зеркало из https://github.com/mozilla/gecko-dev.git
2064 строки
64 KiB
C++
2064 строки
64 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: sw=4 ts=4 et :
|
|
*/
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/ipc/MessageChannel.h"
|
|
#include "mozilla/ipc/ProtocolUtils.h"
|
|
|
|
#include "mozilla/dom/ScriptSettings.h"
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/DebugOnly.h"
|
|
#include "mozilla/Move.h"
|
|
#include "mozilla/SizePrintfMacros.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "nsDebug.h"
|
|
#include "nsISupportsImpl.h"
|
|
#include "nsContentUtils.h"
|
|
|
|
#include "prprf.h"
|
|
|
|
// Undo the damage done by mozzconf.h
|
|
#undef compress
|
|
|
|
/*
|
|
* IPC design:
|
|
*
|
|
* There are three kinds of messages: async, sync, and intr. Sync and intr
|
|
* messages are blocking. Only intr and high-priority sync messages can nest.
|
|
*
|
|
* Terminology: To dispatch a message Foo is to run the RecvFoo code for
|
|
* it. This is also called "handling" the message.
|
|
*
|
|
* Sync and async messages have priorities while intr messages always have
|
|
* normal priority. The three possible priorities are normal, high, and urgent.
|
|
* The intended uses of these priorities are:
|
|
* NORMAL - most messages.
|
|
* HIGH - CPOW-related messages, which can go in either direction.
|
|
* URGENT - messages where we don't want to dispatch
|
|
* incoming CPOWs while waiting for the response.
|
|
* Async messages cannot have HIGH priority.
|
|
*
|
|
* To avoid jank, the parent process is not allowed to send sync messages of
|
|
* normal priority. When a process is waiting for a response to a sync message
|
|
* M0, it will dispatch an incoming message M if:
|
|
* 1. M has a higher priority than M0, or
|
|
* 2. if M has the same priority as M0 and we're in the child, or
|
|
* 3. if M has the same priority as M0 and it was sent by the other side
|
|
* while dispatching M0 (nesting).
|
|
* The idea is that higher priority messages should take precendence, and we
|
|
* also want to allow nesting. The purpose of rule 2 is to handle a race where
|
|
* both processes send to each other simultaneously. In this case, we resolve
|
|
* the race in favor of the parent (so the child dispatches first).
|
|
*
|
|
* Messages satisfy the following properties:
|
|
* A. When waiting for a response to a sync message, we won't dispatch any
|
|
* messages of lower priority.
|
|
* B. Messages of the same priority will be dispatched roughly in the
|
|
* order they were sent. The exception is when the parent and child send
|
|
* sync messages to each other simulataneously. In this case, the parent's
|
|
* message is dispatched first. While it is dispatched, the child may send
|
|
* further nested messages, and these messages may be dispatched before the
|
|
* child's original message. We can consider ordering to be preserved here
|
|
* because we pretend that the child's original message wasn't sent until
|
|
* after the parent's message is finished being dispatched.
|
|
*
|
|
* When waiting for a sync message reply, we dispatch an async message only if
|
|
* it has URGENT priority. Normally URGENT async messages are sent only from the
|
|
* child. However, the parent can send URGENT async messages when it is creating
|
|
* a bridged protocol.
|
|
*
|
|
* Intr messages are blocking but not prioritized. While waiting for an intr
|
|
* response, all incoming messages are dispatched until a response is
|
|
* received. Intr messages also can be nested. When two intr messages race with
|
|
* each other, a similar scheme is used to ensure that one side wins. The
|
|
* winning side is chosen based on the message type.
|
|
*
|
|
* Intr messages differ from sync messages in that, while sending an intr
|
|
* message, we may dispatch an async message. This causes some additional
|
|
* complexity. One issue is that replies can be received out of order. It's also
|
|
* more difficult to determine whether one message is nested inside
|
|
* another. Consequently, intr handling uses mOutOfTurnReplies and
|
|
* mRemoteStackDepthGuess, which are not needed for sync messages.
|
|
*/
|
|
|
|
using namespace mozilla;
|
|
using namespace std;
|
|
|
|
using mozilla::dom::AutoNoJSAPI;
|
|
using mozilla::dom::ScriptSettingsInitialized;
|
|
using mozilla::MonitorAutoLock;
|
|
using mozilla::MonitorAutoUnlock;
|
|
|
|
template<>
|
|
struct RunnableMethodTraits<mozilla::ipc::MessageChannel>
|
|
{
|
|
static void RetainCallee(mozilla::ipc::MessageChannel* obj) { }
|
|
static void ReleaseCallee(mozilla::ipc::MessageChannel* obj) { }
|
|
};
|
|
|
|
#define IPC_ASSERT(_cond, ...) \
|
|
do { \
|
|
if (!(_cond)) \
|
|
DebugAbort(__FILE__, __LINE__, #_cond,## __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static MessageChannel* gParentProcessBlocker;
|
|
|
|
namespace mozilla {
|
|
namespace ipc {
|
|
|
|
const int32_t MessageChannel::kNoTimeout = INT32_MIN;
|
|
|
|
// static
|
|
bool MessageChannel::sIsPumpingMessages = false;
|
|
|
|
enum Direction
|
|
{
|
|
IN_MESSAGE,
|
|
OUT_MESSAGE
|
|
};
|
|
|
|
class MessageChannel::InterruptFrame
|
|
{
|
|
private:
|
|
enum Semantics
|
|
{
|
|
INTR_SEMS,
|
|
SYNC_SEMS,
|
|
ASYNC_SEMS
|
|
};
|
|
|
|
public:
|
|
InterruptFrame(Direction direction, const Message* msg)
|
|
: mMessageName(strdup(msg->name())),
|
|
mMessageRoutingId(msg->routing_id()),
|
|
mMesageSemantics(msg->is_interrupt() ? INTR_SEMS :
|
|
msg->is_sync() ? SYNC_SEMS :
|
|
ASYNC_SEMS),
|
|
mDirection(direction),
|
|
mMoved(false)
|
|
{
|
|
MOZ_ASSERT(mMessageName);
|
|
}
|
|
|
|
InterruptFrame(InterruptFrame&& aOther)
|
|
{
|
|
MOZ_ASSERT(aOther.mMessageName);
|
|
mMessageName = aOther.mMessageName;
|
|
aOther.mMessageName = nullptr;
|
|
aOther.mMoved = true;
|
|
|
|
mMessageRoutingId = aOther.mMessageRoutingId;
|
|
mMesageSemantics = aOther.mMesageSemantics;
|
|
mDirection = aOther.mDirection;
|
|
}
|
|
|
|
~InterruptFrame()
|
|
{
|
|
MOZ_ASSERT_IF(!mMessageName, mMoved);
|
|
|
|
if (mMessageName)
|
|
free(const_cast<char*>(mMessageName));
|
|
}
|
|
|
|
InterruptFrame& operator=(InterruptFrame&& aOther)
|
|
{
|
|
MOZ_RELEASE_ASSERT(&aOther != this);
|
|
this->~InterruptFrame();
|
|
new (this) InterruptFrame(mozilla::Move(aOther));
|
|
return *this;
|
|
}
|
|
|
|
bool IsInterruptIncall() const
|
|
{
|
|
return INTR_SEMS == mMesageSemantics && IN_MESSAGE == mDirection;
|
|
}
|
|
|
|
bool IsInterruptOutcall() const
|
|
{
|
|
return INTR_SEMS == mMesageSemantics && OUT_MESSAGE == mDirection;
|
|
}
|
|
|
|
bool IsOutgoingSync() const {
|
|
return (mMesageSemantics == INTR_SEMS || mMesageSemantics == SYNC_SEMS) &&
|
|
mDirection == OUT_MESSAGE;
|
|
}
|
|
|
|
void Describe(int32_t* id, const char** dir, const char** sems,
|
|
const char** name) const
|
|
{
|
|
*id = mMessageRoutingId;
|
|
*dir = (IN_MESSAGE == mDirection) ? "in" : "out";
|
|
*sems = (INTR_SEMS == mMesageSemantics) ? "intr" :
|
|
(SYNC_SEMS == mMesageSemantics) ? "sync" :
|
|
"async";
|
|
*name = mMessageName;
|
|
}
|
|
|
|
int32_t GetRoutingId() const
|
|
{
|
|
return mMessageRoutingId;
|
|
}
|
|
|
|
private:
|
|
const char* mMessageName;
|
|
int32_t mMessageRoutingId;
|
|
Semantics mMesageSemantics;
|
|
Direction mDirection;
|
|
DebugOnly<bool> mMoved;
|
|
|
|
// Disable harmful methods.
