return ExtractValueFromCurve(TimeOf(aPrevious),
aPrevious->mCurve, aPrevious->mCurveLength,
aPrevious->mDuration, aTime);
}
// If the requested time is after all of the existing events
if (!aNext) {
switch (aPrevious->mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
// The value will be constant after the last event
return aPrevious->mValue;
case AudioTimelineEvent::SetValueCurve:
return ExtractValueFromCurve(TimeOf(aPrevious),
aPrevious->mCurve, aPrevious->mCurveLength,
aPrevious->mDuration, aTime);
case AudioTimelineEvent::SetTarget:
MOZ_FALLTHROUGH_ASSERT("AudioTimelineEvent::SetTarget");
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Stream:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
MOZ_ASSERT(false, "unreached");
}
// Finally, handle the case where we have both a previous and a next event
// First, handle the case where our range ends up in a ramp event
switch (aNext->mType) {
case AudioTimelineEvent::LinearRamp:
return LinearInterpolate(TimeOf(aPrevious),
aPrevious->mValue,
TimeOf(aNext),
aNext->mValue, aTime);
case AudioTimelineEvent::ExponentialRamp:
return ExponentialInterpolate(TimeOf(aPrevious),
aPrevious->mValue,
TimeOf(aNext),
aNext->mValue, aTime);
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::SetTarget:
case AudioTimelineEvent::SetValueCurve:
break;
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Stream:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
// Now handle all other cases
switch (aPrevious->mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
// If the next event type is neither linear or exponential ramp, the
// value is constant.
return aPrevious->mValue;
case AudioTimelineEvent::SetValueCurve:
return ExtractValueFromCurve(TimeOf(aPrevious),
aPrevious->mCurve, aPrevious->mCurveLength,
aPrevious->mDuration, aTime);
case AudioTimelineEvent::SetTarget:
MOZ_FALLTHROUGH_ASSERT("AudioTimelineEvent::SetTarget");
case AudioTimelineEvent::SetValue:
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Stream:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
MOZ_ASSERT(false, "unreached");
return 0.0f;
}
template float
AudioEventTimeline::GetValuesAtTimeHelperInternal(double aTime,
const AudioTimelineEvent* aPrevious,
const AudioTimelineEvent* aNext);
template float
AudioEventTimeline::GetValuesAtTimeHelperInternal(int64_t aTime,
const AudioTimelineEvent* aPrevious,
const AudioTimelineEvent* aNext);
const AudioTimelineEvent*
AudioEventTimeline::GetPreviousEvent(double aTime) const
{
const AudioTimelineEvent* previous = nullptr;
const AudioTimelineEvent* next = nullptr;
auto TimeOf = [](const AudioTimelineEvent& aEvent) -> double {
return aEvent.template Time<double>();
};
bool bailOut = false;
for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) {
switch (mEvents[i].mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::SetTarget:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
case AudioTimelineEvent::SetValueCurve:
if (aTime == TimeOf(mEvents[i])) {
// Find the last event with the same time
do {
++i;
} while (i < mEvents.Length() &&
aTime == TimeOf(mEvents[i]));
return &mEvents[i - 1];
}
previous = next;
next = &mEvents[i];
if (aTime < TimeOf(mEvents[i])) {
bailOut = true;
}
break;
default:
MOZ_ASSERT(false, "unreached");
}
}
// Handle the case where the time is past all of the events
if (!bailOut) {
previous = next;
}
return previous;
}
} // namespace dom
} // namespace mozilla