зеркало из https://github.com/mozilla/gecko-dev.git
578 строки
17 KiB
C++
578 строки
17 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <stdlib.h>
|
|
#include "nsScannerString.h"
|
|
#include "mozilla/CheckedInt.h"
|
|
|
|
/**
|
|
* nsScannerBufferList
|
|
*/
|
|
|
|
#define MAX_CAPACITY \
|
|
((UINT32_MAX / sizeof(char16_t)) - (sizeof(Buffer) + sizeof(char16_t)))
|
|
|
|
nsScannerBufferList::Buffer* nsScannerBufferList::AllocBufferFromString(
|
|
const nsAString& aString) {
|
|
uint32_t len = aString.Length();
|
|
Buffer* buf = AllocBuffer(len);
|
|
|
|
if (buf) {
|
|
nsAString::const_iterator source;
|
|
aString.BeginReading(source);
|
|
nsCharTraits<char16_t>::copy(buf->DataStart(), source.get(), len);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
nsScannerBufferList::Buffer* nsScannerBufferList::AllocBuffer(
|
|
uint32_t capacity) {
|
|
if (capacity > MAX_CAPACITY) return nullptr;
|
|
|
|
void* ptr = malloc(sizeof(Buffer) + (capacity + 1) * sizeof(char16_t));
|
|
if (!ptr) return nullptr;
|
|
|
|
Buffer* buf = new (ptr) Buffer();
|
|
|
|
buf->mUsageCount = 0;
|
|
buf->mDataEnd = buf->DataStart() + capacity;
|
|
|
|
// XXX null terminate. this shouldn't be required, but we do it because
|
|
// nsScanner erroneously thinks it can dereference DataEnd :-(
|
|
*buf->mDataEnd = char16_t(0);
|
|
return buf;
|
|
}
|
|
|
|
void nsScannerBufferList::ReleaseAll() {
|
|
while (!mBuffers.isEmpty()) {
|
|
Buffer* node = mBuffers.popFirst();
|
|
// printf(">>> freeing buffer @%p\n", node);
|
|
free(node);
|
|
}
|
|
}
|
|
|
|
void nsScannerBufferList::SplitBuffer(const Position& pos) {
|
|
// splitting to the right keeps the work string and any extant token
|
|
// pointing to and holding a reference count on the same buffer.
|
|
|
|
Buffer* bufferToSplit = pos.mBuffer;
|
|
NS_ASSERTION(bufferToSplit, "null pointer");
|
|
|
|
uint32_t splitOffset = pos.mPosition - bufferToSplit->DataStart();
|
|
NS_ASSERTION(pos.mPosition >= bufferToSplit->DataStart() &&
|
|
splitOffset <= bufferToSplit->DataLength(),
|
|
"split offset is outside buffer");
|
|
|
|
uint32_t len = bufferToSplit->DataLength() - splitOffset;
|
|
Buffer* new_buffer = AllocBuffer(len);
|
|
if (new_buffer) {
|
|
nsCharTraits<char16_t>::copy(new_buffer->DataStart(),
|
|
bufferToSplit->DataStart() + splitOffset, len);
|
|
InsertAfter(new_buffer, bufferToSplit);
|
|
bufferToSplit->SetDataLength(splitOffset);
|
|
}
|
|
}
|
|
|
|
void nsScannerBufferList::DiscardUnreferencedPrefix(Buffer* aBuf) {
|
|
if (aBuf == Head()) {
|
|
while (!mBuffers.isEmpty() && !Head()->IsInUse()) {
|
|
Buffer* buffer = Head();
|
|
buffer->remove();
|
|
free(buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t nsScannerBufferList::Position::Distance(const Position& aStart,
