gecko-dev/xpcom/threads/nsThread.cpp

1434 строки
43 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsThread.h"
#include "base/message_loop.h"
#include "base/platform_thread.h"
// Chromium's logging can sometimes leak through...
#ifdef LOG
# undef LOG
#endif
#include "mozilla/ReentrantMonitor.h"
#include "nsMemoryPressure.h"
#include "nsThreadManager.h"
#include "nsIClassInfoImpl.h"
#include "nsAutoPtr.h"
#include "nsCOMPtr.h"
#include "nsQueryObject.h"
#include "pratom.h"
#include "mozilla/BackgroundHangMonitor.h"
#include "mozilla/CycleCollectedJSContext.h"
#include "mozilla/Logging.h"
#include "nsIObserverService.h"
#include "mozilla/IOInterposer.h"
#include "mozilla/ipc/MessageChannel.h"
#include "mozilla/ipc/BackgroundChild.h"
#include "mozilla/Preferences.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/Services.h"
#include "mozilla/StaticPrefs.h"
#include "mozilla/SystemGroup.h"
#include "nsXPCOMPrivate.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/Unused.h"
#include "mozilla/dom/ScriptSettings.h"
#include "nsThreadSyncDispatch.h"
#include "nsServiceManagerUtils.h"
#include "GeckoProfiler.h"
#ifdef MOZ_GECKO_PROFILER
# include "ProfilerMarkerPayload.h"
#endif
#include "InputEventStatistics.h"
#include "ThreadEventQueue.h"
#include "ThreadEventTarget.h"
#include "ThreadDelay.h"
#ifdef XP_LINUX
# ifdef __GLIBC__
# include <gnu/libc-version.h>
# endif
# include <sys/mman.h>
# include <sys/time.h>
# include <sys/resource.h>
# include <sched.h>
# include <stdio.h>
#endif
#ifdef XP_WIN
# include "mozilla/DynamicallyLinkedFunctionPtr.h"
# include <winbase.h>
using GetCurrentThreadStackLimitsFn = void(WINAPI*)(PULONG_PTR LowLimit,
PULONG_PTR HighLimit);
#endif
#define HAVE_UALARM \
_BSD_SOURCE || \
(_XOPEN_SOURCE >= 500 || _XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED) && \
!(_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700)
#if defined(XP_LINUX) && !defined(ANDROID) && defined(_GNU_SOURCE)
# define HAVE_SCHED_SETAFFINITY
#endif
#ifdef XP_MACOSX
# include <mach/mach.h>
# include <mach/thread_policy.h>
#endif
#ifdef MOZ_CANARY
# include <unistd.h>
# include <execinfo.h>
# include <signal.h>
# include <fcntl.h>
# include "nsXULAppAPI.h"
#endif
#if defined(NS_FUNCTION_TIMER) && defined(_MSC_VER)
# include "nsTimerImpl.h"
# include "mozilla/StackWalk.h"
#endif
#ifdef NS_FUNCTION_TIMER
# include "nsCRT.h"
#endif
#ifdef MOZ_TASK_TRACER
# include "GeckoTaskTracer.h"
# include "TracedTaskCommon.h"
using namespace mozilla::tasktracer;
#endif
using namespace mozilla;
static LazyLogModule sThreadLog("nsThread");
#ifdef LOG
# undef LOG
#endif
#define LOG(args) MOZ_LOG(sThreadLog, mozilla::LogLevel::Debug, args)
NS_DECL_CI_INTERFACE_GETTER(nsThread)
Array<char, nsThread::kRunnableNameBufSize> nsThread::sMainThreadRunnableName;
uint32_t nsThread::sActiveThreads;
uint32_t nsThread::sMaxActiveThreads;
//-----------------------------------------------------------------------------
// Because we do not have our own nsIFactory, we have to implement nsIClassInfo
// somewhat manually.
class nsThreadClassInfo : public nsIClassInfo {
public:
NS_DECL_ISUPPORTS_INHERITED // no mRefCnt
NS_DECL_NSICLASSINFO
nsThreadClassInfo() {}
};
NS_IMETHODIMP_(MozExternalRefCountType)
nsThreadClassInfo::AddRef() { return 2; }
NS_IMETHODIMP_(MozExternalRefCountType)
nsThreadClassInfo::Release() { return 1; }
NS_IMPL_QUERY_INTERFACE(nsThreadClassInfo, nsIClassInfo)
NS_IMETHODIMP
nsThreadClassInfo::GetInterfaces(nsTArray<nsIID>& aArray) {
return NS_CI_INTERFACE_GETTER_NAME(nsThread)(aArray);
}
NS_IMETHODIMP
nsThreadClassInfo::GetScriptableHelper(nsIXPCScriptable** aResult) {
*aResult = nullptr;
return NS_OK;
}
NS_IMETHODIMP
nsThreadClassInfo::GetContractID(nsACString& aResult) {
aResult.SetIsVoid(true);
return NS_OK;
}
NS_IMETHODIMP
nsThreadClassInfo::GetClassDescription(nsACString& aResult) {
aResult.SetIsVoid(true);
return NS_OK;
}
NS_IMETHODIMP
nsThreadClassInfo::GetClassID(nsCID** aResult) {
*aResult = nullptr;
return NS_OK;
}
NS_IMETHODIMP
nsThreadClassInfo::GetFlags(uint32_t* aResult) {
*aResult = THREADSAFE;
return NS_OK;
}
NS_IMETHODIMP
nsThreadClassInfo::GetClassIDNoAlloc(nsCID* aResult) {
return NS_ERROR_NOT_AVAILABLE;
}
//-----------------------------------------------------------------------------
NS_IMPL_ADDREF(nsThread)
NS_IMPL_RELEASE(nsThread)
NS_INTERFACE_MAP_BEGIN(nsThread)
NS_INTERFACE_MAP_ENTRY(nsIThread)
NS_INTERFACE_MAP_ENTRY(nsIThreadInternal)
NS_INTERFACE_MAP_ENTRY(nsIEventTarget)
NS_INTERFACE_MAP_ENTRY(nsISerialEventTarget)
NS_INTERFACE_MAP_ENTRY(nsISupportsPriority)
NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIThread)
if (aIID.Equals(NS_GET_IID(nsIClassInfo))) {
static nsThreadClassInfo sThreadClassInfo;
foundInterface = static_cast<nsIClassInfo*>(&sThreadClassInfo);
} else
NS_INTERFACE_MAP_END
NS_IMPL_CI_INTERFACE_GETTER(nsThread, nsIThread, nsIThreadInternal,
nsIEventTarget, nsISupportsPriority)
//-----------------------------------------------------------------------------
class nsThreadStartupEvent final : public Runnable {
public:
nsThreadStartupEvent()
: Runnable("nsThreadStartupEvent"),
mMon("nsThreadStartupEvent.mMon"),
mInitialized(false) {}
// This method does not return until the thread startup object is in the
// completion state.
