зеркало из https://github.com/mozilla/gecko-dev.git
680 строки
16 KiB
XML
680 строки
16 KiB
XML
<?xml version="1.0"?>
|
|
<!-- This Source Code Form is subject to the terms of the Mozilla Public
|
|
- License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
- file, You can obtain one at http://mozilla.org/MPL/2.0/. -->
|
|
<!DOCTYPE html PUBLIC
|
|
"-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
|
|
"http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd"
|
|
[
|
|
<!ENTITY mathml "http://www.w3.org/1998/Math/MathML">
|
|
]>
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
|
|
<head>
|
|
<title>Various examples of MathML</title>
|
|
<style type="text/css">
|
|
maction {
|
|
background-color: yellow;
|
|
}
|
|
maction:hover {
|
|
outline: 1px dotted black;
|
|
/* border: 1px solid black; */
|
|
}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
|
|
<h2><maction></h2>
|
|
|
|
<p>Click to toggle between expressions, and watch the status line onmouseover/onmouseout:
|
|
<br />
|
|
|
|
<math mode="display" xmlns="&mathml;">
|
|
<maction actiontype="toggle">
|
|
<maction actiontype="statusline">
|
|
<mi>statusline#First Expression</mi>
|
|
<mtext>First Expression</mtext>
|
|
</maction>
|
|
|
|
<maction actiontype="statusline">
|
|
<mi>statusline#Second Expression</mi>
|
|
<mtext>Second Expression</mtext>
|
|
</maction>
|
|
|
|
|
|
<maction actiontype="statusline">
|
|
<mi>statusline#And so on...</mi>
|
|
<mtext>And so on..</mtext>
|
|
</maction>
|
|
</maction>
|
|
</math></p>
|
|
|
|
<p>Click the expression below to see several definitions of pi:
|
|
<br />
|
|
|
|
<math mode="display" xmlns="&mathml;">
|
|
<mrow>
|
|
<maction actiontype="toggle">
|
|
|
|
<mrow>
|
|
<mi>π</mi>
|
|
<mo>=</mo>
|
|
<mn>3.14159265358</mn><mo mathvariant="bold">...</mo>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mi>π</mi>
|
|
<mo>=</mo>
|
|
<mn>2</mn><mi>i</mi>
|
|
<mo>⁢</mo>
|
|
<mo>Log</mo>
|
|
<mfrac>
|
|
<mrow><mn>1</mn><mo>-</mo><mi>i</mi></mrow>
|
|
<mrow><mn>1</mn><mo>+</mo><mi>i</mi></mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mi>π</mi>
|
|
<mo>=</mo>
|
|
<mn>2</mn>
|
|
<mphantom><mo>.</mo></mphantom>
|
|
<mfrac>
|
|
<mn>2</mn>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
</msqrt>
|
|
</mfrac>
|
|
<mphantom><mo>.</mo></mphantom>
|
|
<mfrac>
|
|
<mn>2</mn>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
</msqrt>
|
|
</msqrt>
|
|
</mfrac>
|
|
<mphantom><mo>.</mo></mphantom>
|
|
<mfrac>
|
|
<mn>2</mn>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<msqrt>
|
|
<mn>2</mn>
|
|
</msqrt>
|
|
</msqrt>
|
|
</msqrt>
|
|
</mfrac>
|
|
<mo mathvariant="bold">...</mo>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mfrac>
|
|
<mi>π</mi>
|
|
<mn>4</mn>
|
|
</mfrac>
|
|
<mo>=</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<mn>1</mn>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>1</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>3</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>5</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mrow>
|
|
<mn>2</mn>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mstyle scriptlevel="0">
|
|
<msup><mn>7</mn><mn>2</mn></msup>
|
|
</mstyle>
|
|
<mstyle scriptlevel="0">
|
|
<mn>2</mn><mo>+</mo><mo mathvariant="bold">...</mo>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</mstyle>
|
|
</mfrac>
|
|
</mrow>
|
|
</maction>
|
|
</mrow>
|
|
</math></p>
|
|
|
|
<h2>Thomson scattering theory</h2>
|
|
|
|
<p><math xmlns="&mathml;" mode="display">
|
|
<mrow>
|
|
<mtable align='left'>
|
|
|
|
<mtr>
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mfrac>
|
|
<mrow>
