gecko-dev/media/mtransport/test/transport_unittests.cpp

1342 строки
35 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
// Original author: ekr@rtfm.com
#include <iostream>
#include <string>
#include <map>
#include <algorithm>
#include "mozilla/UniquePtr.h"
#include "sigslot.h"
#include "logging.h"
#include "nspr.h"
#include "nss.h"
#include "ssl.h"
#include "sslproto.h"
#include "nsThreadUtils.h"
#include "nsXPCOM.h"
#include "databuffer.h"
#include "dtlsidentity.h"
#include "nricectxhandler.h"
#include "nricemediastream.h"
#include "transportflow.h"
#include "transportlayer.h"
#include "transportlayerdtls.h"
#include "transportlayerice.h"
#include "transportlayerlog.h"
#include "transportlayerloopback.h"
#include "runnable_utils.h"
#define GTEST_HAS_RTTI 0
#include "gtest/gtest.h"
#include "gtest_utils.h"
using namespace mozilla;
MOZ_MTLOG_MODULE("mtransport")
const uint8_t kTlsChangeCipherSpecType = 0x14;
const uint8_t kTlsHandshakeType = 0x16;
const uint8_t kTlsHandshakeCertificate = 0x0b;
const uint8_t kTlsHandshakeServerKeyExchange = 0x0c;
const uint8_t kTlsFakeChangeCipherSpec[] = {
kTlsChangeCipherSpecType, // Type
0xfe, 0xff, // Version
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, // Fictitious sequence #
0x00, 0x01, // Length
0x01 // Value
};
// Layer class which can't be initialized.
class TransportLayerDummy : public TransportLayer {
public:
TransportLayerDummy(bool allow_init, bool *destroyed)
: allow_init_(allow_init),
destroyed_(destroyed) {
*destroyed_ = false;
}
virtual ~TransportLayerDummy() {
*destroyed_ = true;
}
nsresult InitInternal() override {
return allow_init_ ? NS_OK : NS_ERROR_FAILURE;
}
TransportResult SendPacket(const unsigned char *data, size_t len) override {
MOZ_CRASH(); // Should never be called.
return 0;
}
TRANSPORT_LAYER_ID("lossy")
private:
bool allow_init_;
bool *destroyed_;
};
class Inspector {
public:
virtual ~Inspector() {}
virtual void Inspect(TransportLayer* layer,
const unsigned char *data, size_t len) = 0;
};
// Class to simulate various kinds of network lossage
class TransportLayerLossy : public TransportLayer {
public:
TransportLayerLossy() : loss_mask_(0), packet_(0), inspector_(nullptr) {}
~TransportLayerLossy () {}
TransportResult SendPacket(const unsigned char *data, size_t len) override {
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "SendPacket(" << len << ")");
if (loss_mask_ & (1 << (packet_ % 32))) {
MOZ_MTLOG(ML_NOTICE, "Dropping packet");
++packet_;
return len;
}
if (inspector_) {
inspector_->Inspect(this, data, len);
}
++packet_;
return downward_->SendPacket(data, len);
}
void SetLoss(uint32_t packet) {
loss_mask_ |= (1 << (packet & 32));
}
void SetInspector(UniquePtr<Inspector> inspector) {
inspector_ = Move(inspector);
}
void StateChange(TransportLayer *layer, State state) {
TL_SET_STATE(state);
}
void PacketReceived(TransportLayer *layer, const unsigned char *data,
size_t len) {
SignalPacketReceived(this, data, len);
}
TRANSPORT_LAYER_ID("lossy")
protected:
void WasInserted() override {
downward_->SignalPacketReceived.
connect(this,
&TransportLayerLossy::PacketReceived);
downward_->SignalStateChange.
connect(this,
&TransportLayerLossy::StateChange);
TL_SET_STATE(downward_->state());
}
private:
uint32_t loss_mask_;
uint32_t packet_;
UniquePtr<Inspector> inspector_;
};
// Process DTLS Records
#define CHECK_LENGTH(expected) \
do { \
EXPECT_GE(remaining(), expected); \
if (remaining() < expected) return false; \
} while(0)
class TlsParser {
public:
TlsParser(const unsigned char *data, size_t len)
: buffer_(data, len), offset_(0) {}
bool Read(unsigned char* val) {
if (remaining() < 1) {
return false;
}
*val = *ptr();
consume(1);
return true;
}
// Read an integral type of specified width.