void Wait() {
ReentrantMonitorAutoEnter mon(mMon);
while (!mInitialized) {
mon.Wait();
}
}
private:
~nsThreadStartupEvent() = default;
NS_IMETHOD Run() override {
ReentrantMonitorAutoEnter mon(mMon);
mInitialized = true;
mon.Notify();
return NS_OK;
}
ReentrantMonitor mMon;
bool mInitialized;
};
//-----------------------------------------------------------------------------
struct nsThreadShutdownContext {
nsThreadShutdownContext(NotNull<nsThread*> aTerminatingThread,
NotNull<nsThread*> aJoiningThread,
bool aAwaitingShutdownAck)
: mTerminatingThread(aTerminatingThread),
mJoiningThread(aJoiningThread),
mAwaitingShutdownAck(aAwaitingShutdownAck),
mIsMainThreadJoining(NS_IsMainThread()) {
MOZ_COUNT_CTOR(nsThreadShutdownContext);
}
~nsThreadShutdownContext() { MOZ_COUNT_DTOR(nsThreadShutdownContext); }
// NB: This will be the last reference.
NotNull<RefPtr<nsThread>> mTerminatingThread;
NotNull<nsThread*> MOZ_UNSAFE_REF(
"Thread manager is holding reference to joining thread") mJoiningThread;
bool mAwaitingShutdownAck;
bool mIsMainThreadJoining;
};
// This event is responsible for notifying nsThread::Shutdown that it is time
// to call PR_JoinThread. It implements nsICancelableRunnable so that it can
// run on a DOM Worker thread (where all events must implement
// nsICancelableRunnable.)
class nsThreadShutdownAckEvent : public CancelableRunnable {
public:
explicit nsThreadShutdownAckEvent(NotNull<nsThreadShutdownContext*> aCtx)
: CancelableRunnable("nsThreadShutdownAckEvent"),
mShutdownContext(aCtx) {}
NS_IMETHOD Run() override {
mShutdownContext->mTerminatingThread->ShutdownComplete(mShutdownContext);
return NS_OK;
}
nsresult Cancel() override { return Run(); }
private:
virtual ~nsThreadShutdownAckEvent() {}
NotNull<nsThreadShutdownContext*> mShutdownContext;
};
// This event is responsible for setting mShutdownContext
class nsThreadShutdownEvent : public Runnable {
public:
nsThreadShutdownEvent(NotNull<nsThread*> aThr,
NotNull<nsThreadShutdownContext*> aCtx)
: Runnable("nsThreadShutdownEvent"),
mThread(aThr),
mShutdownContext(aCtx) {}
NS_IMETHOD Run() override {
mThread->mShutdownContext = mShutdownContext;
MessageLoop::current()->Quit();
return NS_OK;
}
private:
NotNull<RefPtr<nsThread>> mThread;
NotNull<nsThreadShutdownContext*> mShutdownContext;
};
//-----------------------------------------------------------------------------
static void SetThreadAffinity(unsigned int cpu) {
#ifdef HAVE_SCHED_SETAFFINITY
cpu_set_t cpus;
CPU_ZERO(&cpus);
CPU_SET(cpu, &cpus);
sched_setaffinity(0, sizeof(cpus), &cpus);
// Don't assert sched_setaffinity's return value because it intermittently (?)
// fails with EINVAL on Linux x64 try runs.
#elif defined(XP_MACOSX)
// OS X does not provide APIs to pin threads to specific processors, but you
// can tag threads as belonging to the same "affinity set" and the OS will try
// to run them on the same processor. To run threads on different processors,
// tag them as belonging to different affinity sets. Tag 0, the default, means
// "no affinity" so let's pretend each CPU has its own tag `cpu+1`.
thread_affinity_policy_data_t policy;
policy.affinity_tag = cpu + 1;
MOZ_ALWAYS_TRUE(thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY,
&policy.affinity_tag, 1) == KERN_SUCCESS);
#elif defined(XP_WIN)
MOZ_ALWAYS_TRUE(SetThreadIdealProcessor(GetCurrentThread(), cpu) !=
(DWORD)-1);
#endif
}
static void SetupCurrentThreadForChaosMode() {
if (!ChaosMode::isActive(ChaosFeature::ThreadScheduling)) {
return;
}
#ifdef XP_LINUX
// PR_SetThreadPriority doesn't really work since priorities >
// PR_PRIORITY_NORMAL can't be set by non-root users. Instead we'll just use
// setpriority(2) to set random 'nice values'. In regular Linux this is only
// a dynamic adjustment so it still doesn't really do what we want, but tools
// like 'rr' can be more aggressive about honoring these values.
// Some of these calls may fail due to trying to lower the priority
// (e.g. something may have already called setpriority() for this thread).
// This makes it hard to have non-main threads with higher priority than the
// main thread, but that's hard to fix. Tools like rr can choose to honor the
// requested values anyway.