|
|
const Position& aEnd) {
|
|
size_t result = 0;
|
|
if (aStart.mBuffer == aEnd.mBuffer) {
|
|
result = aEnd.mPosition - aStart.mPosition;
|
|
} else {
|
|
result = aStart.mBuffer->DataEnd() - aStart.mPosition;
|
|
for (Buffer* b = aStart.mBuffer->Next(); b != aEnd.mBuffer; b = b->Next())
|
|
result += b->DataLength();
|
|
result += aEnd.mPosition - aEnd.mBuffer->DataStart();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* nsScannerSubstring
|
|
*/
|
|
|
|
nsScannerSubstring::nsScannerSubstring()
|
|
: mStart(nullptr, nullptr),
|
|
mEnd(nullptr, nullptr),
|
|
mBufferList(nullptr),
|
|
mLength(0),
|
|
mIsDirty(true) {}
|
|
|
|
nsScannerSubstring::nsScannerSubstring(const nsAString& s)
|
|
: mBufferList(nullptr), mIsDirty(true) {
|
|
Rebind(s);
|
|
}
|
|
|
|
nsScannerSubstring::~nsScannerSubstring() {
|
|
release_ownership_of_buffer_list();
|
|
}
|
|
|
|
int32_t nsScannerSubstring::CountChar(char16_t c) const {
|
|
/*
|
|
re-write this to use a counting sink
|
|
*/
|
|
|
|
size_type result = 0;
|
|
size_type lengthToExamine = Length();
|
|
|
|
nsScannerIterator iter;
|
|
for (BeginReading(iter);;) {
|
|
int32_t lengthToExamineInThisFragment = iter.size_forward();
|
|
const char16_t* fromBegin = iter.get();
|
|
result += size_type(
|
|
NS_COUNT(fromBegin, fromBegin + lengthToExamineInThisFragment, c));
|
|
if (!(lengthToExamine -= lengthToExamineInThisFragment)) return result;
|
|
iter.advance(lengthToExamineInThisFragment);
|
|
}
|
|
// never reached; quiets warnings
|
|
return 0;
|
|
}
|
|
|
|
void nsScannerSubstring::Rebind(const nsScannerSubstring& aString,
|
|
const nsScannerIterator& aStart,
|
|
const nsScannerIterator& aEnd) {
|
|
// allow for the case where &aString == this
|
|
|
|
aString.acquire_ownership_of_buffer_list();
|
|
release_ownership_of_buffer_list();
|
|
|
|
mStart = aStart;
|
|
mEnd = aEnd;
|
|
mBufferList = aString.mBufferList;
|
|
mLength = Distance(aStart, aEnd);
|
|
mIsDirty = true;
|
|
}
|
|
|
|
void nsScannerSubstring::Rebind(const nsAString& aString) {
|
|
release_ownership_of_buffer_list();
|
|
|
|
mBufferList = new nsScannerBufferList(AllocBufferFromString(aString));
|
|
mIsDirty = true;
|
|
|
|
init_range_from_buffer_list();
|
|
acquire_ownership_of_buffer_list();
|
|
}
|
|
|
|
const nsAString& nsScannerSubstring::AsString() const {
|
|
if (mIsDirty) {
|
|
nsScannerSubstring* mutable_this = const_cast<nsScannerSubstring*>(this);
|
|
|
|
if (mStart.mBuffer == mEnd.mBuffer) {
|
|
// We only have a single fragment to deal with, so just return it
|
|
// as a substring.
|
|
mutable_this->mFlattenedRep.Rebind(mStart.mPosition, mEnd.mPosition);
|
|
} else {
|
|
// Otherwise, we need to copy the data into a flattened buffer.