bool Read(uint32_t *val, size_t len) {
if (len > sizeof(uint32_t))
return false;
*val = 0;
for (size_t i=0; i<len; ++i) {
unsigned char tmp;
if (!Read(&tmp))
return false;
(*val) = ((*val) << 8) + tmp;
}
return true;
}
bool Read(unsigned char* val, size_t len) {
if (remaining() < len) {
return false;
}
if (val) {
memcpy(val, ptr(), len);
}
consume(len);
return true;
}
private:
size_t remaining() const { return buffer_.len() - offset_; }
const uint8_t *ptr() const { return buffer_.data() + offset_; }
void consume(size_t len) { offset_ += len; }
DataBuffer buffer_;
size_t offset_;
};
class DtlsRecordParser {
public:
DtlsRecordParser(const unsigned char *data, size_t len)
: buffer_(data, len), offset_(0) {}
bool NextRecord(uint8_t* ct, nsAutoPtr<DataBuffer>* buffer) {
if (!remaining())
return false;
CHECK_LENGTH(13U);
const uint8_t *ctp = reinterpret_cast<const uint8_t *>(ptr());
consume(11); // ct + version + length
const uint16_t *tmp = reinterpret_cast<const uint16_t*>(ptr());
size_t length = ntohs(*tmp);
consume(2);
CHECK_LENGTH(length);
DataBuffer* db = new DataBuffer(ptr(), length);
consume(length);
*ct = *ctp;
*buffer = db;
return true;
}
private:
size_t remaining() const { return buffer_.len() - offset_; }
const uint8_t *ptr() const { return buffer_.data() + offset_; }
void consume(size_t len) { offset_ += len; }
DataBuffer buffer_;
size_t offset_;
};
// Inspector that parses out DTLS records and passes
// them on.
class DtlsRecordInspector : public Inspector {
public:
virtual void Inspect(TransportLayer* layer,
const unsigned char *data, size_t len) {
DtlsRecordParser parser(data, len);
uint8_t ct;
nsAutoPtr<DataBuffer> buf;
while(parser.NextRecord(&ct, &buf)) {
OnRecord(layer, ct, buf->data(), buf->len());
}
}
virtual void OnRecord(TransportLayer* layer,
uint8_t content_type,
const unsigned char *record,
size_t len) = 0;
};
// Inspector that injects arbitrary packets based on
// DTLS records of various types.
class DtlsInspectorInjector : public DtlsRecordInspector {
public:
DtlsInspectorInjector(uint8_t packet_type, uint8_t handshake_type,
const unsigned char *data, size_t len) :
packet_type_(packet_type),
handshake_type_(handshake_type),
injected_(false) {
data_.reset(new unsigned char[len]);
memcpy(data_.get(), data, len);
len_ = len;
}
virtual void OnRecord(TransportLayer* layer,
uint8_t content_type,
const unsigned char *data, size_t len) {
// Only inject once.
if (injected_) {
return;
}
// Check that the first byte is as requested.
if (content_type != packet_type_) {
return;
}
if (handshake_type_ != 0xff) {
// Check that the packet is plausibly long enough.
if (len < 1) {
return;
}
// Check that the handshake type is as requested.
if (data[0] != handshake_type_) {
return;
}
}
layer->SendPacket(data_.get(), len_);
}
private:
uint8_t packet_type_;
uint8_t handshake_type_;
bool injected_;
UniquePtr<unsigned char[]> data_;
size_t len_;
};
// Make a copy of the first instance of a message.
class DtlsInspectorRecordHandshakeMessage : public DtlsRecordInspector {
public:
explicit DtlsInspectorRecordHandshakeMessage(uint8_t handshake_type)
: handshake_type_(handshake_type),
buffer_() {}
virtual void OnRecord(TransportLayer* layer,
uint8_t content_type,
const unsigned char *data, size_t len) {
// Only do this once.
if (buffer_.len()) {
return;
}
// Check that the first byte is as requested.
if (content_type != kTlsHandshakeType) {
return;
}
TlsParser parser(data, len);
unsigned char message_type;
// Read the handshake message type.
if (!parser.Read(&message_type)) {
return;
}
if (message_type != handshake_type_) {
return;
}
uint32_t length;
if (!parser.Read(&length, 3)) {
return;
}
uint32_t message_seq;
if (!parser.Read(&message_seq, 2)) {
return;
}
uint32_t fragment_offset;
if (!parser.Read(&fragment_offset, 3)) {
return;
}
uint32_t fragment_length;
if (!parser.Read(&fragment_length, 3)) {
return;
}
if ((fragment_offset != 0) || (fragment_length != length)) {
// This shouldn't happen because all current tests where we
// are using this code don't fragment.
return;
}
buffer_.Allocate(length);
if (!parser.Read(buffer_.data(), length)) {
return;
}
}
const DataBuffer& buffer() { return buffer_; }
private:
uint8_t handshake_type_;
DataBuffer buffer_;
};
class TlsServerKeyExchangeECDHE {
public:
bool Parse(const unsigned char* data, size_t len) {
TlsParser parser(data, len);
uint8_t curve_type;
if (!parser.Read(&curve_type)) {
return false;
}
if (curve_type != 3) { // named_curve
return false;
}
uint32_t named_curve;
if (!parser.Read(&named_curve, 2)) {
return false;
}
uint32_t point_length;
if (!parser.Read(&point_length, 1)) {
return false;
}
public_key_.Allocate(point_length);
if (!parser.Read(public_key_.data(), point_length)) {
return false;
}
return true;
}
DataBuffer public_key_;
};
namespace {
class TransportTestPeer : public sigslot::has_slots<> {
public:
TransportTestPeer(nsCOMPtr<nsIEventTarget> target, std::string name, MtransportTestUtils* utils)
: name_(name), offerer_(name == "P1"), target_(target),
received_packets_(0),received_bytes_(0),flow_(new TransportFlow(name)),
loopback_(new TransportLayerLoopback()),
logging_(new TransportLayerLogging()),
lossy_(new TransportLayerLossy()),
dtls_(new TransportLayerDtls()),
identity_(DtlsIdentity::Generate()),
ice_ctx_(NrIceCtxHandler::Create(name)),
streams_(), candidates_(),
peer_(nullptr),
gathering_complete_(false),
enabled_cipersuites_(),
disabled_cipersuites_(),
reuse_dhe_key_(false),
test_utils_(utils) {
std::vector<NrIceStunServer> stun_servers;
UniquePtr<NrIceStunServer> server(NrIceStunServer::Create(
std::string((char *)"stun.services.mozilla.com"), 3478));
stun_servers.push_back(*server);
EXPECT_TRUE(NS_SUCCEEDED(ice_ctx_->ctx()->SetStunServers(stun_servers)));
dtls_->SetIdentity(identity_);
dtls_->SetRole(offerer_ ?
