gecko-dev/xpcom/threads/TimerThread.cpp

787 строки
23 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTimerImpl.h"
#include "TimerThread.h"
#include "nsThreadUtils.h"
#include "pratom.h"
#include "nsIObserverService.h"
#include "nsIServiceManager.h"
#include "mozilla/Services.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/ArenaAllocator.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/OperatorNewExtensions.h"
#include <math.h>
using namespace mozilla;
#ifdef MOZ_TASK_TRACER
# include "GeckoTaskTracerImpl.h"
using namespace mozilla::tasktracer;
#endif
NS_IMPL_ISUPPORTS(TimerThread, nsIRunnable, nsIObserver)
TimerThread::TimerThread()
: mInitialized(false),
mMonitor("TimerThread.mMonitor"),
mShutdown(false),
mWaiting(false),
mNotified(false),
mSleeping(false),
mAllowedEarlyFiringMicroseconds(0) {}
TimerThread::~TimerThread() {
mThread = nullptr;
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
}
nsresult TimerThread::InitLocks() { return NS_OK; }
namespace {
class TimerObserverRunnable : public Runnable {
public:
explicit TimerObserverRunnable(nsIObserver* aObserver)
: mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {}
NS_DECL_NSIRUNNABLE
private:
nsCOMPtr<nsIObserver> mObserver;
};
NS_IMETHODIMP
TimerObserverRunnable::Run() {
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService) {
observerService->AddObserver(mObserver, "sleep_notification", false);
observerService->AddObserver(mObserver, "wake_notification", false);
observerService->AddObserver(mObserver, "suspend_process_notification",
false);
observerService->AddObserver(mObserver, "resume_process_notification",
false);
}
return NS_OK;
}
} // namespace
namespace {
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
// It's needed to avoid contention over the default allocator lock when
// firing timer events (see bug 733277). The thread-safety is required because
// nsTimerEvent objects are allocated on the timer thread, and freed on another
// thread. Because TimerEventAllocator has its own lock, contention over that
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
//
// Because this is layered over ArenaAllocator, it never shrinks -- even
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
// for later recycling. So the amount of memory consumed will always be equal
// to the high-water mark consumption. But nsTimerEvents are small and it's
// unusual to have more than a few hundred of them, so this shouldn't be a
// problem in practice.
class TimerEventAllocator {
private:
struct FreeEntry {
FreeEntry* mNext;
};
ArenaAllocator<4096> mPool;
FreeEntry* mFirstFree;
mozilla::Monitor mMonitor;
public:
TimerEventAllocator()
: mPool(),
mFirstFree(nullptr),
// Timer thread state may be accessed during GC, so uses of this monitor
// are not preserved when recording/replaying.
mMonitor("TimerEventAllocator", recordreplay::Behavior::DontPreserve) {}
~TimerEventAllocator() {}
void* Alloc(size_t aSize);
void Free(void* aPtr);
};
} // namespace
// This is a nsICancelableRunnable because we can dispatch it to Workers and
// those can be shut down at any time, and in these cases, Cancel() is called
// instead of Run().
class nsTimerEvent final : public CancelableRunnable {
public:
NS_IMETHOD Run() override;
nsresult Cancel() override {
mTimer->Cancel();
return NS_OK;
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHOD GetName(nsACString& aName) override;
#endif
explicit nsTimerEvent(already_AddRefed<nsTimerImpl> aTimer)
: mozilla::CancelableRunnable("nsTimerEvent"),
mTimer(aTimer),
mGeneration(mTimer->GetGeneration()) {
// Note: We override operator new for this class, and the override is
// fallible!
sAllocatorUsers++;
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
mInitTime = TimeStamp::Now();
}
}
static void Init();
static void Shutdown();
static void DeleteAllocatorIfNeeded();
static void* operator new(size_t aSize) CPP_THROW_NEW {
return sAllocator->Alloc(aSize);
}
void operator delete(void* aPtr) {
sAllocator->Free(aPtr);
DeleteAllocatorIfNeeded();
}
already_AddRefed<nsTimerImpl> ForgetTimer() { return mTimer.forget(); }
private:
nsTimerEvent(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&&) = delete;
~nsTimerEvent() {
MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
"This will result in us attempting to deallocate the "
"nsTimerEvent allocator twice");
sAllocatorUsers--;
}
TimeStamp mInitTime;
RefPtr<nsTimerImpl> mTimer;
const int32_t mGeneration;
static TimerEventAllocator* sAllocator;
// Timer thread state may be accessed during GC, so uses of this atomic are
// not preserved when recording/replaying.