|
|
nsScannerIterator start, end;
|
|
CopyUnicodeTo(BeginReading(start), EndReading(end),
|
|
mutable_this->mFlattenedRep);
|
|
}
|
|
|
|
mutable_this->mIsDirty = false;
|
|
}
|
|
|
|
return mFlattenedRep;
|
|
}
|
|
|
|
nsScannerIterator& nsScannerSubstring::BeginReading(
|
|
nsScannerIterator& iter) const {
|
|
iter.mOwner = this;
|
|
|
|
iter.mFragment.mBuffer = mStart.mBuffer;
|
|
iter.mFragment.mFragmentStart = mStart.mPosition;
|
|
if (mStart.mBuffer == mEnd.mBuffer)
|
|
iter.mFragment.mFragmentEnd = mEnd.mPosition;
|
|
else
|
|
iter.mFragment.mFragmentEnd = mStart.mBuffer->DataEnd();
|
|
|
|
iter.mPosition = mStart.mPosition;
|
|
iter.normalize_forward();
|
|
return iter;
|
|
}
|
|
|
|
nsScannerIterator& nsScannerSubstring::EndReading(
|
|
nsScannerIterator& iter) const {
|
|
iter.mOwner = this;
|
|
|
|
iter.mFragment.mBuffer = mEnd.mBuffer;
|
|
iter.mFragment.mFragmentEnd = mEnd.mPosition;
|
|
if (mStart.mBuffer == mEnd.mBuffer)
|
|
iter.mFragment.mFragmentStart = mStart.mPosition;
|
|
else
|
|
iter.mFragment.mFragmentStart = mEnd.mBuffer->DataStart();
|
|
|
|
iter.mPosition = mEnd.mPosition;
|
|
// must not |normalize_backward| as that would likely invalidate tests like
|
|
// |while ( first != last )|
|
|
return iter;
|
|
}
|
|
|
|
bool nsScannerSubstring::GetNextFragment(nsScannerFragment& frag) const {
|
|
// check to see if we are at the end of the buffer list
|
|
if (frag.mBuffer == mEnd.mBuffer) return false;
|
|
|
|
frag.mBuffer = frag.mBuffer->getNext();
|
|
|
|
if (frag.mBuffer == mStart.mBuffer)
|
|
frag.mFragmentStart = mStart.mPosition;
|
|
else
|
|
frag.mFragmentStart = frag.mBuffer->DataStart();
|
|
|
|
if (frag.mBuffer == mEnd.mBuffer)
|
|
frag.mFragmentEnd = mEnd.mPosition;
|
|
else
|
|
frag.mFragmentEnd = frag.mBuffer->DataEnd();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool nsScannerSubstring::GetPrevFragment(nsScannerFragment& frag) const {
|
|
// check to see if we are at the beginning of the buffer list
|
|
if (frag.mBuffer == mStart.mBuffer) return false;
|
|
|
|
frag.mBuffer = frag.mBuffer->getPrevious();
|
|
|
|
if (frag.mBuffer == mStart.mBuffer)
|
|
frag.mFragmentStart = mStart.mPosition;
|
|
else
|
|
frag.mFragmentStart = frag.mBuffer->DataStart();
|
|
|
|
if (frag.mBuffer == mEnd.mBuffer)
|
|
frag.mFragmentEnd = mEnd.mPosition;
|
|
else
|
|
frag.mFragmentEnd = frag.mBuffer->DataEnd();
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* nsScannerString
|
|
*/
|
|
|
|
nsScannerString::nsScannerString(Buffer* aBuf) {
|
|
mBufferList = new nsScannerBufferList(aBuf);
|
|
|
|
init_range_from_buffer_list();
|
|
acquire_ownership_of_buffer_list();
|
|
}
|
|
|
|
void nsScannerString::AppendBuffer(Buffer* aBuf) {
|
|
mBufferList->Append(aBuf);
|
|
mLength += aBuf->DataLength();
|
|
|
|
mEnd.mBuffer = aBuf;
|
|
mEnd.mPosition = aBuf->DataEnd();
|
|
|
|
mIsDirty = true;
|
|
}
|
|
|
|
void nsScannerString::DiscardPrefix(const nsScannerIterator& aIter) {
|
|
Position old_start(mStart);
|
|
mStart = aIter;
|
|
mLength -= Position::Distance(old_start, mStart);
|
|
|
|
mStart.mBuffer->IncrementUsageCount();
|
|
old_start.mBuffer->DecrementUsageCount();
|
|
|
|
mBufferList->DiscardUnreferencedPrefix(old_start.mBuffer);
|
|
|
|
mIsDirty = true;
|
|
}
|
|
|
|
void nsScannerString::UngetReadable(const nsAString& aReadable,
|
|
const nsScannerIterator& aInsertPoint)
|
|
/*
|
|
* Warning: this routine manipulates the shared buffer list in an
|
|
* unexpected way. The original design did not really allow for
|
|
* insertions, but this call promises that if called for a point after the
|
|
* end of all extant token strings, that no token string or the work string
|
|
* will be invalidated.