// Use just 4 priorities so there's a reasonable chance of any two threads
// having equal priority.
setpriority(PRIO_PROCESS, 0, ChaosMode::randomUint32LessThan(4));
#else
// We should set the affinity here but NSPR doesn't provide a way to expose
// it.
uint32_t priority = ChaosMode::randomUint32LessThan(PR_PRIORITY_LAST + 1);
PR_SetThreadPriority(PR_GetCurrentThread(), PRThreadPriority(priority));
#endif
// Force half the threads to CPU 0 so they compete for CPU
if (ChaosMode::randomUint32LessThan(2)) {
SetThreadAffinity(0);
}
}
namespace {
struct ThreadInitData {
nsThread* thread;
const nsACString& name;
};
} // namespace
/* static */ mozilla::OffTheBooksMutex& nsThread::ThreadListMutex() {
static OffTheBooksMutex sMutex("nsThread::ThreadListMutex");
return sMutex;
}
/* static */ LinkedList<nsThread>& nsThread::ThreadList() {
static LinkedList<nsThread> sList;
return sList;
}
/* static */
void nsThread::ClearThreadList() {
OffTheBooksMutexAutoLock mal(ThreadListMutex());
while (ThreadList().popFirst()) {
}
}
/* static */
nsThreadEnumerator nsThread::Enumerate() { return {}; }
/* static */
uint32_t nsThread::MaxActiveThreads() {
OffTheBooksMutexAutoLock mal(ThreadListMutex());
return sMaxActiveThreads;
}
void nsThread::AddToThreadList() {
OffTheBooksMutexAutoLock mal(ThreadListMutex());
MOZ_ASSERT(!isInList());
sActiveThreads++;
sMaxActiveThreads = std::max(sActiveThreads, sMaxActiveThreads);
ThreadList().insertBack(this);
}
void nsThread::MaybeRemoveFromThreadList() {
OffTheBooksMutexAutoLock mal(ThreadListMutex());
if (isInList()) {
sActiveThreads--;
removeFrom(ThreadList());
}
}
/*static*/
void nsThread::ThreadFunc(void* aArg) {
using mozilla::ipc::BackgroundChild;
ThreadInitData* initData = static_cast<ThreadInitData*>(aArg);
nsThread* self = initData->thread; // strong reference
MOZ_ASSERT(self->mEventTarget);
MOZ_ASSERT(self->mEvents);
self->mThread = PR_GetCurrentThread();
self->mVirtualThread = GetCurrentVirtualThread();
self->mEventTarget->SetCurrentThread();
SetupCurrentThreadForChaosMode();
if (!initData->name.IsEmpty()) {
NS_SetCurrentThreadName(initData->name.BeginReading());
}
self->InitCommon();
// Inform the ThreadManager
nsThreadManager::get().RegisterCurrentThread(*self);
mozilla::IOInterposer::RegisterCurrentThread();
// This must come after the call to nsThreadManager::RegisterCurrentThread(),
// because that call is needed to properly set up this thread as an nsThread,
// which profiler_register_thread() requires. See bug 1347007.
if (!initData->name.IsEmpty()) {
PROFILER_REGISTER_THREAD(initData->name.BeginReading());
}
// Wait for and process startup event
nsCOMPtr<nsIRunnable> event = self->mEvents->GetEvent(true, nullptr);
MOZ_ASSERT(event);
initData = nullptr; // clear before unblocking nsThread::Init
event->Run(); // unblocks nsThread::Init
event = nullptr;
{
// Scope for MessageLoop.
nsAutoPtr<MessageLoop> loop(
new MessageLoop(MessageLoop::TYPE_MOZILLA_NONMAINTHREAD, self));
// Now, process incoming events...
loop->Run();
BackgroundChild::CloseForCurrentThread();
// NB: The main thread does not shut down here! It shuts down via
// nsThreadManager::Shutdown.
// Do NS_ProcessPendingEvents but with special handling to set
// mEventsAreDoomed atomically with the removal of the last event. The key
// invariant here is that we will never permit PutEvent to succeed if the
// event would be left in the queue after our final call to
// NS_ProcessPendingEvents. We also have to keep processing events as long
// as we have outstanding mRequestedShutdownContexts.
while (true) {
// Check and see if we're waiting on any threads.
self->WaitForAllAsynchronousShutdowns();
if (self->mEvents->ShutdownIfNoPendingEvents()) {
break;
}
NS_ProcessPendingEvents(self);
}
}
mozilla::IOInterposer::UnregisterCurrentThread();
// Inform the threadmanager that this thread is going away
nsThreadManager::get().UnregisterCurrentThread(*self);
PROFILER_UNREGISTER_THREAD();
// Dispatch shutdown ACK
NotNull<nsThreadShutdownContext*> context =
WrapNotNull(self->mShutdownContext);
MOZ_ASSERT(context->mTerminatingThread == self);
event = do_QueryObject(new nsThreadShutdownAckEvent(context));
if (context->mIsMainThreadJoining) {
SystemGroup::Dispatch(TaskCategory::Other, event.forget());
} else {
context->mJoiningThread->Dispatch(event, NS_DISPATCH_NORMAL);
}
// Release any observer of the thread here.
self->SetObserver(nullptr);
#ifdef MOZ_TASK_TRACER
FreeTraceInfo();
#endif
NS_RELEASE(self);
}
void nsThread::InitCommon() {
mThreadId = uint32_t(PlatformThread::CurrentId());
{
#if defined(XP_LINUX)
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_getattr_np(pthread_self(), &attr);
size_t stackSize;
pthread_attr_getstack(&attr, &mStackBase, &stackSize);
// Glibc prior to 2.27 reports the stack size and base including the guard
// region, so we need to compensate for it to get accurate accounting.
// Also, this behavior difference isn't guarded by a versioned symbol, so we
// actually need to check the runtime glibc version, not the version we were
// compiled against.
static bool sAdjustForGuardSize = ({
# ifdef __GLIBC__
unsigned major, minor;
sscanf(gnu_get_libc_version(), "%u.%u", &major, &minor) < 2 ||
major < 2 || (major == 2 && minor < 27);
# else
false;
# endif
});
if (sAdjustForGuardSize) {
size_t guardSize;
pthread_attr_getguardsize(&attr, &guardSize);
// Note: This assumes that the stack grows down, as is the case on all of
// our tier 1 platforms. On platforms where the stack grows up, the
// mStackBase adjustment is unnecessary, but doesn't cause any harm other
// than under-counting stack memory usage by one page.
mStackBase = reinterpret_cast<char*>(mStackBase) + guardSize;
stackSize -= guardSize;
}
mStackSize = stackSize;
// This is a bit of a hack.