|
|
InterruptFrame(const InterruptFrame& aOther) = delete;
|
|
InterruptFrame& operator=(const InterruptFrame&) = delete;
|
|
};
|
|
|
|
class MOZ_STACK_CLASS MessageChannel::CxxStackFrame
|
|
{
|
|
public:
|
|
CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg)
|
|
: mThat(that)
|
|
{
|
|
mThat.AssertWorkerThread();
|
|
|
|
if (mThat.mCxxStackFrames.empty())
|
|
mThat.EnteredCxxStack();
|
|
|
|
mThat.mCxxStackFrames.append(InterruptFrame(direction, msg));
|
|
|
|
const InterruptFrame& frame = mThat.mCxxStackFrames.back();
|
|
|
|
if (frame.IsInterruptIncall())
|
|
mThat.EnteredCall();
|
|
|
|
if (frame.IsOutgoingSync())
|
|
mThat.EnteredSyncSend();
|
|
|
|
mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall();
|
|
}
|
|
|
|
~CxxStackFrame() {
|
|
mThat.AssertWorkerThread();
|
|
|
|
MOZ_ASSERT(!mThat.mCxxStackFrames.empty());
|
|
|
|
const InterruptFrame& frame = mThat.mCxxStackFrames.back();
|
|
bool exitingSync = frame.IsOutgoingSync();
|
|
bool exitingCall = frame.IsInterruptIncall();
|
|
mThat.mCxxStackFrames.shrinkBy(1);
|
|
|
|
bool exitingStack = mThat.mCxxStackFrames.empty();
|
|
|
|
// mListener could have gone away if Close() was called while
|
|
// MessageChannel code was still on the stack
|
|
if (!mThat.mListener)
|
|
return;
|
|
|
|
if (exitingCall)
|
|
mThat.ExitedCall();
|
|
|
|
if (exitingSync)
|
|
mThat.ExitedSyncSend();
|
|
|
|
if (exitingStack)
|
|
mThat.ExitedCxxStack();
|
|
}
|
|
private:
|
|
MessageChannel& mThat;
|
|
|
|
// Disable harmful methods.
|
|
CxxStackFrame() = delete;
|
|
CxxStackFrame(const CxxStackFrame&) = delete;
|
|
CxxStackFrame& operator=(const CxxStackFrame&) = delete;
|
|
};
|
|
|
|
namespace {
|
|
|
|
class MOZ_STACK_CLASS MaybeScriptBlocker {
|
|
public:
|
|
explicit MaybeScriptBlocker(MessageChannel *aChannel, bool aBlock
|
|
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
|
|
: mBlocked(aChannel->ShouldBlockScripts() && aBlock)
|
|
{
|
|
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
|
|
if (mBlocked) {
|
|
nsContentUtils::AddScriptBlocker();
|
|
}
|
|
}
|
|
~MaybeScriptBlocker() {
|
|
if (mBlocked) {
|
|
nsContentUtils::RemoveScriptBlocker();
|
|
}
|
|
}
|
|
private:
|
|
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
|
|
bool mBlocked;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
MessageChannel::MessageChannel(MessageListener *aListener)
|
|
: mListener(aListener),
|
|
mChannelState(ChannelClosed),
|
|
mSide(UnknownSide),
|
|
mLink(nullptr),
|
|
mWorkerLoop(nullptr),
|
|
mChannelErrorTask(nullptr),
|
|
mWorkerLoopID(-1),
|
|
mTimeoutMs(kNoTimeout),
|
|
mInTimeoutSecondHalf(false),
|
|
mNextSeqno(0),
|
|
mAwaitingSyncReply(false),
|
|
mAwaitingSyncReplyPriority(0),
|
|
mDispatchingSyncMessage(false),
|
|
mDispatchingSyncMessagePriority(0),
|
|
mDispatchingAsyncMessage(false),
|
|
mDispatchingAsyncMessagePriority(0),
|
|
mCurrentTransaction(0),
|
|
mTimedOutMessageSeqno(0),
|
|
mTimedOutMessagePriority(0),
|
|
mRecvdErrors(0),
|
|
mRemoteStackDepthGuess(false),
|
|
mSawInterruptOutMsg(false),
|
|
mIsWaitingForIncoming(false),
|
|
mAbortOnError(false),
|
|
mBlockScripts(false),
|
|
mFlags(REQUIRE_DEFAULT),
|
|
mPeerPidSet(false),
|
|
mPeerPid(-1)
|
|
{
|
|
MOZ_COUNT_CTOR(ipc::MessageChannel);
|
|
|
|
#ifdef OS_WIN
|
|
mTopFrame = nullptr;
|
|
mIsSyncWaitingOnNonMainThread = false;
|
|
#endif
|
|
|
|
mDequeueOneTask = new RefCountedTask(NewRunnableMethod(
|
|
this,
|
|
&MessageChannel::OnMaybeDequeueOne));
|
|
|
|
mOnChannelConnectedTask = new RefCountedTask(NewRunnableMethod(
|
|
this,
|
|
&MessageChannel::DispatchOnChannelConnected));
|
|
|
|
#ifdef OS_WIN
|
|
mEvent = CreateEventW(nullptr, TRUE, FALSE, nullptr);
|
|
NS_ASSERTION(mEvent, "CreateEvent failed! Nothing is going to work!");
|
|
#endif
|
|
}
|
|
|
|
MessageChannel::~MessageChannel()
|
|
{
|
|
MOZ_COUNT_DTOR(ipc::MessageChannel);
|
|
IPC_ASSERT(mCxxStackFrames.empty(), "mismatched CxxStackFrame ctor/dtors");
|
|
#ifdef OS_WIN
|
|
DebugOnly<BOOL> ok = CloseHandle(mEvent);
|
|
MOZ_ASSERT(ok);
|
|
#endif
|
|
Clear();
|
|
}
|
|
|
|
static void
|
|
PrintErrorMessage(Side side, const char* channelName, const char* msg)
|
|
{
|
|
const char *from = (side == ChildSide)
|
|
? "Child"
|
|
: ((side == ParentSide) ? "Parent" : "Unknown");
|
|
printf_stderr("\n###!!! [%s][%s] Error: %s\n\n", from, channelName, msg);
|
|
}
|
|
|
|
bool
|
|
MessageChannel::Connected() const
|
|
{
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
// The transport layer allows us to send messages before
|
|
// receiving the "connected" ack from the remote side.
|
|
return (ChannelOpening == mChannelState || ChannelConnected == mChannelState);
|
|
}
|
|
|
|
bool
|
|
MessageChannel::CanSend() const
|
|
{
|
|
if (!mMonitor) {
|
|
return false;
|
|
}
|
|
MonitorAutoLock lock(*mMonitor);
|
|
return Connected();
|
|
}
|
|
|
|
void
|
|
MessageChannel::Clear()
|
|
{
|
|
// Don't clear mWorkerLoopID; we use it in AssertLinkThread() and
|
|
// AssertWorkerThread().
|
|
//
|
|
// Also don't clear mListener. If we clear it, then sending a message
|
|
// through this channel after it's Clear()'ed can cause this process to
|
|
// crash.
|
|
//
|
|
// In practice, mListener owns the channel, so the channel gets deleted
|
|
// before mListener. But just to be safe, mListener is a weak pointer.
|
|
|
|
if (gParentProcessBlocker == this) {
|
|
gParentProcessBlocker = nullptr;
|
|
}
|
|
|
|
mDequeueOneTask->Cancel();
|
|
|
|
mWorkerLoop = nullptr;
|
|
delete mLink;
|
|
mLink = nullptr;
|
|
|
|
mOnChannelConnectedTask->Cancel();
|
|
|
|
if (mChannelErrorTask) {
|
|
mChannelErrorTask->Cancel();
|
|
mChannelErrorTask = nullptr;
|
|
}
|
|
|
|
// Free up any memory used by pending messages.
|
|
mPending.clear();
|
|
mRecvd = nullptr;
|
|
mOutOfTurnReplies.clear();
|
|
while (!mDeferred.empty()) {
|
|
mDeferred.pop();
|
|
}
|
|
}
|
|
|
|
bool
|
|
MessageChannel::Open(Transport* aTransport, MessageLoop* aIOLoop, Side aSide)
|
|
{
|
|
NS_PRECONDITION(!mLink, "Open() called > once");
|
|
|
|
mMonitor = new RefCountedMonitor();
|
|
mWorkerLoop = MessageLoop::current();
|
|
mWorkerLoopID = mWorkerLoop->id();
|
|
|
|
ProcessLink *link = new ProcessLink(this);
|
|
link->Open(aTransport, aIOLoop, aSide); // :TODO: n.b.: sets mChild
|
|
mLink = link;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::Open(MessageChannel *aTargetChan, MessageLoop *aTargetLoop, Side aSide)
|
|
{
|
|
// Opens a connection to another thread in the same process.
|
|
|
|
// This handshake proceeds as follows:
|
|
// - Let A be the thread initiating the process (either child or parent)
|
|
// and B be the other thread.
|
|
// - A spawns thread for B, obtaining B's message loop
|
|
// - A creates ProtocolChild and ProtocolParent instances.
|
|
// Let PA be the one appropriate to A and PB the side for B.
|
|
// - A invokes PA->Open(PB, ...):
|
|
// - set state to mChannelOpening
|
|
// - this will place a work item in B's worker loop (see next bullet)
|
|
// and then spins until PB->mChannelState becomes mChannelConnected
|
|
// - meanwhile, on PB's worker loop, the work item is removed and:
|
|
// - invokes PB->SlaveOpen(PA, ...):
|
|
// - sets its state and that of PA to Connected
|
|
NS_PRECONDITION(aTargetChan, "Need a target channel");
|
|
NS_PRECONDITION(ChannelClosed == mChannelState, "Not currently closed");
|
|
|
|
CommonThreadOpenInit(aTargetChan, aSide);
|
|
|
|
Side oppSide = UnknownSide;
|
|
switch(aSide) {
|
|
case ChildSide: oppSide = ParentSide; break;
|
|
case ParentSide: oppSide = ChildSide; break;
|
|
case UnknownSide: break;
|
|
}
|
|
|
|
mMonitor = new RefCountedMonitor();
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
mChannelState = ChannelOpening;
|
|
aTargetLoop->PostTask(
|
|
FROM_HERE,
|
|
NewRunnableMethod(aTargetChan, &MessageChannel::OnOpenAsSlave, this, oppSide));
|
|
|
|
while (ChannelOpening == mChannelState)
|
|
mMonitor->Wait();
|
|
NS_ASSERTION(ChannelConnected == mChannelState, "not connected when awoken");
|
|
return (ChannelConnected == mChannelState);
|
|
}
|
|
|
|
void
|
|
MessageChannel::OnOpenAsSlave(MessageChannel *aTargetChan, Side aSide)
|
|
{
|
|
// Invoked when the other side has begun the open.