static Atomic<int32_t, SequentiallyConsistent,
recordreplay::Behavior::DontPreserve>
sAllocatorUsers;
static bool sCanDeleteAllocator;
};
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
Atomic<int32_t, SequentiallyConsistent, recordreplay::Behavior::DontPreserve>
nsTimerEvent::sAllocatorUsers;
bool nsTimerEvent::sCanDeleteAllocator = false;
namespace {
void* TimerEventAllocator::Alloc(size_t aSize) {
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
mozilla::MonitorAutoLock lock(mMonitor);
void* p;
if (mFirstFree) {
p = mFirstFree;
mFirstFree = mFirstFree->mNext;
} else {
p = mPool.Allocate(aSize, fallible);
}
return p;
}
void TimerEventAllocator::Free(void* aPtr) {
mozilla::MonitorAutoLock lock(mMonitor);
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
entry->mNext = mFirstFree;
mFirstFree = entry;
}
} // namespace
void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); }
void nsTimerEvent::Shutdown() {
sCanDeleteAllocator = true;
DeleteAllocatorIfNeeded();
}
void nsTimerEvent::DeleteAllocatorIfNeeded() {
if (sCanDeleteAllocator && sAllocatorUsers == 0) {
delete sAllocator;
sAllocator = nullptr;
}
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHODIMP
nsTimerEvent::GetName(nsACString& aName) {
bool current;
MOZ_RELEASE_ASSERT(
NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(&current)) &&
current);
mTimer->GetName(aName);
return NS_OK;
}
#endif
NS_IMETHODIMP
nsTimerEvent::Run() {
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
TimeStamp now = TimeStamp::Now();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this,
(now - mInitTime).ToMilliseconds()));
}
mTimer->Fire(mGeneration);
return NS_OK;
}
nsresult TimerThread::Init() {
mMonitor.AssertCurrentThreadOwns();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("TimerThread::Init [%d]\n", mInitialized));
if (!mInitialized) {
nsTimerEvent::Init();
// We hold on to mThread to keep the thread alive.
nsresult rv =
NS_NewNamedThread("Timer Thread", getter_AddRefs(mThread), this);
if (NS_FAILED(rv)) {
mThread = nullptr;
} else {
RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
if (NS_IsMainThread()) {
r->Run();
} else {
NS_DispatchToMainThread(r);
}
}
mInitialized = true;
}
if (!mThread) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult TimerThread::Shutdown() {
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));
if (!mThread) {
return NS_ERROR_NOT_INITIALIZED;
}
nsTArray<RefPtr<nsTimerImpl>> timers;
{
// lock scope
MonitorAutoLock lock(mMonitor);
mShutdown = true;
// notify the cond var so that Run() can return
if (mWaiting) {
mNotified = true;
mMonitor.Notify();
}
// Need to copy content of mTimers array to a local array
// because call to timers' Cancel() (and release its self)
// must not be done under the lock. Destructor of a callback
// might potentially call some code reentering the same lock
// that leads to unexpected behavior or deadlock.
// See bug 422472.
for (const UniquePtr<Entry>& entry : mTimers) {
timers.AppendElement(entry->Take());
}
mTimers.Clear();
}
for (const RefPtr<nsTimerImpl>& timer : timers) {
if (timer) {
timer->Cancel();
}
}
mThread->Shutdown(); // wait for the thread to die
nsTimerEvent::Shutdown();
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
return NS_OK;
}
namespace {
struct MicrosecondsToInterval {
PRIntervalTime operator[](size_t aMs) const {
return PR_MicrosecondsToInterval(aMs);
}
};
struct IntervalComparator {
int operator()(PRIntervalTime aInterval) const {
return (0 < aInterval) ? -1 : 1;
}
};
} // namespace
NS_IMETHODIMP
TimerThread::Run() {
NS_SetCurrentThreadName("Timer");
MonitorAutoLock lock(mMonitor);
// We need to know how many microseconds give a positive PRIntervalTime. This
// is platform-dependent and we calculate it at runtime, finding a value |v|
// such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in
// the range [0, v) to find the ms-to-interval scale.
uint32_t usForPosInterval = 1;
while (PR_MicrosecondsToInterval(usForPosInterval) == 0) {
usForPosInterval <<= 1;
}
size_t usIntervalResolution;
BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval,
IntervalComparator(), &usIntervalResolution);
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0);
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1);
// Half of the amount of microseconds needed to get positive PRIntervalTime.