//
// We really do want the NOHUGEPAGE flag on our thread stacks, since we
// don't expect any of them to need anywhere near 2MB of space. But setting
// it here is too late to have an effect, since the first stack page has
// already been faulted in existence, and NSPR doesn't give us a way to set
// it beforehand.
//
// What this does get us, however, is a different set of VM flags on our
// thread stacks compared to normal heap memory. Which makes the Linux
// kernel report them as separate regions, even when they are adjacent to
// heap memory. This allows us to accurately track the actual memory
// consumption of our allocated stacks.
madvise(mStackBase, stackSize, MADV_NOHUGEPAGE);
pthread_attr_destroy(&attr);
#elif defined(XP_WIN)
static const DynamicallyLinkedFunctionPtr<GetCurrentThreadStackLimitsFn>
sGetStackLimits(L"kernel32.dll", "GetCurrentThreadStackLimits");
if (sGetStackLimits) {
ULONG_PTR stackBottom, stackTop;
sGetStackLimits(&stackBottom, &stackTop);
mStackBase = reinterpret_cast<void*>(stackBottom);
mStackSize = stackTop - stackBottom;
}
#endif
}
InitThreadLocalVariables();
AddToThreadList();
}
//-----------------------------------------------------------------------------
#ifdef MOZ_CANARY
int sCanaryOutputFD = -1;
#endif
nsThread::nsThread(NotNull<SynchronizedEventQueue*> aQueue,
MainThreadFlag aMainThread, uint32_t aStackSize)
: mEvents(aQueue.get()),
mEventTarget(
new ThreadEventTarget(mEvents.get(), aMainThread == MAIN_THREAD)),
mShutdownContext(nullptr),
mScriptObserver(nullptr),
mThread(nullptr),
mStackSize(aStackSize),
mNestedEventLoopDepth(0),
mCurrentEventLoopDepth(-1),
mShutdownRequired(false),
mPriority(PRIORITY_NORMAL),
mIsMainThread(uint8_t(aMainThread)),
mCanInvokeJS(false),
mCurrentEvent(nullptr),
mCurrentEventStart(TimeStamp::Now()),
mCurrentPerformanceCounter(nullptr) {
mLastLongTaskEnd = mCurrentEventStart;
mLastLongNonIdleTaskEnd = mCurrentEventStart;
}
nsThread::nsThread()
: mEvents(nullptr),
mEventTarget(nullptr),
mShutdownContext(nullptr),
mScriptObserver(nullptr),
mThread(nullptr),
mStackSize(0),
mNestedEventLoopDepth(0),
mCurrentEventLoopDepth(-1),
mShutdownRequired(false),
mPriority(PRIORITY_NORMAL),
mIsMainThread(NOT_MAIN_THREAD),
mCanInvokeJS(false),
mCurrentEvent(nullptr),
mCurrentEventStart(TimeStamp::Now()),
mCurrentPerformanceCounter(nullptr) {
mLastLongTaskEnd = mCurrentEventStart;
mLastLongNonIdleTaskEnd = mCurrentEventStart;
MOZ_ASSERT(!NS_IsMainThread());
}
nsThread::~nsThread() {
NS_ASSERTION(mRequestedShutdownContexts.IsEmpty(),
"shouldn't be waiting on other threads to shutdown");
MaybeRemoveFromThreadList();
#ifdef DEBUG
// We deliberately leak these so they can be tracked by the leak checker.
// If you're having nsThreadShutdownContext leaks, you can set:
// XPCOM_MEM_LOG_CLASSES=nsThreadShutdownContext
// during a test run and that will at least tell you what thread is
// requesting shutdown on another, which can be helpful for diagnosing
// the leak.
for (size_t i = 0; i < mRequestedShutdownContexts.Length(); ++i) {
Unused << mRequestedShutdownContexts[i].forget();
}
#endif
}
nsresult nsThread::Init(const nsACString& aName) {
MOZ_ASSERT(mEvents);
MOZ_ASSERT(mEventTarget);
// spawn thread and wait until it is fully setup
RefPtr<nsThreadStartupEvent> startup = new nsThreadStartupEvent();
NS_ADDREF_THIS();
mShutdownRequired = true;
ThreadInitData initData = {this, aName};
// ThreadFunc is responsible for setting mThread
if (!PR_CreateThread(PR_USER_THREAD, ThreadFunc, &initData,
PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD, PR_JOINABLE_THREAD,
mStackSize)) {
NS_RELEASE_THIS();
return NS_ERROR_OUT_OF_MEMORY;
}
// ThreadFunc will wait for this event to be run before it tries to access
// mThread. By delaying insertion of this event into the queue, we ensure
// that mThread is set properly.
{
mEvents->PutEvent(do_AddRef(startup),
EventQueuePriority::Normal); // retain a reference
}
// Wait for thread to call ThreadManager::SetupCurrentThread, which completes
// initialization of ThreadFunc.
startup->Wait();
return NS_OK;
}
nsresult nsThread::InitCurrentThread() {
mThread = PR_GetCurrentThread();
mVirtualThread = GetCurrentVirtualThread();
SetupCurrentThreadForChaosMode();
InitCommon();
nsThreadManager::get().RegisterCurrentThread(*this);
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsIEventTarget
NS_IMETHODIMP
nsThread::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
MOZ_ASSERT(mEventTarget);
NS_ENSURE_TRUE(mEventTarget, NS_ERROR_NOT_IMPLEMENTED);
nsCOMPtr<nsIRunnable> event(aEvent);
return mEventTarget->Dispatch(event.forget(), aFlags);
}
NS_IMETHODIMP
nsThread::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
MOZ_ASSERT(mEventTarget);
NS_ENSURE_TRUE(mEventTarget, NS_ERROR_NOT_IMPLEMENTED);
LOG(("THRD(%p) Dispatch [%p %x]\n", this, /* XXX aEvent */ nullptr, aFlags));
return mEventTarget->Dispatch(std::move(aEvent), aFlags);
}
NS_IMETHODIMP
nsThread::DelayedDispatch(already_AddRefed<nsIRunnable> aEvent,
uint32_t aDelayMs) {
MOZ_ASSERT(mEventTarget);
NS_ENSURE_TRUE(mEventTarget, NS_ERROR_NOT_IMPLEMENTED);
return mEventTarget->DelayedDispatch(std::move(aEvent), aDelayMs);
}
NS_IMETHODIMP
nsThread::IsOnCurrentThread(bool* aResult) {
if (mEventTarget) {
return mEventTarget->IsOnCurrentThread(aResult);
}
*aResult = GetCurrentVirtualThread() == mVirtualThread;
return NS_OK;
}
NS_IMETHODIMP_(bool)
nsThread::IsOnCurrentThreadInfallible() {
// Rely on mVirtualThread being correct.