|
|
NS_PRECONDITION(ChannelClosed == mChannelState,
|
|
"Not currently closed");
|
|
NS_PRECONDITION(ChannelOpening == aTargetChan->mChannelState,
|
|
"Target channel not in the process of opening");
|
|
|
|
CommonThreadOpenInit(aTargetChan, aSide);
|
|
mMonitor = aTargetChan->mMonitor;
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
NS_ASSERTION(ChannelOpening == aTargetChan->mChannelState,
|
|
"Target channel not in the process of opening");
|
|
mChannelState = ChannelConnected;
|
|
aTargetChan->mChannelState = ChannelConnected;
|
|
aTargetChan->mMonitor->Notify();
|
|
}
|
|
|
|
void
|
|
MessageChannel::CommonThreadOpenInit(MessageChannel *aTargetChan, Side aSide)
|
|
{
|
|
mWorkerLoop = MessageLoop::current();
|
|
mWorkerLoopID = mWorkerLoop->id();
|
|
mLink = new ThreadLink(this, aTargetChan);
|
|
mSide = aSide;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::Echo(Message* aMsg)
|
|
{
|
|
nsAutoPtr<Message> msg(aMsg);
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
if (MSG_ROUTING_NONE == msg->routing_id()) {
|
|
ReportMessageRouteError("MessageChannel::Echo");
|
|
return false;
|
|
}
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel", msg);
|
|
return false;
|
|
}
|
|
|
|
mLink->EchoMessage(msg.forget());
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::Send(Message* aMsg)
|
|
{
|
|
CxxStackFrame frame(*this, OUT_MESSAGE, aMsg);
|
|
|
|
nsAutoPtr<Message> msg(aMsg);
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
if (MSG_ROUTING_NONE == msg->routing_id()) {
|
|
ReportMessageRouteError("MessageChannel::Send");
|
|
return false;
|
|
}
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel", msg);
|
|
return false;
|
|
}
|
|
mLink->SendMessage(msg.forget());
|
|
return true;
|
|
}
|
|
|
|
class CancelMessage : public IPC::Message
|
|
{
|
|
public:
|
|
CancelMessage() :
|
|
IPC::Message(MSG_ROUTING_NONE, CANCEL_MESSAGE_TYPE, PRIORITY_NORMAL)
|
|
{
|
|
}
|
|
static bool Read(const Message* msg) {
|
|
return true;
|
|
}
|
|
void Log(const std::string& aPrefix, FILE* aOutf) const {
|
|
fputs("(special `Cancel' message)", aOutf);
|
|
}
|
|
};
|
|
|
|
bool
|
|
MessageChannel::MaybeInterceptSpecialIOMessage(const Message& aMsg)
|
|
{
|
|
AssertLinkThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (MSG_ROUTING_NONE == aMsg.routing_id()) {
|
|
if (GOODBYE_MESSAGE_TYPE == aMsg.type()) {
|
|
// :TODO: Sort out Close() on this side racing with Close() on the
|
|
// other side
|
|
mChannelState = ChannelClosing;
|
|
if (LoggingEnabled()) {
|
|
printf("NOTE: %s process received `Goodbye', closing down\n",
|
|
(mSide == ChildSide) ? "child" : "parent");
|
|
}
|
|
return true;
|
|
} else if (CANCEL_MESSAGE_TYPE == aMsg.type()) {
|
|
CancelCurrentTransactionInternal();
|
|
NotifyWorkerThread();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::ShouldDeferMessage(const Message& aMsg)
|
|
{
|
|
// Never defer messages that have the highest priority, even async
|
|
// ones. This is safe because only the child can send these messages, so
|
|
// they can never nest.
|
|
if (aMsg.priority() == IPC::Message::PRIORITY_URGENT)
|
|
return false;
|
|
|
|
// Unless they're urgent, we always defer async messages.
|
|
if (!aMsg.is_sync()) {
|
|
MOZ_ASSERT(aMsg.priority() == IPC::Message::PRIORITY_NORMAL);
|
|
return true;
|
|
}
|
|
|
|
int msgPrio = aMsg.priority();
|
|
int waitingPrio = AwaitingSyncReplyPriority();
|
|
|
|
// Always defer if the priority of the incoming message is less than the
|
|
// priority of the message we're awaiting.
|
|
if (msgPrio < waitingPrio)
|
|
return true;
|
|
|
|
// Never defer if the message has strictly greater priority.
|
|
if (msgPrio > waitingPrio)
|
|
return false;
|
|
|
|
// When both sides send sync messages of the same priority, we resolve the
|
|
// race by dispatching in the child and deferring the incoming message in
|
|
// the parent. However, the parent still needs to dispatch nested sync
|
|
// messages.
|
|
//
|
|
// Deferring in the parent only sort of breaks message ordering. When the
|
|
// child's message comes in, we can pretend the child hasn't quite
|
|
// finished sending it yet. Since the message is sync, we know that the
|
|
// child hasn't moved on yet.
|
|
return mSide == ParentSide && aMsg.transaction_id() != mCurrentTransaction;
|
|
}
|
|
|
|
// Predicate that is true for messages that should be consolidated if 'compress' is set.
|
|
class MatchingKinds {
|
|
typedef IPC::Message Message;
|
|
Message::msgid_t mType;
|
|
int32_t mRoutingId;
|
|
public:
|
|
MatchingKinds(Message::msgid_t aType, int32_t aRoutingId) :
|
|
mType(aType), mRoutingId(aRoutingId) {}
|
|
bool operator()(const Message &msg) {
|
|
return msg.type() == mType && msg.routing_id() == mRoutingId;
|
|
}
|
|
};
|
|
|
|
void
|
|
MessageChannel::OnMessageReceivedFromLink(const Message& aMsg)
|
|
{
|
|
AssertLinkThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (MaybeInterceptSpecialIOMessage(aMsg))
|
|
return;
|
|
|
|
// Regardless of the Interrupt stack, if we're awaiting a sync reply,
|
|
// we know that it needs to be immediately handled to unblock us.
|
|
if (aMsg.is_sync() && aMsg.is_reply()) {
|
|
if (aMsg.seqno() == mTimedOutMessageSeqno) {
|
|
// Drop the message, but allow future sync messages to be sent.
|
|
mTimedOutMessageSeqno = 0;
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(aMsg.transaction_id() == mCurrentTransaction);
|
|
MOZ_ASSERT(AwaitingSyncReply());
|
|
MOZ_ASSERT(!mRecvd);
|
|
|
|
// Rather than storing errors in mRecvd, we mark them in
|
|
// mRecvdErrors. We need a counter because multiple replies can arrive
|
|
// when a timeout happens, as in the following example. Imagine the
|
|
// child is running slowly. The parent sends a sync message P1. It times
|
|
// out. The child eventually sends a sync message C1. While waiting for
|
|
// the C1 response, the child dispatches P1. In doing so, it sends sync
|
|
// message C2. At that point, it's valid for the parent to send error
|
|
// responses for both C1 and C2.
|
|
if (aMsg.is_reply_error()) {
|
|
mRecvdErrors++;
|
|
NotifyWorkerThread();
|
|
return;
|
|
}
|
|
|
|
mRecvd = new Message(aMsg);
|
|
NotifyWorkerThread();
|
|
return;
|
|
}
|
|
|
|
// Prioritized messages cannot be compressed.
|
|
MOZ_ASSERT_IF(aMsg.compress_type() != IPC::Message::COMPRESSION_NONE,
|
|
aMsg.priority() == IPC::Message::PRIORITY_NORMAL);
|
|
|
|
bool compress = false;
|
|
if (aMsg.compress_type() == IPC::Message::COMPRESSION_ENABLED) {
|
|
compress = (!mPending.empty() &&
|
|
mPending.back().type() == aMsg.type() &&
|
|
mPending.back().routing_id() == aMsg.routing_id());
|
|
if (compress) {
|
|
// This message type has compression enabled, and the back of the
|
|
// queue was the same message type and routed to the same destination.
|
|
// Replace it with the newer message.
|
|
MOZ_ASSERT(mPending.back().compress_type() ==
|
|
IPC::Message::COMPRESSION_ENABLED);
|
|
mPending.pop_back();
|
|
}
|
|
} else if (aMsg.compress_type() == IPC::Message::COMPRESSION_ALL) {
|
|
// Check the message queue for another message with this type/destination.
|
|
auto it = std::find_if(mPending.rbegin(), mPending.rend(),
|
|
MatchingKinds(aMsg.type(), aMsg.routing_id()));
|
|
if (it != mPending.rend()) {
|
|
// This message type has compression enabled, and the queue holds
|
|
// a message with the same message type and routed to the same destination.
|
|
// Erase it. Note that, since we always compress these redundancies, There Can
|
|
// Be Only One.