// We use this to decide how to round our wait times later
mAllowedEarlyFiringMicroseconds = usIntervalResolution / 2;
bool forceRunNextTimer = false;
while (!mShutdown) {
// Have to use PRIntervalTime here, since PR_WaitCondVar takes it
TimeDuration waitFor;
bool forceRunThisTimer = forceRunNextTimer;
forceRunNextTimer = false;
if (mSleeping) {
// Sleep for 0.1 seconds while not firing timers.
uint32_t milliseconds = 100;
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
milliseconds = ChaosMode::randomUint32LessThan(200);
}
waitFor = TimeDuration::FromMilliseconds(milliseconds);
} else {
waitFor = TimeDuration::Forever();
TimeStamp now = TimeStamp::Now();
RemoveLeadingCanceledTimersInternal();
if (!mTimers.IsEmpty()) {
if (now >= mTimers[0]->Value()->mTimeout || forceRunThisTimer) {
next:
// NB: AddRef before the Release under RemoveTimerInternal to avoid
// mRefCnt passing through zero, in case all other refs than the one
// from mTimers have gone away (the last non-mTimers[i]-ref's Release
// must be racing with us, blocked in gThread->RemoveTimer waiting
// for TimerThread::mMonitor, under nsTimerImpl::Release.
RefPtr<nsTimerImpl> timerRef(mTimers[0]->Take());
RemoveFirstTimerInternal();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("Timer thread woke up %fms from when it was supposed to\n",
fabs((now - timerRef->mTimeout).ToMilliseconds())));
// We are going to let the call to PostTimerEvent here handle the
// release of the timer so that we don't end up releasing the timer
// on the TimerThread instead of on the thread it targets.
timerRef = PostTimerEvent(timerRef.forget());
if (timerRef) {
// We got our reference back due to an error.
// Unhook the nsRefPtr, and release manually so we can get the
// refcount.
nsrefcnt rc = timerRef.forget().take()->Release();
(void)rc;
// The nsITimer interface requires that its users keep a reference
// to the timers they use while those timers are initialized but
// have not yet fired. If this ever happens, it is a bug in the
// code that created and used the timer.
//
// Further, note that this should never happen even with a
// misbehaving user, because nsTimerImpl::Release checks for a
// refcount of 1 with an armed timer (a timer whose only reference
// is from the timer thread) and when it hits this will remove the
// timer from the timer thread and thus destroy the last reference,
// preventing this situation from occurring.
MOZ_ASSERT(rc != 0, "destroyed timer off its target thread!");
}
if (mShutdown) {
break;
}
// Update now, as PostTimerEvent plus the locking may have taken a
// tick or two, and we may goto next below.
now = TimeStamp::Now();
}
}
RemoveLeadingCanceledTimersInternal();
if (!mTimers.IsEmpty()) {
TimeStamp timeout = mTimers[0]->Value()->mTimeout;
// Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
// is due now or overdue.
//
// Note that we can only sleep for integer values of a certain
// resolution. We use mAllowedEarlyFiringMicroseconds, calculated
// before, to do the optimal rounding (i.e., of how to decide what
// interval is so small we should not wait at all).
double microseconds = (timeout - now).ToMilliseconds() * 1000;
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
// The mean value of sFractions must be 1 to ensure that
// the average of a long sequence of timeouts converges to the
// actual sum of their times.