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>2</mn>
|
|
</msup>
|
|
<mi>P</mi>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mi>d</mi>
|
|
<msub>
|
|
<mi>Ω</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
<mo> </mo>
|
|
<mi>d</mi>
|
|
<msub>
|
|
<mi>ω</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
</mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mo>=</mo>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<msubsup>
|
|
<mi>r</mi>
|
|
<mi>e</mi>
|
|
<mn>2</mn>
|
|
</msubsup>
|
|
|
|
<msub>
|
|
<mo>∫</mo>
|
|
<mi>V</mi>
|
|
</msub>
|
|
|
|
<mo lspace='0'><</mo>
|
|
<msub>
|
|
<mi>S</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
<mo>></mo>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi mathvariant='bold'>r</mi>
|
|
<mo>∫</mo>
|
|
|
|
<msup>
|
|
<mrow>
|
|
<mo lspace='0' rspace='0' symmetric='false'>|</mo>
|
|
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>e</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
|
|
<mo>.</mo>
|
|
|
|
<mover accent='true'>
|
|
<mo>Π</mo>
|
|
<mo>↔</mo>
|
|
</mover>
|
|
|
|
<mo>.</mo>
|
|
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>e</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
|
|
<mo lspace='0' rspace='0' symmetric='false'>|</mo>
|
|
</mrow>
|
|
<mn>2</mn>
|
|
</msup>
|
|
|
|
<msup>
|
|
<mi>κ</mi>
|
|
<mn>2</mn>
|
|
</msup>
|
|
|
|
<mi>f</mi>
|
|
<mo> </mo>
|
|
<mi>δ</mi>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mi mathvariant='bold'>k</mi>
|
|
<mo>.</mo>
|
|
<mi mathvariant='bold'>v</mi>
|
|
<mo>-</mo>
|
|
<mi>ω</mi>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi mathvariant='bold'>v</mi>
|
|
</mrow>
|
|
</mtd>
|
|
</mtr>
|
|
|
|
<mtr>
|
|
<mtd></mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mo>=</mo>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<msubsup>
|
|
<mi>r</mi>
|
|
<mi>e</mi>
|
|
<mn>2</mn>
|
|
</msubsup>
|
|
|
|
<msub>
|
|
<mo>∫</mo>
|
|
<mi>V</mi>
|
|
</msub>
|
|
|
|
<mo lspace='0'><</mo>
|
|
<msub>
|
|
<mi>S</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
<mo>></mo>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi mathvariant='bold'>r</mi>
|
|
<mo>∫</mo>
|
|
|
|
<msup>
|
|
<mrow>
|
|
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
|
|
<mfrac>
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>s</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
<mo>.</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>ı</mi>
|
|
<mo>^</mo>
|
|
</mover>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
<mo stretchy='false'>)</mo>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
<msubsup>
|
|
<mi>β</mi>
|
|
<mi>e</mi>
|
|
<mn>2</mn>
|
|
</msubsup>
|
|
|
|
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
|
|
</mrow>
|
|
<mn>2</mn>
|
|
</msup>
|
|
|
|
<mspace width="thinmathspace"/>
|
|
|
|
<msup>
|
|
<mrow>
|
|
<mo symmetric='false' rspace='0'>|</mo>
|
|
<mfrac>
|
|
|
|
<mrow>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>i</mi>
|
|
</msub>
|
|
</mrow>
|
|
|
|
<mrow>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msub>
|
|
<mi>β</mi>
|
|
<mi>s</mi>
|
|
</msub>
|
|
</mrow>
|
|
</mfrac>
|
|
|
|
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
|
|
</mrow>
|
|
<mn>2</mn>
|
|
</msup>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
</mtr>
|
|
|
|
<mtr>
|
|
<mtd></mtd>
|
|
<mtd></mtd>
|
|
<mtd columnalign='left'>
|
|
<mrow>
|
|
<mo>×</mo>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mn>1</mn>
|
|
<mo>-</mo>
|
|
<msup>
|
|
<mi>β</mi>
|
|
<mn>2</mn>
|
|
</msup>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<mo> </mo>
|
|
<mi>f</mi>
|
|
<mo> </mo>
|
|
<mi>δ</mi>
|
|
|
|
<mrow>
|
|
<mo stretchy='false'>(</mo>
|
|