|
|
compress = true;
|
|
MOZ_ASSERT((*it).compress_type() == IPC::Message::COMPRESSION_ALL);
|
|
mPending.erase((++it).base());
|
|
}
|
|
}
|
|
|
|
bool shouldWakeUp = AwaitingInterruptReply() ||
|
|
(AwaitingSyncReply() && !ShouldDeferMessage(aMsg)) ||
|
|
AwaitingIncomingMessage();
|
|
|
|
// There are three cases we're concerned about, relating to the state of the
|
|
// main thread:
|
|
//
|
|
// (1) We are waiting on a sync reply - main thread is blocked on the
|
|
// IPC monitor.
|
|
// - If the message is high priority, we wake up the main thread to
|
|
// deliver the message depending on ShouldDeferMessage. Otherwise, we
|
|
// leave it in the mPending queue, posting a task to the main event
|
|
// loop, where it will be processed once the synchronous reply has been
|
|
// received.
|
|
//
|
|
// (2) We are waiting on an Interrupt reply - main thread is blocked on the
|
|
// IPC monitor.
|
|
// - Always notify and wake up the main thread.
|
|
//
|
|
// (3) We are not waiting on a reply.
|
|
// - We post a task to the main event loop.
|
|
//
|
|
// Note that, we may notify the main thread even though the monitor is not
|
|
// blocked. This is okay, since we always check for pending events before
|
|
// blocking again.
|
|
|
|
mPending.push_back(aMsg);
|
|
|
|
if (shouldWakeUp) {
|
|
NotifyWorkerThread();
|
|
} else {
|
|
// Worker thread is either not blocked on a reply, or this is an
|
|
// incoming Interrupt that raced with outgoing sync, and needs to be
|
|
// deferred to a later event-loop iteration.
|
|
if (!compress) {
|
|
// If we compressed away the previous message, we'll re-use
|
|
// its pending task.
|
|
mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MessageChannel::ProcessPendingRequests()
|
|
{
|
|
// Loop until there aren't any more priority messages to process.
|
|
for (;;) {
|
|
mozilla::Vector<Message> toProcess;
|
|
|
|
for (MessageQueue::iterator it = mPending.begin(); it != mPending.end(); ) {
|
|
Message &msg = *it;
|
|
if (!ShouldDeferMessage(msg)) {
|
|
toProcess.append(Move(msg));
|
|
it = mPending.erase(it);
|
|
continue;
|
|
}
|
|
it++;
|
|
}
|
|
|
|
if (toProcess.empty())
|
|
break;
|
|
|
|
// Processing these messages could result in more messages, so we
|
|
// loop around to check for more afterwards.
|
|
for (auto it = toProcess.begin(); it != toProcess.end(); it++)
|
|
ProcessPendingRequest(*it);
|
|
}
|
|
}
|
|
|
|
bool
|
|
MessageChannel::WasTransactionCanceled(int transaction, int prio)
|
|
{
|
|
if (transaction == mCurrentTransaction) {
|
|
return false;
|
|
}
|
|
|
|
// This isn't an assert so much as an intentional crash because we're in a
|
|
// situation that we don't know how to recover from: The child is awaiting
|
|
// a reply to a normal-priority sync message. The transaction that this
|
|
// message initiated has now been canceled. That could only happen if a CPOW
|
|
// raced with the sync message and was dispatched by the child while the
|
|
// child was awaiting the sync reply; at some point while dispatching the
|
|
// CPOW, the transaction was canceled.
|
|
//
|
|
// Notes:
|
|
//
|
|
// 1. We don't want to cancel the normal-priority sync message along with
|
|
// the CPOWs because the browser relies on these messages working
|
|
// reliably.
|
|
//
|
|
// 2. Ideally we would like to avoid dispatching CPOWs while awaiting a sync
|
|
// response. This isn't possible though. To avoid deadlock, the parent would
|
|
// have to dispatch the sync message while waiting for the CPOW
|
|
// response. However, it wouldn't have dispatched async messages at that
|
|
// time, so we would have a message ordering bug. Dispatching the async
|
|
// messages first causes other hard-to-handle situations (what if they send
|
|
// CPOWs?).
|
|
//
|
|
// 3. We would like to be able to cancel the CPOWs but not the sync
|
|
// message. However, that would leave both the parent and the child running
|
|
// code at the same time, all while the sync message is still
|
|
// outstanding. That can cause a problem where message replies are received
|
|
// out of order.
|
|
IPC_ASSERT(prio != IPC::Message::PRIORITY_NORMAL,
|
|
"Intentional crash: We canceled a CPOW that was racing with a sync message.");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::Send(Message* aMsg, Message* aReply)
|
|
{
|
|
nsAutoPtr<Message> msg(aMsg);
|
|
|
|
// See comment in DispatchSyncMessage.
|
|
MaybeScriptBlocker scriptBlocker(this, true);
|
|
|
|
// Sanity checks.
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
if (mCurrentTransaction == 0)
|
|
mListener->OnBeginSyncTransaction();
|
|
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, false);
|
|
NeuteredWindowRegion neuteredRgn(mFlags & REQUIRE_DEFERRED_MESSAGE_PROTECTION);
|
|
#endif
|
|
|
|
CxxStackFrame f(*this, OUT_MESSAGE, msg);
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
|
|
if (mTimedOutMessageSeqno) {
|
|
// Don't bother sending another sync message if a previous one timed out
|
|
// and we haven't received a reply for it. Once the original timed-out
|
|
// message receives a reply, we'll be able to send more sync messages
|
|
// again.
|
|
return false;
|
|
}
|
|
|
|
if (mCurrentTransaction &&
|
|
DispatchingSyncMessagePriority() == IPC::Message::PRIORITY_NORMAL &&
|
|
msg->priority() > IPC::Message::PRIORITY_NORMAL)
|
|
{
|
|
// Don't allow sending CPOWs while we're dispatching a sync message.
|
|
// If you want to do that, use sendRpcMessage instead.
|
|
return false;
|
|
}
|
|
|
|
if (mCurrentTransaction &&
|
|
(msg->priority() < DispatchingSyncMessagePriority() ||
|
|
mAwaitingSyncReplyPriority > msg->priority()))
|
|
{
|
|
CancelCurrentTransactionInternal();
|
|
mLink->SendMessage(new CancelMessage());
|
|
}
|
|
|
|
IPC_ASSERT(msg->is_sync(), "can only Send() sync messages here");
|
|
|
|
if (mCurrentTransaction) {
|
|
IPC_ASSERT(msg->priority() >= DispatchingSyncMessagePriority(),
|
|
"can't send sync message of a lesser priority than what's being dispatched");
|
|
IPC_ASSERT(AwaitingSyncReplyPriority() <= msg->priority(),
|
|
"nested sync message sends must be of increasing priority");
|
|
IPC_ASSERT(DispatchingSyncMessagePriority() != IPC::Message::PRIORITY_URGENT,
|
|
"not allowed to send messages while dispatching urgent messages");
|
|
}
|
|
|
|
IPC_ASSERT(DispatchingAsyncMessagePriority() != IPC::Message::PRIORITY_URGENT,
|
|
"not allowed to send messages while dispatching urgent messages");
|
|
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::SendAndWait", msg);
|
|
return false;
|
|
}
|
|
|
|
msg->set_seqno(NextSeqno());
|
|
|
|
int32_t seqno = msg->seqno();
|
|
int prio = msg->priority();
|
|
DebugOnly<msgid_t> replyType = msg->type() + 1;
|
|
|
|
AutoSetValue<bool> replies(mAwaitingSyncReply, true);
|
|
AutoSetValue<int> prioSet(mAwaitingSyncReplyPriority, prio);
|
|
AutoEnterTransaction transact(this, seqno);
|
|
|
|
int32_t transaction = mCurrentTransaction;
|
|
msg->set_transaction_id(transaction);
|
|
|
|
ProcessPendingRequests();
|
|
if (WasTransactionCanceled(transaction, prio)) {
|
|
return false;
|
|
}
|
|
|
|
mLink->SendMessage(msg.forget());
|
|
|
|
while (true) {
|
|
ProcessPendingRequests();
|
|
if (WasTransactionCanceled(transaction, prio)) {
|
|
return false;
|
|
}
|
|
|
|
// See if we've received a reply.
|
|
if (mRecvdErrors) {
|
|
mRecvdErrors--;
|
|
return false;
|
|
}
|
|
|
|
if (mRecvd) {
|
|
break;
|
|
}
|
|
|
|
MOZ_ASSERT(!mTimedOutMessageSeqno);
|
|
|
|
bool maybeTimedOut = !WaitForSyncNotify();
|
|
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::SendAndWait");
|
|
return false;
|
|
}
|
|
|
|
if (WasTransactionCanceled(transaction, prio)) {
|
|
return false;
|
|
}
|
|
|
|
// We only time out a message if it initiated a new transaction (i.e.,
|
|
// if neither side has any other message Sends on the stack).
|
|
bool canTimeOut = transaction == seqno;
|
|
if (maybeTimedOut && canTimeOut && !ShouldContinueFromTimeout()) {
|
|
// We might have received a reply during WaitForSyncNotify or inside
|
|
// ShouldContinueFromTimeout (which drops the lock). We need to make
|
|
// sure not to set mTimedOutMessageSeqno if that happens, since then
|
|
// there would be no way to unset it.