TransportLayerDtls::SERVER :
TransportLayerDtls::CLIENT);
nsresult res = identity_->ComputeFingerprint("sha-1",
fingerprint_,
sizeof(fingerprint_),
&fingerprint_len_);
EXPECT_TRUE(NS_SUCCEEDED(res));
EXPECT_EQ(20u, fingerprint_len_);
}
~TransportTestPeer() {
test_utils_->sts_target()->Dispatch(
WrapRunnable(this, &TransportTestPeer::DestroyFlow),
NS_DISPATCH_SYNC);
}
void DestroyFlow() {
if (flow_) {
loopback_->Disconnect();
flow_ = nullptr;
}
ice_ctx_ = nullptr;
}
void DisconnectDestroyFlow() {
loopback_->Disconnect();
disconnect_all(); // Disconnect from the signals;
flow_ = nullptr;
}
void SetDtlsAllowAll() {
nsresult res = dtls_->SetVerificationAllowAll();
ASSERT_TRUE(NS_SUCCEEDED(res));
}
void SetAlpn(std::string str, bool withDefault, std::string extra = "") {
std::set<std::string> alpn;
alpn.insert(str); // the one we want to select
if (!extra.empty()) {
alpn.insert(extra);
}
nsresult res = dtls_->SetAlpn(alpn, withDefault ? str : "");
ASSERT_EQ(NS_OK, res);
}
const std::string& GetAlpn() const {
return dtls_->GetNegotiatedAlpn();
}
void SetDtlsPeer(TransportTestPeer *peer, int digests, unsigned int damage) {
unsigned int mask = 1;
for (int i=0; i<digests; i++) {
unsigned char fingerprint_to_set[TransportLayerDtls::kMaxDigestLength];
memcpy(fingerprint_to_set,
peer->fingerprint_,
peer->fingerprint_len_);
if (damage & mask)
fingerprint_to_set[0]++;
nsresult res = dtls_->SetVerificationDigest(
"sha-1",
fingerprint_to_set,
peer->fingerprint_len_);
ASSERT_TRUE(NS_SUCCEEDED(res));
mask <<= 1;
}
}
void SetupSrtp() {
// this mimics the setup we do elsewhere
std::vector<uint16_t> srtp_ciphers;
srtp_ciphers.push_back(SRTP_AES128_CM_HMAC_SHA1_80);
srtp_ciphers.push_back(SRTP_AES128_CM_HMAC_SHA1_32);
SetSrtpCiphers(srtp_ciphers);
}
void SetSrtpCiphers(std::vector<uint16_t>& srtp_ciphers) {
ASSERT_TRUE(NS_SUCCEEDED(dtls_->SetSrtpCiphers(srtp_ciphers)));
}
void ConnectSocket_s(TransportTestPeer *peer) {
nsresult res;
res = loopback_->Init();
ASSERT_EQ((nsresult)NS_OK, res);
loopback_->Connect(peer->loopback_);
ASSERT_EQ((nsresult)NS_OK, flow_->PushLayer(loopback_));
ASSERT_EQ((nsresult)NS_OK, flow_->PushLayer(logging_));
ASSERT_EQ((nsresult)NS_OK, flow_->PushLayer(lossy_));
ASSERT_EQ((nsresult)NS_OK, flow_->PushLayer(dtls_));
if (dtls_->state() != TransportLayer::TS_ERROR) {
// Don't execute these blocks if DTLS didn't initialize.
TweakCiphers(dtls_->internal_fd());
if (reuse_dhe_key_) {
// TransportLayerDtls automatically sets this pref to false
// so set it back for test.
// This is pretty gross. Dig directly into the NSS FD. The problem
// is that we are testing a feature which TransaportLayerDtls doesn't
// expose.