|
|
*
|
|
* This routine is protected because it is the responsibility of the
|
|
* derived class to keep those promises.
|
|
*/
|
|
{
|
|
Position insertPos(aInsertPoint);
|
|
|
|
mBufferList->SplitBuffer(insertPos);
|
|
// splitting to the right keeps the work string and any extant token
|
|
// pointing to and holding a reference count on the same buffer
|
|
|
|
Buffer* new_buffer = AllocBufferFromString(aReadable);
|
|
// make a new buffer with all the data to insert...
|
|
// BULLSHIT ALERT: we may have empty space to re-use in the split buffer,
|
|
// measure the cost of this and decide if we should do the work to fill
|
|
// it
|
|
|
|
Buffer* buffer_to_split = insertPos.mBuffer;
|
|
mBufferList->InsertAfter(new_buffer, buffer_to_split);
|
|
mLength += aReadable.Length();
|
|
|
|
mEnd.mBuffer = mBufferList->Tail();
|
|
mEnd.mPosition = mEnd.mBuffer->DataEnd();
|
|
|
|
mIsDirty = true;
|
|
}
|
|
|
|
/**
|
|
* nsScannerSharedSubstring
|
|
*/
|
|
|
|
void nsScannerSharedSubstring::Rebind(const nsScannerIterator& aStart,
|
|
const nsScannerIterator& aEnd) {
|
|
// If the start and end positions are inside the same buffer, we must
|
|
// acquire ownership of the buffer. If not, we can optimize by not holding
|
|
// onto it.
|
|
|
|
Buffer* buffer = const_cast<Buffer*>(aStart.buffer());
|
|
bool sameBuffer = buffer == aEnd.buffer();
|
|
|
|
nsScannerBufferList* bufferList;
|
|
|
|
if (sameBuffer) {
|
|
bufferList = aStart.mOwner->mBufferList;
|
|
bufferList->AddRef();
|
|
buffer->IncrementUsageCount();
|
|
}
|
|
|
|
if (mBufferList) ReleaseBuffer();
|
|
|
|
if (sameBuffer) {
|
|
mBuffer = buffer;
|
|
mBufferList = bufferList;
|
|
mString.Rebind(aStart.mPosition, aEnd.mPosition);
|
|
} else {
|
|
mBuffer = nullptr;
|
|
mBufferList = nullptr;
|
|
CopyUnicodeTo(aStart, aEnd, mString);
|
|
}
|
|
}
|
|
|
|
void nsScannerSharedSubstring::ReleaseBuffer() {
|
|
NS_ASSERTION(mBufferList, "Should only be called with non-null mBufferList");
|
|
mBuffer->DecrementUsageCount();
|
|
mBufferList->DiscardUnreferencedPrefix(mBuffer);
|
|
mBufferList->Release();
|
|
}
|
|
|
|
void nsScannerSharedSubstring::MakeMutable() {
|
|
nsString temp(mString); // this will force a copy of the data
|
|
mString.Assign(temp); // mString will now share the just-allocated buffer
|
|
|
|
ReleaseBuffer();
|
|
|
|
mBuffer = nullptr;
|
|
mBufferList = nullptr;
|
|
}
|
|
|
|
/**
|
|
* utils -- based on code from nsReadableUtils.cpp
|
|
*/
|
|
|
|
// private helper function
|
|
static inline nsAString::iterator& copy_multifragment_string(
|
|
nsScannerIterator& first, const nsScannerIterator& last,
|
|
nsAString::iterator& result) {
|
|
typedef nsCharSourceTraits<nsScannerIterator> source_traits;