|
|
if (mRecvdErrors) {
|
|
mRecvdErrors--;
|
|
return false;
|
|
}
|
|
if (mRecvd) {
|
|
break;
|
|
}
|
|
|
|
mTimedOutMessageSeqno = seqno;
|
|
mTimedOutMessagePriority = prio;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(mRecvd);
|
|
MOZ_ASSERT(mRecvd->is_reply(), "expected reply");
|
|
MOZ_ASSERT(!mRecvd->is_reply_error());
|
|
MOZ_ASSERT(mRecvd->type() == replyType, "wrong reply type");
|
|
MOZ_ASSERT(mRecvd->seqno() == seqno);
|
|
MOZ_ASSERT(mRecvd->is_sync());
|
|
|
|
*aReply = Move(*mRecvd);
|
|
mRecvd = nullptr;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::Call(Message* aMsg, Message* aReply)
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, true);
|
|
NeuteredWindowRegion neuteredRgn(mFlags & REQUIRE_DEFERRED_MESSAGE_PROTECTION);
|
|
#endif
|
|
|
|
// This must come before MonitorAutoLock, as its destructor acquires the
|
|
// monitor lock.
|
|
CxxStackFrame cxxframe(*this, OUT_MESSAGE, aMsg);
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::Call", aMsg);
|
|
return false;
|
|
}
|
|
|
|
// Sanity checks.
|
|
IPC_ASSERT(!AwaitingSyncReply(),
|
|
"cannot issue Interrupt call while blocked on sync request");
|
|
IPC_ASSERT(!DispatchingSyncMessage(),
|
|
"violation of sync handler invariant");
|
|
IPC_ASSERT(aMsg->is_interrupt(), "can only Call() Interrupt messages here");
|
|
|
|
nsAutoPtr<Message> msg(aMsg);
|
|
|
|
msg->set_seqno(NextSeqno());
|
|
msg->set_interrupt_remote_stack_depth_guess(mRemoteStackDepthGuess);
|
|
msg->set_interrupt_local_stack_depth(1 + InterruptStackDepth());
|
|
mInterruptStack.push(*msg);
|
|
mLink->SendMessage(msg.forget());
|
|
|
|
while (true) {
|
|
// if a handler invoked by *Dispatch*() spun a nested event
|
|
// loop, and the connection was broken during that loop, we
|
|
// might have already processed the OnError event. if so,
|
|
// trying another loop iteration will be futile because
|
|
// channel state will have been cleared
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::Call");
|
|
return false;
|
|
}
|
|
|
|
#ifdef OS_WIN
|
|
/* We should pump messages at this point to ensure that the IPC peer
|
|
does not become deadlocked on a pending inter-thread SendMessage() */
|
|
neuteredRgn.PumpOnce();
|
|
#endif
|
|
|
|
// Now might be the time to process a message deferred because of race
|
|
// resolution.
|
|
MaybeUndeferIncall();
|
|
|
|
// Wait for an event to occur.
|
|
while (!InterruptEventOccurred()) {
|
|
bool maybeTimedOut = !WaitForInterruptNotify();
|
|
|
|
// We might have received a "subtly deferred" message in a nested
|
|
// loop that it's now time to process.
|
|
if (InterruptEventOccurred() ||
|
|
(!maybeTimedOut && (!mDeferred.empty() || !mOutOfTurnReplies.empty())))
|
|
{
|
|
break;
|
|
}
|
|
|
|
if (maybeTimedOut && !ShouldContinueFromTimeout())
|
|
return false;
|
|
}
|
|
|
|
Message recvd;
|
|
MessageMap::iterator it;
|
|
|
|
if ((it = mOutOfTurnReplies.find(mInterruptStack.top().seqno()))
|
|
!= mOutOfTurnReplies.end())
|
|
{
|
|
recvd = Move(it->second);
|
|
mOutOfTurnReplies.erase(it);
|
|
} else if (!mPending.empty()) {
|
|
recvd = Move(mPending.front());
|
|
mPending.pop_front();
|
|
} else {
|
|
// because of subtleties with nested event loops, it's possible
|
|
// that we got here and nothing happened. or, we might have a
|
|
// deferred in-call that needs to be processed. either way, we
|
|
// won't break the inner while loop again until something new
|
|
// happens.
|
|
continue;
|
|
}
|
|
|
|
// If the message is not Interrupt, we can dispatch it as normal.
|
|
if (!recvd.is_interrupt()) {
|
|
DispatchMessage(recvd);
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::DispatchMessage");
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If the message is an Interrupt reply, either process it as a reply to our
|
|
// call, or add it to the list of out-of-turn replies we've received.
|
|
if (recvd.is_reply()) {
|
|
IPC_ASSERT(!mInterruptStack.empty(), "invalid Interrupt stack");
|
|
|
|
// If this is not a reply the call we've initiated, add it to our
|
|
// out-of-turn replies and keep polling for events.
|
|
{
|
|
const Message &outcall = mInterruptStack.top();
|
|
|
|
// Note, In the parent, sequence numbers increase from 0, and
|
|
// in the child, they decrease from 0.
|
|
if ((mSide == ChildSide && recvd.seqno() > outcall.seqno()) ||
|
|
(mSide != ChildSide && recvd.seqno() < outcall.seqno()))
|
|
{
|
|
mOutOfTurnReplies[recvd.seqno()] = Move(recvd);
|
|
continue;
|
|
}
|
|
|
|
IPC_ASSERT(recvd.is_reply_error() ||
|
|
(recvd.type() == (outcall.type() + 1) &&
|
|
recvd.seqno() == outcall.seqno()),
|
|
"somebody's misbehavin'", true);
|
|
}
|
|
|
|
// We received a reply to our most recent outstanding call. Pop
|
|
// this frame and return the reply.
|
|
mInterruptStack.pop();
|
|
|
|
bool is_reply_error = recvd.is_reply_error();
|
|
if (!is_reply_error) {
|
|
*aReply = Move(recvd);
|
|
}
|
|
|
|
// If we have no more pending out calls waiting on replies, then
|
|
// the reply queue should be empty.
|
|
IPC_ASSERT(!mInterruptStack.empty() || mOutOfTurnReplies.empty(),
|
|
"still have pending replies with no pending out-calls",
|
|
true);
|
|
|
|
return !is_reply_error;
|
|
}
|
|
|
|
// Dispatch an Interrupt in-call. Snapshot the current stack depth while we
|
|
// own the monitor.
|
|
size_t stackDepth = InterruptStackDepth();
|
|
{
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
|
|
CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
|
|
DispatchInterruptMessage(recvd, stackDepth);
|
|
}
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::DispatchInterruptMessage");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::WaitForIncomingMessage()
|
|
{
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, true);
|
|
NeuteredWindowRegion neuteredRgn(mFlags & REQUIRE_DEFERRED_MESSAGE_PROTECTION);
|
|
#endif
|
|
|
|
{ // Scope for lock
|
|
MonitorAutoLock lock(*mMonitor);
|
|
AutoEnterWaitForIncoming waitingForIncoming(*this);
|
|
if (mChannelState != ChannelConnected) {
|
|
return false;
|
|
}
|
|
if (!HasPendingEvents()) {
|
|
return WaitForInterruptNotify();
|
|
}
|
|
}
|
|
|
|
return OnMaybeDequeueOne();
|
|
}
|
|
|
|
bool
|
|
MessageChannel::HasPendingEvents()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return Connected() && !mPending.empty();
|
|
}
|
|
|
|
bool
|
|
MessageChannel::InterruptEventOccurred()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
IPC_ASSERT(InterruptStackDepth() > 0, "not in wait loop");
|
|
|
|
return (!Connected() ||
|
|
!mPending.empty() ||
|
|
(!mOutOfTurnReplies.empty() &&
|
|
mOutOfTurnReplies.find(mInterruptStack.top().seqno()) !=
|
|
mOutOfTurnReplies.end()));
|
|
}
|
|
|
|
bool
|
|
MessageChannel::ProcessPendingRequest(const Message &aUrgent)
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
// Note that it is possible we could have sent a sync message at
|
|
// the same time the parent process sent an urgent message, and
|
|
// therefore mPendingUrgentRequest is set *and* mRecvd is set as
|
|
// well, because the link thread received both before the worker
|
|
// thread woke up.
|
|
//
|
|
// In this case, we process the urgent message first, but we need
|
|
// to save the reply.
|
|
nsAutoPtr<Message> savedReply(mRecvd.forget());
|
|
|
|
DispatchMessage(aUrgent);
|
|
if (!Connected()) {
|
|
ReportConnectionError("MessageChannel::ProcessPendingRequest");
|
|
return false;
|
|
}
|
|
|
|
// In between having dispatched our reply to the parent process, and
|
|
// re-acquiring the monitor, the parent process could have already
|
|
// processed that reply and sent the reply to our sync message. If so,
|
|
// our saved reply should be empty.
|
|
IPC_ASSERT(!mRecvd || !savedReply, "unknown reply");
|
|
if (!mRecvd)
|
|
mRecvd = savedReply.forget();
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::DequeueOne(Message *recvd)
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (!Connected()) {
|
|
ReportConnectionError("OnMaybeDequeueOne");
|
|
return false;
|
|
}
|
|
|
|
if (!mDeferred.empty())
|
|
MaybeUndeferIncall();
|
|
|
|
if (mPending.empty())
|
|
return false;
|
|
|
|
*recvd = Move(mPending.front());
|
|
mPending.pop_front();
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MessageChannel::OnMaybeDequeueOne()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
Message recvd;
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (!DequeueOne(&recvd))
|
|
return false;
|
|
|
|
if (IsOnCxxStack() && recvd.is_interrupt() && recvd.is_reply()) {
|
|
// We probably just received a reply in a nested loop for an
|
|
// Interrupt call sent before entering that loop.
|
|
mOutOfTurnReplies[recvd.seqno()] = Move(recvd);
|
|
return false;
|
|
}
|
|
|
|
// We should not be in a transaction yet if we're not blocked.