<mi mathvariant='bold'>k</mi>
|
|
<mo>.</mo>
|
|
<mi mathvariant='bold'>v</mi>
|
|
<mo>-</mo>
|
|
<mi>ω</mi>
|
|
<mo stretchy='false'>)</mo>
|
|
</mrow>
|
|
|
|
<msup>
|
|
<mi>d</mi>
|
|
<mn>3</mn>
|
|
</msup>
|
|
|
|
<mi mathvariant='bold'>v</mi>
|
|
</mrow>
|
|
</mtd>
|
|
|
|
</mtr>
|
|
</mtable>
|
|
</mrow>
|
|
</math>
|
|
|
|
</p>
|
|
|
|
<h2>Maxwell's Equations</h2>
|
|
|
|
<p style="text-align:center">
|
|
<math xmlns='&mathml;'>
|
|
<mstyle displaystyle='true'>
|
|
<mrow>
|
|
<mo>{</mo>
|
|
<mtable columnalign='right center left' equalrows='false' equalcolumns='false'>
|
|
<mtr>
|
|
<mtd>
|
|
<mrow>
|
|
<mo>∇</mo>
|
|
<mo>×</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>B</mi>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
<mo>-</mo>
|
|
<mfrac>
|
|
<mn>1</mn>
|
|
<mi>c</mi>
|
|
</mfrac>
|
|
<mfrac>
|
|
<mrow>
|
|
<mo>∂</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>E</mi>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
</mrow>
|
|
<mrow>
|
|
<mo>∂</mo>
|
|
<mi>t</mi>
|
|
</mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
</mtd>
|
|
<mtd>
|
|
<mo>=</mo>
|
|
</mtd>
|
|
<mtd>
|
|
<mrow>
|
|
<mfrac>
|
|
<mrow>
|
|
<mn>4</mn>
|
|
<mi>π</mi>
|
|
</mrow>
|
|
<mi>c</mi>
|
|
</mfrac>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>j</mi>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
</mrow>
|
|
</mtd>
|
|
</mtr>
|
|
<mtr>
|
|
<mtd>
|
|
<mrow>
|
|
<mo>∇</mo>
|
|
<mo>ċ</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>E</mi>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
</mrow>
|
|
</mtd>
|
|
<mtd>
|
|
<mo>=</mo>
|
|
</mtd>
|
|
<mtd>
|
|
<mrow>
|
|
<mn>4</mn>
|
|
<mi>π</mi>
|
|
<mi>ρ</mi>
|
|
</mrow>
|
|
</mtd>
|
|
</mtr>
|
|
<mtr>
|
|
<mtd>
|
|
<mrow>
|
|
<mo>∇</mo>
|
|
<mo>×</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>E</mi>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
<mo>+</mo>
|
|
<mfrac>
|
|
<mn>1</mn>
|
|
<mi>c</mi>
|
|
</mfrac>
|
|
<mfrac>
|
|
<mrow>
|
|
<mo>∂</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>B</mi>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
</mrow>
|
|
<mrow>
|
|
<mo>∂</mo>
|
|
<mi>t</mi>
|
|
</mrow>
|
|
</mfrac>
|
|
</mrow>
|
|
</mtd>
|
|
<mtd>
|
|
<mo>=</mo>
|
|
</mtd>
|
|
<mtd>
|
|
<mover accent='true'>
|
|
<mn mathvariant='bold'>0</mn>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
</mtd>
|
|
</mtr>
|
|
<mtr>
|
|
<mtd>
|
|
<mrow>
|
|
<mo>∇</mo>
|
|
<mo>ċ</mo>
|
|
<mover accent='true'>
|
|
<mi mathvariant='bold'>B</mi>
|
|
<mo stretchy='true'>→</mo>
|
|
</mover>
|
|
</mrow>
|
|
</mtd>
|
|
<mtd>
|
|
<mo>=</mo>
|
|
</mtd>
|
|
<mtd>
|
|
<mn>0</mn>
|
|
</mtd>
|
|
</mtr>
|
|
</mtable>
|
|
</mrow>
|
|
</mstyle>
|
|
</math>
|
|
</p>
|
|
|
|
<h2>Einstein's field equations</h2>
|
|
|
|
<p style="text-align:center">
|
|
<math xmlns='&mathml;'>
|
|
<mstyle displaystyle='true'>
|
|
<mrow>
|
|
<msub>
|
|
<mi mathvariant="normal">R</mi>
|
|
<mstyle scriptlevel='1'>
|
|
<mrow>
|
|
<mi>μ</mi>
|
|
<mi>ν</mi>
|
|
</mrow>
|
|
</mstyle>
|
|
</msub>
|
|
<mo>-</mo>
|
|
<mfrac>
|
|
<mn>1</mn>
|
|
<mn>2</mn>
|
|
</mfrac>
|
|
<msub>
|
|
<mi>g</mi>
|
|
<mstyle scriptlevel='1'>
|
|
<mrow>
|
|
<mi>μ</mi>
|
|
<mi>ν</mi>
|
|
</mrow>
|
|
</mstyle>
|
|
</msub>
|
|
<mi mathvariant='normal'>R</mi>
|
|
<mo>=</mo>
|
|
<mfrac>
|
|
<mrow>
|
|
<mn>8</mn>
|
|
<mi>π</mi>
|
|
<mi mathvariant='normal'>G</mi>
|
|
</mrow>
|
|
<msup>
|
|
<mi>c</mi>
|
|
<mn>4</mn>
|
|
</msup>
|
|
</mfrac>
|
|
<msub>
|
|
<mi mathvariant='normal'>T</mi>
|
|
<mstyle scriptlevel='1'>
|
|
<mrow>
|
|
<mi>μ</mi>
|
|
<mi>ν</mi>
|
|
</mrow>
|
|
</mstyle>
|
|
</msub>
|
|
</mrow>
|
|
</mstyle>
|
|
</math>
|
|
</p>
|
|
|
|
</body>
|
|
</html>
|