MOZ_CRASH("IsOnCurrentThreadInfallible should never be called on nsIThread");
}
//-----------------------------------------------------------------------------
// nsIThread
NS_IMETHODIMP
nsThread::GetPRThread(PRThread** aResult) {
*aResult = mThread;
return NS_OK;
}
NS_IMETHODIMP
nsThread::GetCanInvokeJS(bool* aResult) {
*aResult = mCanInvokeJS;
return NS_OK;
}
NS_IMETHODIMP
nsThread::SetCanInvokeJS(bool aCanInvokeJS) {
mCanInvokeJS = aCanInvokeJS;
return NS_OK;
}
NS_IMETHODIMP
nsThread::GetLastLongTaskEnd(TimeStamp* _retval) {
*_retval = mLastLongTaskEnd;
return NS_OK;
}
NS_IMETHODIMP
nsThread::GetLastLongNonIdleTaskEnd(TimeStamp* _retval) {
*_retval = mLastLongNonIdleTaskEnd;
return NS_OK;
}
NS_IMETHODIMP
nsThread::AsyncShutdown() {
LOG(("THRD(%p) async shutdown\n", this));
// XXX If we make this warn, then we hit that warning at xpcom shutdown while
// shutting down a thread in a thread pool. That happens b/c the thread
// in the thread pool is already shutdown by the thread manager.
if (!mThread) {
return NS_OK;
}
return !!ShutdownInternal(/* aSync = */ false) ? NS_OK : NS_ERROR_UNEXPECTED;
}
nsThreadShutdownContext* nsThread::ShutdownInternal(bool aSync) {
MOZ_ASSERT(mEvents);
MOZ_ASSERT(mEventTarget);
MOZ_ASSERT(mThread);
MOZ_ASSERT(mThread != PR_GetCurrentThread());
if (NS_WARN_IF(mThread == PR_GetCurrentThread())) {
return nullptr;
}
// Prevent multiple calls to this method
if (!mShutdownRequired.compareExchange(true, false)) {
return nullptr;
}
MaybeRemoveFromThreadList();
NotNull<nsThread*> currentThread =
WrapNotNull(nsThreadManager::get().GetCurrentThread());
MOZ_DIAGNOSTIC_ASSERT(currentThread->EventQueue(),
"Shutdown() may only be called from an XPCOM thread");
nsAutoPtr<nsThreadShutdownContext>& context =
*currentThread->mRequestedShutdownContexts.AppendElement();
context =
new nsThreadShutdownContext(WrapNotNull(this), currentThread, aSync);
// Set mShutdownContext and wake up the thread in case it is waiting for
// events to process.
nsCOMPtr<nsIRunnable> event =
new nsThreadShutdownEvent(WrapNotNull(this), WrapNotNull(context.get()));
// XXXroc What if posting the event fails due to OOM?
mEvents->PutEvent(event.forget(), EventQueuePriority::Normal);
// We could still end up with other events being added after the shutdown
// task, but that's okay because we process pending events in ThreadFunc
// after setting mShutdownContext just before exiting.
return context;
}
void nsThread::ShutdownComplete(NotNull<nsThreadShutdownContext*> aContext) {
MOZ_ASSERT(mEvents);
MOZ_ASSERT(mEventTarget);
MOZ_ASSERT(mThread);
MOZ_ASSERT(aContext->mTerminatingThread == this);
MaybeRemoveFromThreadList();
if (aContext->mAwaitingShutdownAck) {
// We're in a synchronous shutdown, so tell whatever is up the stack that
// we're done and unwind the stack so it can call us again.
aContext->mAwaitingShutdownAck = false;
return;
}
// Now, it should be safe to join without fear of dead-locking.
PR_JoinThread(mThread);
mThread = nullptr;
#ifdef DEBUG
nsCOMPtr<nsIThreadObserver> obs = mEvents->GetObserver();
MOZ_ASSERT(!obs, "Should have been cleared at shutdown!");
#endif
// Delete aContext.
// aContext might not be in mRequestedShutdownContexts if it belongs to a
// thread that was leaked by calling nsIThreadPool::ShutdownWithTimeout.
aContext->mJoiningThread->mRequestedShutdownContexts.RemoveElement(aContext);
}
void nsThread::WaitForAllAsynchronousShutdowns() {
// This is the motivating example for why SpinEventLoop has the template
// parameter we are providing here.
SpinEventLoopUntil<ProcessFailureBehavior::IgnoreAndContinue>(
[&]() { return mRequestedShutdownContexts.IsEmpty(); }, this);
}
NS_IMETHODIMP
nsThread::Shutdown() {
LOG(("THRD(%p) sync shutdown\n", this));
// XXX If we make this warn, then we hit that warning at xpcom shutdown while
// shutting down a thread in a thread pool. That happens b/c the thread
// in the thread pool is already shutdown by the thread manager.
if (!mThread) {
return NS_OK;
}
nsThreadShutdownContext* maybeContext = ShutdownInternal(/* aSync = */ true);
if (!maybeContext) return NS_ERROR_UNEXPECTED;
NotNull<nsThreadShutdownContext*> context = WrapNotNull(maybeContext);
// Process events on the current thread until we receive a shutdown ACK.
// Allows waiting; ensure no locks are held that would deadlock us!