|
|
MOZ_ASSERT(mCurrentTransaction == 0);
|
|
DispatchMessage(recvd);
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
MessageChannel::DispatchMessage(const Message &aMsg)
|
|
{
|
|
Maybe<AutoNoJSAPI> nojsapi;
|
|
if (ScriptSettingsInitialized() && NS_IsMainThread())
|
|
nojsapi.emplace();
|
|
|
|
nsAutoPtr<Message> reply;
|
|
|
|
{
|
|
AutoEnterTransaction transaction(this, aMsg);
|
|
|
|
int id = aMsg.transaction_id();
|
|
MOZ_ASSERT_IF(aMsg.is_sync(), id == mCurrentTransaction);
|
|
|
|
{
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
CxxStackFrame frame(*this, IN_MESSAGE, &aMsg);
|
|
|
|
if (aMsg.is_sync())
|
|
DispatchSyncMessage(aMsg, *getter_Transfers(reply));
|
|
else if (aMsg.is_interrupt())
|
|
DispatchInterruptMessage(aMsg, 0);
|
|
else
|
|
DispatchAsyncMessage(aMsg);
|
|
}
|
|
|
|
if (mCurrentTransaction != id) {
|
|
// The transaction has been canceled. Don't send a reply.
|
|
reply = nullptr;
|
|
}
|
|
}
|
|
|
|
if (reply && ChannelConnected == mChannelState) {
|
|
mLink->SendMessage(reply.forget());
|
|
}
|
|
}
|
|
|
|
void
|
|
MessageChannel::DispatchSyncMessage(const Message& aMsg, Message*& aReply)
|
|
{
|
|
AssertWorkerThread();
|
|
|
|
int prio = aMsg.priority();
|
|
|
|
// We don't want to run any code that might run a nested event loop here, so
|
|
// we avoid running event handlers. Once we've sent the response to the
|
|
// urgent message, it's okay to run event handlers again since the parent is
|
|
// no longer blocked.
|
|
MOZ_ASSERT_IF(prio > IPC::Message::PRIORITY_NORMAL, NS_IsMainThread());
|
|
MaybeScriptBlocker scriptBlocker(this, prio > IPC::Message::PRIORITY_NORMAL);
|
|
|
|
MessageChannel* dummy;
|
|
MessageChannel*& blockingVar = ShouldBlockScripts() ? gParentProcessBlocker : dummy;
|
|
|
|
Result rv;
|
|
if (mTimedOutMessageSeqno && mTimedOutMessagePriority >= prio) {
|
|
// If the other side sends a message in response to one of our messages
|
|
// that we've timed out, then we reply with an error.
|
|
//
|
|
// We do this because want to avoid a situation where we process an
|
|
// incoming message from the child here while it simultaneously starts
|
|
// processing our timed-out CPOW. It's very bad for both sides to
|
|
// be processing sync messages concurrently.
|
|
//
|
|
// The only exception is if the incoming message has urgent priority and
|
|
// our timed-out message had only high priority. In that case it's safe
|
|
// to process the incoming message because we know that the child won't
|
|
// process anything (the child will defer incoming messages when waiting
|
|
// for a response to its urgent message).
|
|
rv = MsgNotAllowed;
|
|
} else {
|
|
AutoSetValue<MessageChannel*> blocked(blockingVar, this);
|
|
AutoSetValue<bool> sync(mDispatchingSyncMessage, true);
|
|
AutoSetValue<int> prioSet(mDispatchingSyncMessagePriority, prio);
|
|
rv = mListener->OnMessageReceived(aMsg, aReply);
|
|
}
|
|
|
|
if (!MaybeHandleError(rv, aMsg, "DispatchSyncMessage")) {
|
|
aReply = new Message();
|
|
aReply->set_sync();
|
|
aReply->set_priority(aMsg.priority());
|
|
aReply->set_reply();
|
|
aReply->set_reply_error();
|
|
}
|
|
aReply->set_seqno(aMsg.seqno());
|
|
aReply->set_transaction_id(aMsg.transaction_id());
|
|
}
|
|
|
|
void
|
|
MessageChannel::DispatchAsyncMessage(const Message& aMsg)
|
|
{
|
|
AssertWorkerThread();
|
|
MOZ_ASSERT(!aMsg.is_interrupt() && !aMsg.is_sync());
|
|
|
|
if (aMsg.routing_id() == MSG_ROUTING_NONE) {
|
|
NS_RUNTIMEABORT("unhandled special message!");
|
|
}
|
|
|
|
Result rv;
|
|
{
|
|
int prio = aMsg.priority();
|
|
AutoSetValue<bool> async(mDispatchingAsyncMessage, true);
|
|
AutoSetValue<int> prioSet(mDispatchingAsyncMessagePriority, prio);
|
|
rv = mListener->OnMessageReceived(aMsg);
|
|
}
|
|
MaybeHandleError(rv, aMsg, "DispatchAsyncMessage");
|
|
}
|
|
|
|
void
|
|
MessageChannel::DispatchInterruptMessage(const Message& aMsg, size_t stackDepth)
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");
|
|
|
|
// Race detection: see the long comment near mRemoteStackDepthGuess in
|
|
// MessageChannel.h. "Remote" stack depth means our side, and "local" means
|
|
// the other side.
|
|
if (aMsg.interrupt_remote_stack_depth_guess() != RemoteViewOfStackDepth(stackDepth)) {
|
|
// Interrupt in-calls have raced. The winner, if there is one, gets to defer
|
|
// processing of the other side's in-call.
|
|
bool defer;
|
|
const char* winner;
|
|
const Message& parentMsg = (mSide == ChildSide) ? aMsg : mInterruptStack.top();
|
|
const Message& childMsg = (mSide == ChildSide) ? mInterruptStack.top() : aMsg;
|
|
switch (mListener->MediateInterruptRace(parentMsg, childMsg))
|
|
{
|
|
case RIPChildWins:
|
|
winner = "child";
|
|
defer = (mSide == ChildSide);
|
|
break;
|
|
case RIPParentWins:
|
|
winner = "parent";
|
|
defer = (mSide != ChildSide);
|
|
break;
|
|
case RIPError:
|
|
NS_RUNTIMEABORT("NYI: 'Error' Interrupt race policy");
|
|
return;
|
|
default:
|
|
NS_RUNTIMEABORT("not reached");
|
|
return;
|
|
}
|
|
|
|
if (LoggingEnabled()) {
|
|
printf_stderr(" (%s: %s won, so we're%sdeferring)\n",
|
|
(mSide == ChildSide) ? "child" : "parent",
|
|
winner,
|
|
defer ? " " : " not ");
|
|
}
|
|
|
|
if (defer) {
|
|
// We now know the other side's stack has one more frame
|
|
// than we thought.
|
|
++mRemoteStackDepthGuess; // decremented in MaybeProcessDeferred()
|
|
mDeferred.push(aMsg);
|
|
return;
|
|
}
|
|
|
|
// We "lost" and need to process the other side's in-call. Don't need
|
|
// to fix up the mRemoteStackDepthGuess here, because we're just about
|
|
// to increment it in DispatchCall(), which will make it correct again.
|
|
}
|
|
|
|
#ifdef OS_WIN
|
|
SyncStackFrame frame(this, true);
|
|
#endif
|
|
|
|
nsAutoPtr<Message> reply;
|
|
|
|
++mRemoteStackDepthGuess;
|
|
Result rv = mListener->OnCallReceived(aMsg, *getter_Transfers(reply));
|
|
--mRemoteStackDepthGuess;
|
|
|
|
if (!MaybeHandleError(rv, aMsg, "DispatchInterruptMessage")) {
|
|
reply = new Message();
|
|
reply->set_interrupt();
|
|
reply->set_reply();
|
|
reply->set_reply_error();
|
|
}
|
|
reply->set_seqno(aMsg.seqno());
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (ChannelConnected == mChannelState) {
|
|
mLink->SendMessage(reply.forget());
|
|
}
|
|
}
|
|
|
|
void
|
|
MessageChannel::MaybeUndeferIncall()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (mDeferred.empty())
|
|
return;
|
|
|
|
size_t stackDepth = InterruptStackDepth();
|
|
|
|
// the other side can only *under*-estimate our actual stack depth
|
|
IPC_ASSERT(mDeferred.top().interrupt_remote_stack_depth_guess() <= stackDepth,
|
|
"fatal logic error");
|
|
|
|
// maybe time to process this message
|
|
Message call = mDeferred.top();
|
|
mDeferred.pop();
|
|
|
|
// fix up fudge factor we added to account for race
|
|
IPC_ASSERT(0 < mRemoteStackDepthGuess, "fatal logic error");
|
|
--mRemoteStackDepthGuess;
|
|
|
|
MOZ_ASSERT(call.priority() == IPC::Message::PRIORITY_NORMAL);
|
|
mPending.push_back(call);
|
|
}
|
|
|
|
void
|
|
MessageChannel::FlushPendingInterruptQueue()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
{
|
|
MonitorAutoLock lock(*mMonitor);
|
|
|
|
if (mDeferred.empty()) {
|
|
if (mPending.empty())
|
|
return;
|
|
|
|
const Message& last = mPending.back();
|
|
if (!last.is_interrupt() || last.is_reply())
|
|
return;
|
|
}
|
|
}
|
|
|
|
while (OnMaybeDequeueOne());
|
|
}
|
|
|
|
void
|
|
MessageChannel::ExitedCxxStack()
|
|
{
|
|
mListener->OnExitedCxxStack();
|
|
if (mSawInterruptOutMsg) {
|
|
MonitorAutoLock lock(*mMonitor);
|
|
// see long comment in OnMaybeDequeueOne()
|
|
EnqueuePendingMessages();
|
|
mSawInterruptOutMsg = false;
|
|
}
|
|
}
|
|
|
|
void
|
|
MessageChannel::EnqueuePendingMessages()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
MaybeUndeferIncall();
|
|
|
|
for (size_t i = 0; i < mDeferred.size(); ++i) {
|
|
mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask));
|
|
}
|
|
|
|
// XXX performance tuning knob: could process all or k pending
|
|
// messages here, rather than enqueuing for later processing
|
|
|
|
for (size_t i = 0; i < mPending.size(); ++i) {
|
|
mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mDequeueOneTask));
|
|
}
|
|
}
|
|
|
|
static inline bool
|
|
IsTimeoutExpired(PRIntervalTime aStart, PRIntervalTime aTimeout)
|
|
{
|
|
return (aTimeout != PR_INTERVAL_NO_TIMEOUT) &&
|
|
(aTimeout <= (PR_IntervalNow() - aStart));
|
|
}
|
|
|
|
bool
|
|
MessageChannel::WaitResponse(bool aWaitTimedOut)
|
|
{
|
|
if (aWaitTimedOut) {
|
|
if (mInTimeoutSecondHalf) {
|
|
// We've really timed out this time.