SECStatus rv = SSL_OptionSet(dtls_->internal_fd(),
SSL_REUSE_SERVER_ECDHE_KEY, PR_TRUE);
ASSERT_EQ(SECSuccess, rv);
}
}
flow_->SignalPacketReceived.connect(this, &TransportTestPeer::PacketReceived);
}
void TweakCiphers(PRFileDesc* fd) {
for (unsigned short& enabled_cipersuite : enabled_cipersuites_) {
SSL_CipherPrefSet(fd, enabled_cipersuite, PR_TRUE);
}
for (unsigned short& disabled_cipersuite : disabled_cipersuites_) {
SSL_CipherPrefSet(fd, disabled_cipersuite, PR_FALSE);
}
}
void ConnectSocket(TransportTestPeer *peer) {
RUN_ON_THREAD(test_utils_->sts_target(),
WrapRunnable(this, & TransportTestPeer::ConnectSocket_s,
peer),
NS_DISPATCH_SYNC);
}
void InitIce() {
nsresult res;
// Attach our slots
ice_ctx_->ctx()->SignalGatheringStateChange.
connect(this, &TransportTestPeer::GatheringStateChange);
char name[100];
snprintf(name, sizeof(name), "%s:stream%d", name_.c_str(),
(int)streams_.size());
// Create the media stream
RefPtr<NrIceMediaStream> stream =
ice_ctx_->CreateStream(static_cast<char *>(name), 1);
ASSERT_TRUE(stream != nullptr);
ice_ctx_->ctx()->SetStream(streams_.size(), stream);
streams_.push_back(stream);
// Listen for candidates
stream->SignalCandidate.
connect(this, &TransportTestPeer::GotCandidate);
// Create the transport layer
ice_ = new TransportLayerIce(name);
ice_->SetParameters(ice_ctx_->ctx(), stream, 1);
// Assemble the stack
nsAutoPtr<std::queue<mozilla::TransportLayer *> > layers(
new std::queue<mozilla::TransportLayer *>);
layers->push(ice_);
layers->push(dtls_);
test_utils_->sts_target()->Dispatch(
WrapRunnableRet(&res, flow_, &TransportFlow::PushLayers, layers),
NS_DISPATCH_SYNC);
ASSERT_EQ((nsresult)NS_OK, res);
// Listen for media events
flow_->SignalPacketReceived.connect(this, &TransportTestPeer::PacketReceived);
flow_->SignalStateChange.connect(this, &TransportTestPeer::StateChanged);
// Start gathering
test_utils_->sts_target()->Dispatch(
WrapRunnableRet(&res,
ice_ctx_->ctx(),
&NrIceCtx::StartGathering,
false,
false),
NS_DISPATCH_SYNC);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
void ConnectIce(TransportTestPeer *peer) {
peer_ = peer;
// If gathering is already complete, push the candidates over
if (gathering_complete_)
GatheringComplete();
}
// New candidate
void GotCandidate(NrIceMediaStream *stream, const std::string &candidate) {
std::cerr << "Got candidate " << candidate << std::endl;
candidates_[stream->name()].push_back(candidate);
}
void GatheringStateChange(NrIceCtx* ctx,
NrIceCtx::GatheringState state) {
(void)ctx;
if (state == NrIceCtx::ICE_CTX_GATHER_COMPLETE) {
GatheringComplete();
}
}
// Gathering complete, so send our candidates and start
// connecting on the other peer.
void GatheringComplete() {
nsresult res;
// Don't send to the other side
if (!peer_) {
gathering_complete_ = true;
return;
}
// First send attributes
test_utils_->sts_target()->Dispatch(
WrapRunnableRet(&res, peer_->ice_ctx_->ctx(),
&NrIceCtx::ParseGlobalAttributes,
ice_ctx_->ctx()->GetGlobalAttributes()),
NS_DISPATCH_SYNC);
ASSERT_TRUE(NS_SUCCEEDED(res));
for (size_t i=0; i<streams_.size(); ++i) {
test_utils_->sts_target()->Dispatch(
WrapRunnableRet(&res, peer_->streams_[i], &NrIceMediaStream::ParseAttributes,
candidates_[streams_[i]->name()]), NS_DISPATCH_SYNC);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
// Start checks on the other peer.