SpinEventLoopUntil([&, context]() { return !context->mAwaitingShutdownAck; },
context->mJoiningThread);
ShutdownComplete(context);
return NS_OK;
}
NS_IMETHODIMP
nsThread::HasPendingEvents(bool* aResult) {
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
return NS_ERROR_NOT_SAME_THREAD;
}
*aResult = mEvents->HasPendingEvent();
return NS_OK;
}
NS_IMETHODIMP
nsThread::HasPendingHighPriorityEvents(bool* aResult) {
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
return NS_ERROR_NOT_SAME_THREAD;
}
*aResult = mEvents->HasPendingHighPriorityEvents();
return NS_OK;
}
NS_IMETHODIMP
nsThread::DispatchToQueue(already_AddRefed<nsIRunnable> aEvent,
EventQueuePriority aQueue) {
nsCOMPtr<nsIRunnable> event = aEvent;
if (NS_WARN_IF(!event)) {
return NS_ERROR_INVALID_ARG;
}
if (!mEvents->PutEvent(event.forget(), aQueue)) {
NS_WARNING(
"An idle event was posted to a thread that will never run it "
"(rejected)");
return NS_ERROR_UNEXPECTED;
}
return NS_OK;
}
#ifdef MOZ_CANARY
void canary_alarm_handler(int signum);
class Canary {
// XXX ToDo: support nested loops
public:
Canary() {
if (sCanaryOutputFD > 0 && EventLatencyIsImportant()) {
signal(SIGALRM, canary_alarm_handler);
ualarm(15000, 0);
}
}
~Canary() {
if (sCanaryOutputFD != 0 && EventLatencyIsImportant()) {
ualarm(0, 0);
}
}
static bool EventLatencyIsImportant() {
return NS_IsMainThread() && XRE_IsParentProcess();
}
};
void canary_alarm_handler(int signum) {
void* array[30];
const char msg[29] = "event took too long to run:\n";
// use write to be safe in the signal handler
write(sCanaryOutputFD, msg, sizeof(msg));
backtrace_symbols_fd(array, backtrace(array, 30), sCanaryOutputFD);
}
#endif
#define NOTIFY_EVENT_OBSERVERS(observers_, func_, params_) \
do { \
if (!observers_.IsEmpty()) { \
nsTObserverArray<nsCOMPtr<nsIThreadObserver>>::ForwardIterator iter_( \
observers_); \
nsCOMPtr<nsIThreadObserver> obs_; \
while (iter_.HasMore()) { \
obs_ = iter_.GetNext(); \
obs_->func_ params_; \
} \
} \
} while (0)
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
static bool GetLabeledRunnableName(nsIRunnable* aEvent, nsACString& aName,
EventQueuePriority aPriority) {
bool labeled = false;
if (RefPtr<SchedulerGroup::Runnable> groupRunnable = do_QueryObject(aEvent)) {
labeled = true;
MOZ_ALWAYS_TRUE(NS_SUCCEEDED(groupRunnable->GetName(aName)));
} else if (nsCOMPtr<nsINamed> named = do_QueryInterface(aEvent)) {
MOZ_ALWAYS_TRUE(NS_SUCCEEDED(named->GetName(aName)));
} else {
aName.AssignLiteral("non-nsINamed runnable");
}
if (aName.IsEmpty()) {
aName.AssignLiteral("anonymous runnable");
}
if (!labeled && aPriority > EventQueuePriority::Input) {
aName.AppendLiteral("(unlabeled)");
}
return labeled;
}
#endif
mozilla::PerformanceCounter* nsThread::GetPerformanceCounter(
nsIRunnable* aEvent) {
RefPtr<SchedulerGroup::Runnable> docRunnable = do_QueryObject(aEvent);
if (docRunnable) {
mozilla::dom::DocGroup* docGroup = docRunnable->DocGroup();
if (docGroup) {
return docGroup->GetPerformanceCounter();
}
}
return nullptr;
}
size_t nsThread::ShallowSizeOfIncludingThis(
mozilla::MallocSizeOf aMallocSizeOf) const {
size_t n = 0;
if (mShutdownContext) {
n += aMallocSizeOf(mShutdownContext);
}
n += mRequestedShutdownContexts.ShallowSizeOfExcludingThis(aMallocSizeOf);
return aMallocSizeOf(this) + aMallocSizeOf(mThread) + n;
}
size_t nsThread::SizeOfEventQueues(mozilla::MallocSizeOf aMallocSizeOf) const {
size_t n = 0;
if (mCurrentPerformanceCounter) {
n += aMallocSizeOf(mCurrentPerformanceCounter);
}
if (mEventTarget) {
// The size of mEvents is reported by mEventTarget.
n += mEventTarget->SizeOfIncludingThis(aMallocSizeOf);
}
return n;
}
size_t nsThread::SizeOfIncludingThis(
mozilla::MallocSizeOf aMallocSizeOf) const {
return ShallowSizeOfIncludingThis(aMallocSizeOf) +
SizeOfEventQueues(aMallocSizeOf);
}
NS_IMETHODIMP
nsThread::ProcessNextEvent(bool aMayWait, bool* aResult) {
MOZ_ASSERT(mEvents);
NS_ENSURE_TRUE(mEvents, NS_ERROR_NOT_IMPLEMENTED);
LOG(("THRD(%p) ProcessNextEvent [%u %u]\n", this, aMayWait,
mNestedEventLoopDepth));
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
return NS_ERROR_NOT_SAME_THREAD;
}
// The toplevel event loop normally blocks waiting for the next event, but
// if we're trying to shut this thread down, we must exit the event loop when
// the event queue is empty.
// This only applys to the toplevel event loop! Nested event loops (e.g.
// during sync dispatch) are waiting for some state change and must be able
// to block even if something has requested shutdown of the thread. Otherwise
// we'll just busywait as we endlessly look for an event, fail to find one,
// and repeat the nested event loop since its state change hasn't happened
// yet.
bool reallyWait = aMayWait && (mNestedEventLoopDepth > 0 || !ShuttingDown());
if (mIsInLocalExecutionMode) {
EventQueuePriority priority;
if (const nsCOMPtr<nsIRunnable> event =
mEvents->GetEvent(reallyWait, &priority)) {
*aResult = true;
event->Run();
} else {
*aResult = false;
}
return NS_OK;
}
if (IsMainThread()) {
DoMainThreadSpecificProcessing(reallyWait);
}
++mNestedEventLoopDepth;
// We only want to create an AutoNoJSAPI on threads that actually do DOM stuff
// (including workers). Those are exactly the threads that have an
// mScriptObserver.