|
|
return false;
|
|
}
|
|
// Try a second time.
|
|
mInTimeoutSecondHalf = true;
|
|
} else {
|
|
mInTimeoutSecondHalf = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#ifndef OS_WIN
|
|
bool
|
|
MessageChannel::WaitForSyncNotify()
|
|
{
|
|
PRIntervalTime timeout = (kNoTimeout == mTimeoutMs) ?
|
|
PR_INTERVAL_NO_TIMEOUT :
|
|
PR_MillisecondsToInterval(mTimeoutMs);
|
|
// XXX could optimize away this syscall for "no timeout" case if desired
|
|
PRIntervalTime waitStart = PR_IntervalNow();
|
|
|
|
mMonitor->Wait(timeout);
|
|
|
|
// If the timeout didn't expire, we know we received an event. The
|
|
// converse is not true.
|
|
return WaitResponse(IsTimeoutExpired(waitStart, timeout));
|
|
}
|
|
|
|
bool
|
|
MessageChannel::WaitForInterruptNotify()
|
|
{
|
|
return WaitForSyncNotify();
|
|
}
|
|
|
|
void
|
|
MessageChannel::NotifyWorkerThread()
|
|
{
|
|
mMonitor->Notify();
|
|
}
|
|
#endif
|
|
|
|
bool
|
|
MessageChannel::ShouldContinueFromTimeout()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
bool cont;
|
|
{
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
cont = mListener->OnReplyTimeout();
|
|
}
|
|
|
|
static enum { UNKNOWN, NOT_DEBUGGING, DEBUGGING } sDebuggingChildren = UNKNOWN;
|
|
|
|
if (sDebuggingChildren == UNKNOWN) {
|
|
sDebuggingChildren = getenv("MOZ_DEBUG_CHILD_PROCESS") ? DEBUGGING : NOT_DEBUGGING;
|
|
}
|
|
if (sDebuggingChildren == DEBUGGING) {
|
|
return true;
|
|
}
|
|
|
|
return cont;
|
|
}
|
|
|
|
void
|
|
MessageChannel::SetReplyTimeoutMs(int32_t aTimeoutMs)
|
|
{
|
|
// Set channel timeout value. Since this is broken up into
|
|
// two period, the minimum timeout value is 2ms.
|
|
AssertWorkerThread();
|
|
mTimeoutMs = (aTimeoutMs <= 0)
|
|
? kNoTimeout
|
|
: (int32_t)ceil((double)aTimeoutMs / 2.0);
|
|
}
|
|
|
|
void
|
|
MessageChannel::OnChannelConnected(int32_t peer_id)
|
|
{
|
|
MOZ_ASSERT(!mPeerPidSet);
|
|
mPeerPidSet = true;
|
|
mPeerPid = peer_id;
|
|
mWorkerLoop->PostTask(FROM_HERE, new DequeueTask(mOnChannelConnectedTask));
|
|
}
|
|
|
|
void
|
|
MessageChannel::DispatchOnChannelConnected()
|
|
{
|
|
AssertWorkerThread();
|
|
MOZ_ASSERT(mPeerPidSet);
|
|
if (mListener)
|
|
mListener->OnChannelConnected(mPeerPid);
|
|
}
|
|
|
|
void
|
|
MessageChannel::ReportMessageRouteError(const char* channelName) const
|
|
{
|
|
PrintErrorMessage(mSide, channelName, "Need a route");
|
|
mListener->OnProcessingError(MsgRouteError, "MsgRouteError");
|
|
}
|
|
|
|
void
|
|
MessageChannel::ReportConnectionError(const char* aChannelName, Message* aMsg) const
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
const char* errorMsg = nullptr;
|
|
switch (mChannelState) {
|
|
case ChannelClosed:
|
|
errorMsg = "Closed channel: cannot send/recv";
|
|
break;
|
|
case ChannelOpening:
|
|
errorMsg = "Opening channel: not yet ready for send/recv";
|
|
break;
|
|
case ChannelTimeout:
|
|
errorMsg = "Channel timeout: cannot send/recv";
|
|
break;
|
|
case ChannelClosing:
|
|
errorMsg = "Channel closing: too late to send/recv, messages will be lost";
|
|
break;
|
|
case ChannelError:
|
|
errorMsg = "Channel error: cannot send/recv";
|
|
break;
|
|
|
|
default:
|
|
NS_RUNTIMEABORT("unreached");
|
|
}
|
|
|
|
if (aMsg) {
|
|
char reason[512];
|
|
PR_snprintf(reason, sizeof(reason),
|
|
"(msgtype=0x%lX,name=%s) %s",
|
|
aMsg->type(), aMsg->name(), errorMsg);
|
|
|
|
PrintErrorMessage(mSide, aChannelName, reason);
|
|
} else {
|
|
PrintErrorMessage(mSide, aChannelName, errorMsg);
|
|
}
|
|
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
mListener->OnProcessingError(MsgDropped, errorMsg);
|
|
}
|
|
|
|
bool
|
|
MessageChannel::MaybeHandleError(Result code, const Message& aMsg, const char* channelName)
|
|
{
|
|
if (MsgProcessed == code)
|
|
return true;
|
|
|
|
const char* errorMsg = nullptr;
|
|
switch (code) {
|
|
case MsgNotKnown:
|
|
errorMsg = "Unknown message: not processed";
|
|
break;
|
|
case MsgNotAllowed:
|
|
errorMsg = "Message not allowed: cannot be sent/recvd in this state";
|
|
break;
|
|
case MsgPayloadError:
|
|
errorMsg = "Payload error: message could not be deserialized";
|
|
break;
|
|
case MsgProcessingError:
|
|
errorMsg = "Processing error: message was deserialized, but the handler returned false (indicating failure)";
|
|
break;
|
|
case MsgRouteError:
|
|
errorMsg = "Route error: message sent to unknown actor ID";
|
|
break;
|
|
case MsgValueError:
|
|
errorMsg = "Value error: message was deserialized, but contained an illegal value";
|
|
break;
|
|
|
|
default:
|
|
NS_RUNTIMEABORT("unknown Result code");
|
|
return false;
|
|
}
|
|
|
|
char reason[512];
|
|
PR_snprintf(reason, sizeof(reason),
|
|
"(msgtype=0x%lX,name=%s) %s",
|
|
aMsg.type(), aMsg.name(), errorMsg);
|
|
|
|
PrintErrorMessage(mSide, channelName, reason);
|
|
|
|
mListener->OnProcessingError(code, reason);
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
MessageChannel::OnChannelErrorFromLink()
|
|
{
|
|
AssertLinkThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (InterruptStackDepth() > 0)
|
|
NotifyWorkerThread();
|
|
|
|
if (AwaitingSyncReply() || AwaitingIncomingMessage())
|
|
NotifyWorkerThread();
|
|
|
|
if (ChannelClosing != mChannelState) {
|
|
if (mAbortOnError) {
|
|
NS_RUNTIMEABORT("Aborting on channel error.");
|
|
}
|
|
mChannelState = ChannelError;
|
|
mMonitor->Notify();
|
|
}
|
|
|
|
PostErrorNotifyTask();
|
|
}
|
|
|
|
void
|
|
MessageChannel::NotifyMaybeChannelError()
|
|
{
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
// TODO sort out Close() on this side racing with Close() on the other side
|
|
if (ChannelClosing == mChannelState) {
|
|
// the channel closed, but we received a "Goodbye" message warning us
|
|
// about it. no worries
|
|
mChannelState = ChannelClosed;
|
|
NotifyChannelClosed();
|
|
return;
|
|
}
|
|
|
|
// Oops, error! Let the listener know about it.
|
|
mChannelState = ChannelError;
|
|
mListener->OnChannelError();
|
|
Clear();
|
|
}
|
|
|
|
void
|
|
MessageChannel::OnNotifyMaybeChannelError()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
mChannelErrorTask = nullptr;
|
|
|
|
// OnChannelError holds mMonitor when it posts this task and this
|
|
// task cannot be allowed to run until OnChannelError has
|
|
// exited. We enforce that order by grabbing the mutex here which
|
|
// should only continue once OnChannelError has completed.