test_utils_->sts_target()->Dispatch(
WrapRunnableRet(&res, peer_->ice_ctx_->ctx(), &NrIceCtx::StartChecks,
offerer_),
NS_DISPATCH_SYNC);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
TransportResult SendPacket(const unsigned char* data, size_t len) {
TransportResult ret;
test_utils_->sts_target()->Dispatch(
WrapRunnableRet(&ret, flow_, &TransportFlow::SendPacket, data, len),
NS_DISPATCH_SYNC);
return ret;
}
void StateChanged(TransportFlow *flow, TransportLayer::State state) {
if (state == TransportLayer::TS_OPEN) {
std::cerr << "Now connected" << std::endl;
}
}
void PacketReceived(TransportFlow * flow, const unsigned char* data,
size_t len) {
std::cerr << "Received " << len << " bytes" << std::endl;
++received_packets_;
received_bytes_ += len;
}
void SetLoss(uint32_t loss) {
lossy_->SetLoss(loss);
}
void SetCombinePackets(bool combine) {
loopback_->CombinePackets(combine);
}
void SetInspector(UniquePtr<Inspector> inspector) {
lossy_->SetInspector(Move(inspector));
}
void SetInspector(Inspector* in) {
UniquePtr<Inspector> inspector(in);
lossy_->SetInspector(Move(inspector));
}
void SetCipherSuiteChanges(const std::vector<uint16_t>& enableThese,
const std::vector<uint16_t>& disableThese) {
disabled_cipersuites_ = disableThese;
enabled_cipersuites_ = enableThese;
}
void SetReuseECDHEKey() {
reuse_dhe_key_ = true;
}
TransportLayer::State state() {
TransportLayer::State tstate;
RUN_ON_THREAD(test_utils_->sts_target(),
WrapRunnableRet(&tstate, flow_, &TransportFlow::state));
return tstate;
}
bool connected() {
return state() == TransportLayer::TS_OPEN;
}
bool failed() {
return state() == TransportLayer::TS_ERROR;
}
size_t receivedPackets() { return received_packets_; }
size_t receivedBytes() { return received_bytes_; }
uint16_t cipherSuite() const {
nsresult rv;
uint16_t cipher;
RUN_ON_THREAD(test_utils_->sts_target(),
WrapRunnableRet(&rv, dtls_, &TransportLayerDtls::GetCipherSuite,
&cipher));
if (NS_FAILED(rv)) {
return TLS_NULL_WITH_NULL_NULL; // i.e., not good
}
return cipher;
}
uint16_t srtpCipher() const {
nsresult rv;
uint16_t cipher;
RUN_ON_THREAD(test_utils_->sts_target(),
WrapRunnableRet(&rv, dtls_, &TransportLayerDtls::GetSrtpCipher,
&cipher));
if (NS_FAILED(rv)) {
return 0; // the SRTP equivalent of TLS_NULL_WITH_NULL_NULL
}
return cipher;
}
private:
std::string name_;
bool offerer_;
nsCOMPtr<nsIEventTarget> target_;
size_t received_packets_;
size_t received_bytes_;
RefPtr<TransportFlow> flow_;
TransportLayerLoopback *loopback_;
TransportLayerLogging *logging_;
TransportLayerLossy *lossy_;
TransportLayerDtls *dtls_;
TransportLayerIce *ice_;
RefPtr<DtlsIdentity> identity_;
RefPtr<NrIceCtxHandler> ice_ctx_;
std::vector<RefPtr<NrIceMediaStream> > streams_;
std::map<std::string, std::vector<std::string> > candidates_;
TransportTestPeer *peer_;
bool gathering_complete_;
unsigned char fingerprint_[TransportLayerDtls::kMaxDigestLength];
size_t fingerprint_len_;
std::vector<uint16_t> enabled_cipersuites_;
std::vector<uint16_t> disabled_cipersuites_;
bool reuse_dhe_key_;
MtransportTestUtils* test_utils_;
};
class TransportTest : public MtransportTest {
public:
TransportTest() {
fds_[0] = nullptr;
fds_[1] = nullptr;
}
void TearDown() override {
delete p1_;
delete p2_;
// Can't detach these
// PR_Close(fds_[0]);
// PR_Close(fds_[1]);
MtransportTest::TearDown();
}
void DestroyPeerFlows() {
p1_->DisconnectDestroyFlow();
p2_->DisconnectDestroyFlow();
}
void SetUp() override {
MtransportTest::SetUp();
nsresult rv;
target_ = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &rv);
ASSERT_TRUE(NS_SUCCEEDED(rv));
Reset();
}
void Reset() {
p1_ = new TransportTestPeer(target_, "P1", test_utils_);
p2_ = new TransportTestPeer(target_, "P2", test_utils_);
}
void SetupSrtp() {
p1_->SetupSrtp();
p2_->SetupSrtp();
}
void SetDtlsPeer(int digests = 1, unsigned int damage = 0) {
p1_->SetDtlsPeer(p2_, digests, damage);
p2_->SetDtlsPeer(p1_, digests, damage);
}
void SetDtlsAllowAll() {
p1_->SetDtlsAllowAll();
p2_->SetDtlsAllowAll();
}
void SetAlpn(std::string first, std::string second,
bool withDefaults = true) {
if (!first.empty()) {
p1_->SetAlpn(first, withDefaults, "bogus");
}
if (!second.empty()) {
p2_->SetAlpn(second, withDefaults);
}
}
void CheckAlpn(std::string first, std::string second) {
ASSERT_EQ(first, p1_->GetAlpn());