Maybe<dom::AutoNoJSAPI> noJSAPI;
bool callScriptObserver = !!mScriptObserver;
if (callScriptObserver) {
noJSAPI.emplace();
mScriptObserver->BeforeProcessTask(reallyWait);
}
nsCOMPtr<nsIThreadObserver> obs = mEvents->GetObserverOnThread();
if (obs) {
obs->OnProcessNextEvent(this, reallyWait);
}
NOTIFY_EVENT_OBSERVERS(EventQueue()->EventObservers(), OnProcessNextEvent,
(this, reallyWait));
#ifdef MOZ_CANARY
Canary canary;
#endif
nsresult rv = NS_OK;
{
// Scope for |event| to make sure that its destructor fires while
// mNestedEventLoopDepth has been incremented, since that destructor can
// also do work.
EventQueuePriority priority;
nsCOMPtr<nsIRunnable> event = mEvents->GetEvent(reallyWait, &priority);
*aResult = (event.get() != nullptr);
if (event) {
LOG(("THRD(%p) running [%p]\n", this, event.get()));
// Delay event processing to encourage whoever dispatched this event
// to run.
DelayForChaosMode(ChaosFeature::TaskRunning, 1000);
if (IsMainThread()) {
BackgroundHangMonitor().NotifyActivity();
}
bool schedulerLoggingEnabled =
mozilla::StaticPrefs::dom_performance_enable_scheduler_timing();
if (schedulerLoggingEnabled &&
mNestedEventLoopDepth > mCurrentEventLoopDepth &&
mCurrentPerformanceCounter) {
// This is a recursive call, we're saving the time
// spent in the parent event if the runnable is linked to a DocGroup.
mozilla::TimeDuration duration = TimeStamp::Now() - mCurrentEventStart;
mCurrentPerformanceCounter->IncrementExecutionDuration(
duration.ToMicroseconds());
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
// If we're on the main thread, we want to record our current runnable's
// name in a static so that BHR can record it.
Array<char, kRunnableNameBufSize> restoreRunnableName;
restoreRunnableName[0] = '\0';
auto clear = MakeScopeExit([&] {
if (IsMainThread()) {
MOZ_ASSERT(NS_IsMainThread());
sMainThreadRunnableName = restoreRunnableName;
}
});
if (IsMainThread()) {
nsAutoCString name;
GetLabeledRunnableName(event, name, priority);
MOZ_ASSERT(NS_IsMainThread());
restoreRunnableName = sMainThreadRunnableName;
// Copy the name into sMainThreadRunnableName's buffer, and append a
// terminating null.
uint32_t length = std::min((uint32_t)kRunnableNameBufSize - 1,
(uint32_t)name.Length());
memcpy(sMainThreadRunnableName.begin(), name.BeginReading(), length);
sMainThreadRunnableName[length] = '\0';
}
#endif
Maybe<AutoTimeDurationHelper> timeDurationHelper;
if (priority == EventQueuePriority::Input) {
timeDurationHelper.emplace();
}
// The event starts to run, storing the timestamp.
bool recursiveEvent = mNestedEventLoopDepth > mCurrentEventLoopDepth;
mCurrentEventLoopDepth = mNestedEventLoopDepth;
if (IsMainThread() && !recursiveEvent) {
mCurrentEventStart = mozilla::TimeStamp::Now();
}
RefPtr<mozilla::PerformanceCounter> currentPerformanceCounter;
if (schedulerLoggingEnabled) {
mCurrentEventStart = mozilla::TimeStamp::Now();
mCurrentEvent = event;
mCurrentPerformanceCounter = GetPerformanceCounter(event);
currentPerformanceCounter = mCurrentPerformanceCounter;
}
event->Run();
mozilla::TimeDuration duration;
// Remember the last 50ms+ task on mainthread for Long Task.
if (IsMainThread() && !recursiveEvent) {
TimeStamp now = TimeStamp::Now();
duration = now - mCurrentEventStart;
if (duration.ToMilliseconds() > LONGTASK_BUSY_WINDOW_MS) {
// Idle events (gc...) don't *really* count here
if (priority != EventQueuePriority::Idle) {
mLastLongNonIdleTaskEnd = now;
}
mLastLongTaskEnd = now;
#ifdef MOZ_GECKO_PROFILER
if (profiler_thread_is_being_profiled()) {
profiler_add_marker(
(priority != EventQueuePriority::Idle) ? "LongTask"
: "LongIdleTask",
JS::ProfilingCategoryPair::OTHER,
MakeUnique<LongTaskMarkerPayload>(mCurrentEventStart, now));
}
#endif
}
}
// End of execution, we can send the duration for the group
if (schedulerLoggingEnabled) {
if (recursiveEvent) {
// If we're in a recursive call, reset the timer,
// so the parent gets its remaining execution time right.
mCurrentEventStart = mozilla::TimeStamp::Now();
mCurrentPerformanceCounter = currentPerformanceCounter;
} else {
// We're done with this dispatch
if (currentPerformanceCounter) {
mozilla::TimeDuration duration =
TimeStamp::Now() - mCurrentEventStart;
currentPerformanceCounter->IncrementExecutionDuration(
duration.ToMicroseconds());
}
mCurrentEvent = nullptr;
mCurrentEventLoopDepth = -1;
mCurrentPerformanceCounter = nullptr;
}
}
} else if (aMayWait) {
MOZ_ASSERT(ShuttingDown(), "This should only happen when shutting down");
rv = NS_ERROR_UNEXPECTED;
}
}
NOTIFY_EVENT_OBSERVERS(EventQueue()->EventObservers(), AfterProcessNextEvent,
(this, *aResult));
if (obs) {
obs->AfterProcessNextEvent(this, *aResult);
}
if (callScriptObserver) {
if (mScriptObserver) {
mScriptObserver->AfterProcessTask(mNestedEventLoopDepth);
}
noJSAPI.reset();
}
--mNestedEventLoopDepth;
return rv;
}
//-----------------------------------------------------------------------------
// nsISupportsPriority
NS_IMETHODIMP
nsThread::GetPriority(int32_t* aPriority) {
*aPriority = mPriority;
return NS_OK;
}
NS_IMETHODIMP
nsThread::SetPriority(int32_t aPriority) {
if (NS_WARN_IF(!mThread)) {
return NS_ERROR_NOT_INITIALIZED;
}
// NSPR defines the following four thread priorities:
// PR_PRIORITY_LOW
// PR_PRIORITY_NORMAL
// PR_PRIORITY_HIGH
// PR_PRIORITY_URGENT
// We map the priority values defined on nsISupportsPriority to these values.