|
|
{
|
|
MonitorAutoLock lock(*mMonitor);
|
|
// nothing to do here
|
|
}
|
|
|
|
if (IsOnCxxStack()) {
|
|
mChannelErrorTask =
|
|
NewRunnableMethod(this, &MessageChannel::OnNotifyMaybeChannelError);
|
|
// 10 ms delay is completely arbitrary
|
|
mWorkerLoop->PostDelayedTask(FROM_HERE, mChannelErrorTask, 10);
|
|
return;
|
|
}
|
|
|
|
NotifyMaybeChannelError();
|
|
}
|
|
|
|
void
|
|
MessageChannel::PostErrorNotifyTask()
|
|
{
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (mChannelErrorTask)
|
|
return;
|
|
|
|
// This must be the last code that runs on this thread!
|
|
mChannelErrorTask =
|
|
NewRunnableMethod(this, &MessageChannel::OnNotifyMaybeChannelError);
|
|
mWorkerLoop->PostTask(FROM_HERE, mChannelErrorTask);
|
|
}
|
|
|
|
// Special async message.
|
|
class GoodbyeMessage : public IPC::Message
|
|
{
|
|
public:
|
|
GoodbyeMessage() :
|
|
IPC::Message(MSG_ROUTING_NONE, GOODBYE_MESSAGE_TYPE, PRIORITY_NORMAL)
|
|
{
|
|
}
|
|
static bool Read(const Message* msg) {
|
|
return true;
|
|
}
|
|
void Log(const std::string& aPrefix, FILE* aOutf) const {
|
|
fputs("(special `Goodbye' message)", aOutf);
|
|
}
|
|
};
|
|
|
|
void
|
|
MessageChannel::SynchronouslyClose()
|
|
{
|
|
AssertWorkerThread();
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
mLink->SendClose();
|
|
while (ChannelClosed != mChannelState)
|
|
mMonitor->Wait();
|
|
}
|
|
|
|
void
|
|
MessageChannel::CloseWithError()
|
|
{
|
|
AssertWorkerThread();
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (ChannelConnected != mChannelState) {
|
|
return;
|
|
}
|
|
SynchronouslyClose();
|
|
mChannelState = ChannelError;
|
|
PostErrorNotifyTask();
|
|
}
|
|
|
|
void
|
|
MessageChannel::CloseWithTimeout()
|
|
{
|
|
AssertWorkerThread();
|
|
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (ChannelConnected != mChannelState) {
|
|
return;
|
|
}
|
|
SynchronouslyClose();
|
|
mChannelState = ChannelTimeout;
|
|
}
|
|
|
|
void
|
|
MessageChannel::BlockScripts()
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
mBlockScripts = true;
|
|
}
|
|
|
|
void
|
|
MessageChannel::Close()
|
|
{
|
|
AssertWorkerThread();
|
|
|
|
{
|
|
MonitorAutoLock lock(*mMonitor);
|
|
|
|
if (ChannelError == mChannelState || ChannelTimeout == mChannelState) {
|
|
// See bug 538586: if the listener gets deleted while the
|
|
// IO thread's NotifyChannelError event is still enqueued
|
|
// and subsequently deletes us, then the error event will
|
|
// also be deleted and the listener will never be notified
|
|
// of the channel error.
|
|
if (mListener) {
|
|
MonitorAutoUnlock unlock(*mMonitor);
|
|
NotifyMaybeChannelError();
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ChannelOpening == mChannelState) {
|
|
// SynchronouslyClose() waits for an ack from the other side, so
|
|
// the opening sequence should complete before this returns.
|
|
SynchronouslyClose();
|
|
mChannelState = ChannelError;
|
|
NotifyMaybeChannelError();
|
|
return;
|
|
}
|
|
|
|
if (ChannelConnected != mChannelState) {
|
|
// XXX be strict about this until there's a compelling reason
|
|
// to relax
|
|
NS_RUNTIMEABORT("Close() called on closed channel!");
|
|
}
|
|
|
|
// notify the other side that we're about to close our socket
|
|
mLink->SendMessage(new GoodbyeMessage());
|
|
SynchronouslyClose();
|
|
}
|
|
|
|
NotifyChannelClosed();
|
|
}
|
|
|
|
void
|
|
MessageChannel::NotifyChannelClosed()
|
|
{
|
|
mMonitor->AssertNotCurrentThreadOwns();
|
|
|
|
if (ChannelClosed != mChannelState)
|
|
NS_RUNTIMEABORT("channel should have been closed!");
|
|
|
|
// OK, the IO thread just closed the channel normally. Let the
|
|
// listener know about it.
|
|
mListener->OnChannelClose();
|
|
|
|
Clear();
|
|
}
|
|
|
|
void
|
|
MessageChannel::DebugAbort(const char* file, int line, const char* cond,
|
|
const char* why,
|
|
bool reply) const
|
|
{
|
|
printf_stderr("###!!! [MessageChannel][%s][%s:%d] "
|
|
"Assertion (%s) failed. %s %s\n",
|
|
mSide == ChildSide ? "Child" : "Parent",
|
|
file, line, cond,
|
|
why,
|
|
reply ? "(reply)" : "");
|
|
// technically we need the mutex for this, but we're dying anyway
|
|
DumpInterruptStack(" ");
|
|
printf_stderr(" remote Interrupt stack guess: %" PRIuSIZE "\n",
|
|
mRemoteStackDepthGuess);
|
|
printf_stderr(" deferred stack size: %" PRIuSIZE "\n",
|
|
mDeferred.size());
|
|
printf_stderr(" out-of-turn Interrupt replies stack size: %" PRIuSIZE "\n",
|
|
mOutOfTurnReplies.size());
|
|
printf_stderr(" Pending queue size: %" PRIuSIZE ", front to back:\n",
|
|
mPending.size());
|
|
|
|
MessageQueue pending = mPending;
|
|
while (!pending.empty()) {
|
|
printf_stderr(" [ %s%s ]\n",
|
|
pending.front().is_interrupt() ? "intr" :
|
|
(pending.front().is_sync() ? "sync" : "async"),
|
|
pending.front().is_reply() ? "reply" : "");
|
|
pending.pop_front();
|
|
}
|
|
|
|
NS_RUNTIMEABORT(why);
|
|
}
|
|
|
|
void
|
|
MessageChannel::DumpInterruptStack(const char* const pfx) const
|
|
{
|
|
NS_WARN_IF_FALSE(MessageLoop::current() != mWorkerLoop,
|
|
"The worker thread had better be paused in a debugger!");
|
|
|
|
printf_stderr("%sMessageChannel 'backtrace':\n", pfx);
|
|
|
|
// print a python-style backtrace, first frame to last
|
|
for (uint32_t i = 0; i < mCxxStackFrames.length(); ++i) {
|
|
int32_t id;
|
|
const char* dir;
|
|
const char* sems;
|
|
const char* name;
|
|
mCxxStackFrames[i].Describe(&id, &dir, &sems, &name);
|
|
|
|
printf_stderr("%s[(%u) %s %s %s(actor=%d) ]\n", pfx,
|
|
i, dir, sems, name, id);
|
|
}
|
|
}
|
|
|
|
int32_t
|
|
MessageChannel::GetTopmostMessageRoutingId() const
|
|
{
|
|
MOZ_ASSERT(MessageLoop::current() == mWorkerLoop);
|
|
if (mCxxStackFrames.empty()) {
|
|
return MSG_ROUTING_NONE;
|
|
}
|
|
const InterruptFrame& frame = mCxxStackFrames.back();
|
|
return frame.GetRoutingId();
|
|
}
|
|
|
|
void
|
|
MessageChannel::CancelCurrentTransactionInternal()
|
|
{
|
|
// When we cancel a transaction, we need to behave as if there's no longer
|
|
// any IPC on the stack. Anything we were dispatching or sending will get
|
|
// canceled. Consequently, we have to update the state variables below.
|
|
//
|
|
// We also need to ensure that when any IPC functions on the stack return,
|
|
// they don't reset these values using an RAII class like AutoSetValue. To
|
|
// avoid that, these RAII classes check if the variable they set has been
|
|
// tampered with (by us). If so, they don't reset the variable to the old
|
|
// value.
|
|
|
|
MOZ_ASSERT(mCurrentTransaction);
|
|
mCurrentTransaction = 0;
|
|
|
|
mAwaitingSyncReply = false;
|
|
mAwaitingSyncReplyPriority = 0;
|
|
|
|
// We could also zero out mDispatchingSyncMessage here. However, that would
|
|
// cause a race because mDispatchingSyncMessage is a worker-thread-only
|
|
// field and we can be called on the I/O thread. Luckily, we can check to
|
|
// see if mCurrentTransaction is 0 before examining DispatchSyncMessage.
|
|
}
|
|
|
|
void
|
|
MessageChannel::CancelCurrentTransaction()
|
|
{
|
|
MonitorAutoLock lock(*mMonitor);
|
|
if (mCurrentTransaction) {
|
|
CancelCurrentTransactionInternal();
|
|
mLink->SendMessage(new CancelMessage());
|
|
}
|
|
}
|
|
|
|
void
|
|
CancelCPOWs()
|
|
{
|
|
if (gParentProcessBlocker) {
|
|
mozilla::Telemetry::Accumulate(mozilla::Telemetry::IPC_TRANSACTION_CANCEL, true);
|
|
gParentProcessBlocker->CancelCurrentTransaction();
|
|
}
|
|
}
|
|
|
|
} // namespace ipc
|
|
} // namespace mozilla
|