ASSERT_EQ(second, p2_->GetAlpn());
}
void ConnectSocket() {
ConnectSocketInternal();
ASSERT_TRUE_WAIT(p1_->connected(), 10000);
ASSERT_TRUE_WAIT(p2_->connected(), 10000);
ASSERT_EQ(p1_->cipherSuite(), p2_->cipherSuite());
ASSERT_EQ(p1_->srtpCipher(), p2_->srtpCipher());
}
void ConnectSocketExpectFail() {
ConnectSocketInternal();
ASSERT_TRUE_WAIT(p1_->failed(), 10000);
ASSERT_TRUE_WAIT(p2_->failed(), 10000);
}
void ConnectSocketExpectState(TransportLayer::State s1,
TransportLayer::State s2) {
ConnectSocketInternal();
ASSERT_EQ_WAIT(s1, p1_->state(), 10000);
ASSERT_EQ_WAIT(s2, p2_->state(), 10000);
}
void InitIce() {
p1_->InitIce();
p2_->InitIce();
}
void ConnectIce() {
p1_->InitIce();
p2_->InitIce();
p1_->ConnectIce(p2_);
p2_->ConnectIce(p1_);
ASSERT_TRUE_WAIT(p1_->connected(), 10000);
ASSERT_TRUE_WAIT(p2_->connected(), 10000);
}
void TransferTest(size_t count, size_t bytes = 1024) {
unsigned char buf[bytes];
for (size_t i= 0; i<count; ++i) {
memset(buf, count & 0xff, sizeof(buf));
TransportResult rv = p1_->SendPacket(buf, sizeof(buf));
ASSERT_TRUE(rv > 0);
}
std::cerr << "Received == " << p2_->receivedPackets() << " packets" << std::endl;
ASSERT_TRUE_WAIT(count == p2_->receivedPackets(), 10000);
ASSERT_TRUE((count * sizeof(buf)) == p2_->receivedBytes());
}
protected:
void ConnectSocketInternal() {
test_utils_->sts_target()->Dispatch(
WrapRunnable(p1_, &TransportTestPeer::ConnectSocket, p2_),
NS_DISPATCH_SYNC);
test_utils_->sts_target()->Dispatch(
WrapRunnable(p2_, &TransportTestPeer::ConnectSocket, p1_),
NS_DISPATCH_SYNC);
}
PRFileDesc *fds_[2];
TransportTestPeer *p1_;
TransportTestPeer *p2_;
nsCOMPtr<nsIEventTarget> target_;
};
TEST_F(TransportTest, TestNoDtlsVerificationSettings) {
ConnectSocketExpectFail();
}
static void DisableChaCha(TransportTestPeer* peer) {
// On ARM, ChaCha20Poly1305 might be preferred; disable it for the tests that
// want to check the cipher suite. It doesn't matter which peer disables the
// suite, disabling on either side has the same effect.
std::vector<uint16_t> chachaSuites;
chachaSuites.push_back(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256);
chachaSuites.push_back(TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256);
peer->SetCipherSuiteChanges(std::vector<uint16_t>(), chachaSuites);
}
TEST_F(TransportTest, TestConnect) {
SetDtlsPeer();
DisableChaCha(p1_);
ConnectSocket();
// check that we got the right suite
ASSERT_EQ(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, p1_->cipherSuite());
// no SRTP on this one
ASSERT_EQ(0, p1_->srtpCipher());
}
TEST_F(TransportTest, TestConnectSrtp) {
SetupSrtp();
SetDtlsPeer();
DisableChaCha(p2_);
ConnectSocket();
ASSERT_EQ(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, p1_->cipherSuite());
// SRTP is on
ASSERT_EQ(SRTP_AES128_CM_HMAC_SHA1_80, p1_->srtpCipher());
}
TEST_F(TransportTest, TestConnectDestroyFlowsMainThread) {
SetDtlsPeer();
ConnectSocket();
DestroyPeerFlows();
}
TEST_F(TransportTest, TestConnectAllowAll) {
SetDtlsAllowAll();
ConnectSocket();
}
TEST_F(TransportTest, TestConnectAlpn) {
SetDtlsPeer();
SetAlpn("a", "a");
ConnectSocket();
CheckAlpn("a", "a");
}
TEST_F(TransportTest, TestConnectAlpnMismatch) {
SetDtlsPeer();
SetAlpn("something", "different");
ConnectSocketExpectFail();
}
TEST_F(TransportTest, TestConnectAlpnServerDefault) {
SetDtlsPeer();
SetAlpn("def", "");
// server allows default, client doesn't support
ConnectSocket();
CheckAlpn("def", "");
}
TEST_F(TransportTest, TestConnectAlpnClientDefault) {
SetDtlsPeer();
SetAlpn("", "clientdef");
// client allows default, but server will ignore the extension
ConnectSocket();
CheckAlpn("", "clientdef");
}
TEST_F(TransportTest, TestConnectClientNoAlpn) {
SetDtlsPeer();
// Here the server has ALPN, but no default is allowed.
// Reminder: p1 == server, p2 == client
SetAlpn("server-nodefault", "", false);
// The server doesn't see the extension, so negotiates without it.
// But then the server is forced to close when it discovers that ALPN wasn't
// negotiated; the client sees a close.
ConnectSocketExpectState(TransportLayer::TS_ERROR,
TransportLayer::TS_CLOSED);
}
TEST_F(TransportTest, TestConnectServerNoAlpn) {
SetDtlsPeer();
SetAlpn("", "client-nodefault", false);
// The client aborts; the server doesn't realize this is a problem and just
// sees the close.