static const float sFractions[] = {0.0f, 0.25f, 0.5f, 0.75f,
1.0f, 1.75f, 2.75f};
microseconds *= sFractions[ChaosMode::randomUint32LessThan(
ArrayLength(sFractions))];
forceRunNextTimer = true;
}
if (microseconds < mAllowedEarlyFiringMicroseconds) {
forceRunNextTimer = false;
goto next; // round down; execute event now
}
waitFor = TimeDuration::FromMicroseconds(microseconds);
if (waitFor.IsZero()) {
// round up, wait the minimum time we can wait
waitFor = TimeDuration::FromMicroseconds(1);
}
}
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
if (waitFor == TimeDuration::Forever())
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n"));
else
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("waiting for %f\n", waitFor.ToMilliseconds()));
}
}
mWaiting = true;
mNotified = false;
mMonitor.Wait(waitFor);
if (mNotified) {
forceRunNextTimer = false;
}
mWaiting = false;
}
return NS_OK;
}
nsresult TimerThread::AddTimer(nsTimerImpl* aTimer) {
MonitorAutoLock lock(mMonitor);
if (!aTimer->mEventTarget) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = Init();
if (NS_FAILED(rv)) {
return rv;
}
// Add the timer to our list.
if (!AddTimerInternal(aTimer)) {
return NS_ERROR_OUT_OF_MEMORY;
}
// Awaken the timer thread.
if (mWaiting && mTimers[0]->Value() == aTimer) {
mNotified = true;
mMonitor.Notify();
}
return NS_OK;
}
nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer) {
MonitorAutoLock lock(mMonitor);
// Remove the timer from our array. Tell callers that aTimer was not found
// by returning NS_ERROR_NOT_AVAILABLE.
if (!RemoveTimerInternal(aTimer)) {
return NS_ERROR_NOT_AVAILABLE;
}
// Awaken the timer thread.
if (mWaiting) {
mNotified = true;
mMonitor.Notify();
}
return NS_OK;
}
TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault,
uint32_t aSearchBound) {
MonitorAutoLock lock(mMonitor);
TimeStamp timeStamp = aDefault;
uint32_t index = 0;
#ifdef DEBUG
TimeStamp firstTimeStamp;
Entry* initialFirstEntry = nullptr;
if (!mTimers.IsEmpty()) {
initialFirstEntry = mTimers[0].get();
firstTimeStamp = mTimers[0]->Timeout();
}
#endif
auto end = mTimers.end();
while (end != mTimers.begin()) {
nsTimerImpl* timer = mTimers[0]->Value();
if (timer) {
if (timer->mTimeout > aDefault) {
timeStamp = aDefault;
break;
}
// Don't yield to timers created with the *_LOW_PRIORITY type.
if (!timer->IsLowPriority()) {
bool isOnCurrentThread = false;
nsresult rv =
timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread);
if (NS_SUCCEEDED(rv) && isOnCurrentThread) {
timeStamp = timer->mTimeout;
break;
}
}
if (++index > aSearchBound) {
// Track the currently highest timeout so that we can bail out when we
// reach the bound or when we find a timer for the current thread.
// This won't give accurate information if we stop before finding
// any timer for the current thread, but at least won't report too
// long idle period.
timeStamp = timer->mTimeout;
break;
}
}
std::pop_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
--end;
}
while (end != mTimers.end()) {
++end;
std::push_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
}
#ifdef DEBUG
if (!mTimers.IsEmpty()) {
if (firstTimeStamp != mTimers[0]->Timeout()) {
TimeStamp now = TimeStamp::Now();
printf_stderr(
"firstTimeStamp %f, mTimers[0]->Timeout() %f, "
"initialFirstTimer %p, current first %p\n",
(firstTimeStamp - now).ToMilliseconds(),
(mTimers[0]->Timeout() - now).ToMilliseconds(), initialFirstEntry,
mTimers[0].get());
}
}
MOZ_ASSERT_IF(!mTimers.IsEmpty(), firstTimeStamp == mTimers[0]->Timeout());
#endif
return timeStamp;
}
// This function must be called from within a lock
bool TimerThread::AddTimerInternal(nsTimerImpl* aTimer) {
mMonitor.AssertCurrentThreadOwns();
if (mShutdown) {
return false;
}
TimeStamp now = TimeStamp::Now();
UniquePtr<Entry>* entry = mTimers.AppendElement(
MakeUnique<Entry>(now, aTimer->mTimeout, aTimer), mozilla::fallible);
if (!entry) {
return false;
}
std::push_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);
#ifdef MOZ_TASK_TRACER
// Caller of AddTimer is the parent task of its timer event, so we store the
// TraceInfo here for later used.