mPriority = aPriority;
PRThreadPriority pri;
if (mPriority <= PRIORITY_HIGHEST) {
pri = PR_PRIORITY_URGENT;
} else if (mPriority < PRIORITY_NORMAL) {
pri = PR_PRIORITY_HIGH;
} else if (mPriority > PRIORITY_NORMAL) {
pri = PR_PRIORITY_LOW;
} else {
pri = PR_PRIORITY_NORMAL;
}
// If chaos mode is active, retain the randomly chosen priority
if (!ChaosMode::isActive(ChaosFeature::ThreadScheduling)) {
PR_SetThreadPriority(mThread, pri);
}
return NS_OK;
}
NS_IMETHODIMP
nsThread::AdjustPriority(int32_t aDelta) {
return SetPriority(mPriority + aDelta);
}
//-----------------------------------------------------------------------------
// nsIThreadInternal
NS_IMETHODIMP
nsThread::GetObserver(nsIThreadObserver** aObs) {
MOZ_ASSERT(mEvents);
NS_ENSURE_TRUE(mEvents, NS_ERROR_NOT_IMPLEMENTED);
nsCOMPtr<nsIThreadObserver> obs = mEvents->GetObserver();
obs.forget(aObs);
return NS_OK;
}
NS_IMETHODIMP
nsThread::SetObserver(nsIThreadObserver* aObs) {
MOZ_ASSERT(mEvents);
NS_ENSURE_TRUE(mEvents, NS_ERROR_NOT_IMPLEMENTED);
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
return NS_ERROR_NOT_SAME_THREAD;
}
mEvents->SetObserver(aObs);
return NS_OK;
}
uint32_t nsThread::RecursionDepth() const {
MOZ_ASSERT(PR_GetCurrentThread() == mThread);
return mNestedEventLoopDepth;
}
NS_IMETHODIMP
nsThread::AddObserver(nsIThreadObserver* aObserver) {
MOZ_ASSERT(mEvents);
NS_ENSURE_TRUE(mEvents, NS_ERROR_NOT_IMPLEMENTED);
if (NS_WARN_IF(!aObserver)) {
return NS_ERROR_INVALID_ARG;
}
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
return NS_ERROR_NOT_SAME_THREAD;
}
EventQueue()->AddObserver(aObserver);
return NS_OK;
}
NS_IMETHODIMP
nsThread::RemoveObserver(nsIThreadObserver* aObserver) {
MOZ_ASSERT(mEvents);
NS_ENSURE_TRUE(mEvents, NS_ERROR_NOT_IMPLEMENTED);
if (NS_WARN_IF(PR_GetCurrentThread() != mThread)) {
return NS_ERROR_NOT_SAME_THREAD;
}
EventQueue()->RemoveObserver(aObserver);
return NS_OK;
}
void nsThread::SetScriptObserver(
mozilla::CycleCollectedJSContext* aScriptObserver) {
if (!aScriptObserver) {
mScriptObserver = nullptr;
return;
}
MOZ_ASSERT(!mScriptObserver);
mScriptObserver = aScriptObserver;
}
void nsThread::DoMainThreadSpecificProcessing(bool aReallyWait) {
MOZ_ASSERT(IsMainThread());
ipc::CancelCPOWs();
if (aReallyWait) {
BackgroundHangMonitor().NotifyWait();
}
// Fire a memory pressure notification, if one is pending.
if (!ShuttingDown()) {
MemoryPressureState mpPending = NS_GetPendingMemoryPressure();
if (mpPending != MemPressure_None) {
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (os) {
if (mpPending == MemPressure_Stopping) {
os->NotifyObservers(nullptr, "memory-pressure-stop", nullptr);
} else {
os->NotifyObservers(nullptr, "memory-pressure",
mpPending == MemPressure_New
? u"low-memory"
: u"low-memory-ongoing");
}
} else {
NS_WARNING("Can't get observer service!");
}
}
}
}
NS_IMETHODIMP
nsThread::GetEventTarget(nsIEventTarget** aEventTarget) {
nsCOMPtr<nsIEventTarget> target = this;
target.forget(aEventTarget);
return NS_OK;
}
nsIEventTarget* nsThread::EventTarget() { return this; }
nsISerialEventTarget* nsThread::SerialEventTarget() { return this; }
nsLocalExecutionRecord nsThread::EnterLocalExecution() {
MOZ_RELEASE_ASSERT(!mIsInLocalExecutionMode);
MOZ_ASSERT(IsOnCurrentThread());
MOZ_ASSERT(EventQueue());
return nsLocalExecutionRecord(*EventQueue(), mIsInLocalExecutionMode);
}
nsLocalExecutionGuard::nsLocalExecutionGuard(
nsLocalExecutionRecord&& aLocalExecutionRecord)
: mEventQueueStack(aLocalExecutionRecord.mEventQueueStack),
mLocalEventTarget(mEventQueueStack.PushEventQueue()),
mLocalExecutionFlag(aLocalExecutionRecord.mLocalExecutionFlag) {
MOZ_ASSERT(mLocalEventTarget);
MOZ_ASSERT(!mLocalExecutionFlag);
mLocalExecutionFlag = true;
}
nsLocalExecutionGuard::~nsLocalExecutionGuard() {
MOZ_ASSERT(mLocalExecutionFlag);
mLocalExecutionFlag = false;
mEventQueueStack.PopEventQueue(mLocalEventTarget);
}