ConnectSocketExpectState(TransportLayer::TS_CLOSED,
TransportLayer::TS_ERROR);
}
TEST_F(TransportTest, TestConnectNoDigest) {
SetDtlsPeer(0, 0);
ConnectSocketExpectFail();
}
TEST_F(TransportTest, TestConnectBadDigest) {
SetDtlsPeer(1, 1);
ConnectSocketExpectFail();
}
TEST_F(TransportTest, TestConnectTwoDigests) {
SetDtlsPeer(2, 0);
ConnectSocket();
}
TEST_F(TransportTest, TestConnectTwoDigestsFirstBad) {
SetDtlsPeer(2, 1);
ConnectSocket();
}
TEST_F(TransportTest, TestConnectTwoDigestsSecondBad) {
SetDtlsPeer(2, 2);
ConnectSocket();
}
TEST_F(TransportTest, TestConnectTwoDigestsBothBad) {
SetDtlsPeer(2, 3);
ConnectSocketExpectFail();
}
TEST_F(TransportTest, TestConnectInjectCCS) {
SetDtlsPeer();
p2_->SetInspector(MakeUnique<DtlsInspectorInjector>(
kTlsHandshakeType,
kTlsHandshakeCertificate,
kTlsFakeChangeCipherSpec,
sizeof(kTlsFakeChangeCipherSpec)));
ConnectSocket();
}
TEST_F(TransportTest, TestConnectVerifyNewECDHE) {
SetDtlsPeer();
DtlsInspectorRecordHandshakeMessage *i1 = new
DtlsInspectorRecordHandshakeMessage(kTlsHandshakeServerKeyExchange);
p1_->SetInspector(i1);
ConnectSocket();
TlsServerKeyExchangeECDHE dhe1;
ASSERT_TRUE(dhe1.Parse(i1->buffer().data(), i1->buffer().len()));
Reset();
SetDtlsPeer();
DtlsInspectorRecordHandshakeMessage *i2 = new
DtlsInspectorRecordHandshakeMessage(kTlsHandshakeServerKeyExchange);
p1_->SetInspector(i2);
ConnectSocket();
TlsServerKeyExchangeECDHE dhe2;
ASSERT_TRUE(dhe2.Parse(i2->buffer().data(), i2->buffer().len()));
// Now compare these two to see if they are the same.
ASSERT_FALSE((dhe1.public_key_.len() == dhe2.public_key_.len()) &&
(!memcmp(dhe1.public_key_.data(), dhe2.public_key_.data(),
dhe1.public_key_.len())));
}
TEST_F(TransportTest, TestConnectVerifyReusedECDHE) {
SetDtlsPeer();
DtlsInspectorRecordHandshakeMessage *i1 = new
DtlsInspectorRecordHandshakeMessage(kTlsHandshakeServerKeyExchange);
p1_->SetInspector(i1);
p1_->SetReuseECDHEKey();
ConnectSocket();
TlsServerKeyExchangeECDHE dhe1;
ASSERT_TRUE(dhe1.Parse(i1->buffer().data(), i1->buffer().len()));
Reset();
SetDtlsPeer();
DtlsInspectorRecordHandshakeMessage *i2 = new
DtlsInspectorRecordHandshakeMessage(kTlsHandshakeServerKeyExchange);
p1_->SetInspector(i2);
p1_->SetReuseECDHEKey();
ConnectSocket();
TlsServerKeyExchangeECDHE dhe2;
ASSERT_TRUE(dhe2.Parse(i2->buffer().data(), i2->buffer().len()));
// Now compare these two to see if they are the same.
ASSERT_EQ(dhe1.public_key_.len(), dhe2.public_key_.len());
ASSERT_TRUE(!memcmp(dhe1.public_key_.data(), dhe2.public_key_.data(),
dhe1.public_key_.len()));
}
TEST_F(TransportTest, TestTransfer) {
SetDtlsPeer();
ConnectSocket();
TransferTest(1);
}
TEST_F(TransportTest, TestTransferMaxSize) {
SetDtlsPeer();
ConnectSocket();
/* transportlayerdtls uses a 9216 bytes buffer - as this test uses the
* loopback implementation it does not have to take into account the extra
* bytes added by the DTLS layer below. */
TransferTest(1, 9216);
}
TEST_F(TransportTest, TestTransferMultiple) {
SetDtlsPeer();
ConnectSocket();
TransferTest(3);
}
TEST_F(TransportTest, TestTransferCombinedPackets) {
SetDtlsPeer();
ConnectSocket();
p2_->SetCombinePackets(true);
TransferTest(3);
}
TEST_F(TransportTest, TestConnectLoseFirst) {
SetDtlsPeer();
p1_->SetLoss(0);
ConnectSocket();
TransferTest(1);
}
TEST_F(TransportTest, TestConnectIce) {
SetDtlsPeer();
ConnectIce();
}
TEST_F(TransportTest, TestTransferIceMaxSize) {
SetDtlsPeer();
ConnectIce();
/* nICEr and transportlayerdtls both use 9216 bytes buffers. But the DTLS
* layer add extra bytes to the packet, which size depends on chosen cipher
* etc. Sending more then 9216 bytes works, but on the receiving side the call
* to PR_recvfrom() will truncate any packet bigger then nICEr's buffer size
* of 9216 bytes, which then results in the DTLS layer discarding the packet.