aTimer->GetTLSTraceInfo();
#endif
return true;
}
bool TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer) {
mMonitor.AssertCurrentThreadOwns();
if (!aTimer || !aTimer->mHolder) {
return false;
}
aTimer->mHolder->Forget(aTimer);
return true;
}
void TimerThread::RemoveLeadingCanceledTimersInternal() {
mMonitor.AssertCurrentThreadOwns();
// Move all canceled timers from the front of the list to
// the back of the list using std::pop_heap(). We do this
// without actually removing them from the list so we can
// modify the nsTArray in a single bulk operation.
auto sortedEnd = mTimers.end();
while (sortedEnd != mTimers.begin() && !mTimers[0]->Value()) {
std::pop_heap(mTimers.begin(), sortedEnd, Entry::UniquePtrLessThan);
--sortedEnd;
}
// If there were no canceled timers then we are done.
if (sortedEnd == mTimers.end()) {
return;
}
// Finally, remove the canceled timers from the back of the
// nsTArray. Note, since std::pop_heap() uses iterators
// we must convert to nsTArray indices and number of
// elements here.
mTimers.RemoveElementsAt(sortedEnd - mTimers.begin(),
mTimers.end() - sortedEnd);
}
void TimerThread::RemoveFirstTimerInternal() {
mMonitor.AssertCurrentThreadOwns();
MOZ_ASSERT(!mTimers.IsEmpty());
std::pop_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);
mTimers.RemoveLastElement();
}
already_AddRefed<nsTimerImpl> TimerThread::PostTimerEvent(
already_AddRefed<nsTimerImpl> aTimerRef) {
mMonitor.AssertCurrentThreadOwns();
RefPtr<nsTimerImpl> timer(aTimerRef);
if (!timer->mEventTarget) {
NS_ERROR("Attempt to post timer event to NULL event target");
return timer.forget();
}
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
// Since we already addref'd 'timer', we don't need to addref here.
// We will release either in ~nsTimerEvent(), or pass the reference back to
// the caller. We need to copy the generation number from this timer into the
// event, so we can avoid firing a timer that was re-initialized after being
// canceled.
#ifdef MOZ_TASK_TRACER
// During the dispatch of TimerEvent, we overwrite the current TraceInfo
// partially with the info saved in timer earlier, and restore it back by
// AutoSaveCurTraceInfo.
AutoSaveCurTraceInfo saveCurTraceInfo;
(timer->GetTracedTask()).SetTLSTraceInfo();
#endif
nsCOMPtr<nsIEventTarget> target = timer->mEventTarget;
void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent));
if (!p) {
return timer.forget();
}
RefPtr<nsTimerEvent> event =
::new (KnownNotNull, p) nsTimerEvent(timer.forget());
nsresult rv;
{
// We release mMonitor around the Dispatch because if this timer is targeted
// at the TimerThread we'll deadlock.
MonitorAutoUnlock unlock(mMonitor);
rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
}
if (NS_FAILED(rv)) {
timer = event->ForgetTimer();
RemoveTimerInternal(timer);
return timer.forget();
}
return nullptr;
}
void TimerThread::DoBeforeSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = true;
}
// Note: wake may be notified without preceding sleep notification
void TimerThread::DoAfterSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = false;
// Wake up the timer thread to re-process the array to ensure the sleep delay
// is correct, and fire any expired timers (perhaps quite a few)
mNotified = true;
mMonitor.Notify();
}
NS_IMETHODIMP
TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic,
const char16_t* /* aData */) {
if (strcmp(aTopic, "sleep_notification") == 0 ||
strcmp(aTopic, "suspend_process_notification") == 0) {
DoBeforeSleep();
} else if (strcmp(aTopic, "wake_notification") == 0 ||
strcmp(aTopic, "resume_process_notification") == 0) {
DoAfterSleep();
}
return NS_OK;
}
uint32_t TimerThread::AllowedEarlyFiringMicroseconds() const {
return mAllowedEarlyFiringMicroseconds;
}