* Therefore we leave some headroom (according to
* https://bugzilla.mozilla.org/show_bug.cgi?id=1214269#c29 256 bytes should
* be save choice) here for the DTLS bytes to make it safely into the
* receiving buffer in nICEr. */
TransferTest(1, 8960);
}
TEST_F(TransportTest, TestTransferIceMultiple) {
SetDtlsPeer();
ConnectIce();
TransferTest(3);
}
TEST_F(TransportTest, TestTransferIceCombinedPackets) {
SetDtlsPeer();
ConnectIce();
p2_->SetCombinePackets(true);
TransferTest(3);
}
// test the default configuration against a peer that supports only
// one of the mandatory-to-implement suites, which should succeed
static void ConfigureOneCipher(TransportTestPeer* peer, uint16_t suite) {
std::vector<uint16_t> justOne;
justOne.push_back(suite);
std::vector<uint16_t> everythingElse(SSL_GetImplementedCiphers(),
SSL_GetImplementedCiphers()
+ SSL_GetNumImplementedCiphers());
std::remove(everythingElse.begin(), everythingElse.end(), suite);
peer->SetCipherSuiteChanges(justOne, everythingElse);
}
TEST_F(TransportTest, TestCipherMismatch) {
SetDtlsPeer();
ConfigureOneCipher(p1_, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256);
ConfigureOneCipher(p2_, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA);
ConnectSocketExpectFail();
}
TEST_F(TransportTest, TestCipherMandatoryOnlyGcm) {
SetDtlsPeer();
ConfigureOneCipher(p1_, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256);
ConnectSocket();
ASSERT_EQ(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, p1_->cipherSuite());
}
TEST_F(TransportTest, TestCipherMandatoryOnlyCbc) {
SetDtlsPeer();
ConfigureOneCipher(p1_, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA);
ConnectSocket();
ASSERT_EQ(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, p1_->cipherSuite());
}
TEST_F(TransportTest, TestSrtpMismatch) {
std::vector<uint16_t> setA;
setA.push_back(SRTP_AES128_CM_HMAC_SHA1_80);
std::vector<uint16_t> setB;
setB.push_back(SRTP_AES128_CM_HMAC_SHA1_32);
p1_->SetSrtpCiphers(setA);
p2_->SetSrtpCiphers(setB);
SetDtlsPeer();
ConnectSocket();
ASSERT_EQ(0, p1_->srtpCipher());
ASSERT_EQ(0, p2_->srtpCipher());
}
// NSS doesn't support DHE suites on the server end.
// This checks to see if we barf when that's the only option available.
TEST_F(TransportTest, TestDheOnlyFails) {
SetDtlsPeer();
// p2_ is the client
// setting this on p1_ (the server) causes NSS to assert
ConfigureOneCipher(p2_, TLS_DHE_RSA_WITH_AES_128_CBC_SHA);
ConnectSocketExpectFail();
}
TEST(PushTests, LayerFail) {
RefPtr<TransportFlow> flow = new TransportFlow();
nsresult rv;
bool destroyed1, destroyed2;
rv = flow->PushLayer(new TransportLayerDummy(true, &destroyed1));
ASSERT_TRUE(NS_SUCCEEDED(rv));
rv = flow->PushLayer(new TransportLayerDummy(false, &destroyed2));
ASSERT_TRUE(NS_FAILED(rv));
ASSERT_EQ(TransportLayer::TS_ERROR, flow->state());
ASSERT_EQ(true, destroyed1);
ASSERT_EQ(true, destroyed2);
rv = flow->PushLayer(new TransportLayerDummy(true, &destroyed1));
ASSERT_TRUE(NS_FAILED(rv));
ASSERT_EQ(true, destroyed1);
}
TEST(PushTests, LayersFail) {
RefPtr<TransportFlow> flow = new TransportFlow();
nsresult rv;
bool destroyed1, destroyed2, destroyed3;
rv = flow->PushLayer(new TransportLayerDummy(true, &destroyed1));
ASSERT_TRUE(NS_SUCCEEDED(rv));
nsAutoPtr<std::queue<TransportLayer *> > layers(
new std::queue<TransportLayer *>());
layers->push(new TransportLayerDummy(true, &destroyed2));
layers->push(new TransportLayerDummy(false, &destroyed3));
rv = flow->PushLayers(layers);
ASSERT_TRUE(NS_FAILED(rv));
ASSERT_EQ(TransportLayer::TS_ERROR, flow->state());
ASSERT_EQ(true, destroyed1);
ASSERT_EQ(true, destroyed2);
ASSERT_EQ(true, destroyed3);
layers = new std::queue<TransportLayer *>();
layers->push(new TransportLayerDummy(true, &destroyed2));
layers->push(new TransportLayerDummy(true, &destroyed3));
rv = flow->PushLayers(layers);
ASSERT_TRUE(NS_FAILED(rv));
ASSERT_EQ(true, destroyed2);
ASSERT_EQ(true, destroyed3);
}
} // end namespace