|
|
typedef nsCharSinkTraits<nsAString::iterator> sink_traits;
|
|
|
|
while (first != last) {
|
|
uint32_t distance = source_traits::readable_distance(first, last);
|
|
sink_traits::write(result, source_traits::read(first), distance);
|
|
NS_ASSERTION(distance > 0,
|
|
"|copy_multifragment_string| will never terminate");
|
|
source_traits::advance(first, distance);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool CopyUnicodeTo(const nsScannerIterator& aSrcStart,
|
|
const nsScannerIterator& aSrcEnd, nsAString& aDest) {
|
|
mozilla::CheckedInt<nsAString::size_type> distance(
|
|
Distance(aSrcStart, aSrcEnd));
|
|
if (!distance.isValid()) {
|
|
return false; // overflow detected
|
|
}
|
|
|
|
if (!aDest.SetLength(distance.value(), mozilla::fallible)) {
|
|
aDest.Truncate();
|
|
return false; // out of memory
|
|
}
|
|
auto writer = aDest.BeginWriting();
|
|
nsScannerIterator fromBegin(aSrcStart);
|
|
|
|
copy_multifragment_string(fromBegin, aSrcEnd, writer);
|
|
return true;
|
|
}
|
|
|
|
bool AppendUnicodeTo(const nsScannerIterator& aSrcStart,
|
|
const nsScannerIterator& aSrcEnd,
|
|
nsScannerSharedSubstring& aDest) {
|
|
// Check whether we can just create a dependent string.
|
|
if (aDest.str().IsEmpty()) {
|
|
// We can just make |aDest| point to the buffer.
|
|
// This will take care of copying if the buffer spans fragments.
|
|
aDest.Rebind(aSrcStart, aSrcEnd);
|
|
return true;
|
|
}
|
|
// The dest string is not empty, so it can't be a dependent substring.
|
|
return AppendUnicodeTo(aSrcStart, aSrcEnd, aDest.writable());
|
|
}
|
|
|
|
bool AppendUnicodeTo(const nsScannerIterator& aSrcStart,
|
|
const nsScannerIterator& aSrcEnd, nsAString& aDest) {
|
|
const nsAString::size_type oldLength = aDest.Length();
|
|
CheckedInt<nsAString::size_type> newLen(Distance(aSrcStart, aSrcEnd));
|
|
newLen += oldLength;
|
|
if (!newLen.isValid()) {
|
|
return false; // overflow detected
|
|
}
|
|
|
|
if (!aDest.SetLength(newLen.value(), mozilla::fallible))
|
|
return false; // out of memory
|
|
auto writer = aDest.BeginWriting();
|
|
std::advance(writer, oldLength);
|
|
nsScannerIterator fromBegin(aSrcStart);
|
|
|
|
copy_multifragment_string(fromBegin, aSrcEnd, writer);
|
|
return true;
|
|
}
|
|
|
|
bool FindCharInReadable(char16_t aChar, nsScannerIterator& aSearchStart,
|
|
const nsScannerIterator& aSearchEnd) {
|
|
while (aSearchStart != aSearchEnd) {
|
|
int32_t fragmentLength;
|
|
if (SameFragment(aSearchStart, aSearchEnd))
|
|
fragmentLength = aSearchEnd.get() - aSearchStart.get();
|
|
else
|
|
fragmentLength = aSearchStart.size_forward();
|
|
|
|
const char16_t* charFoundAt =
|
|
nsCharTraits<char16_t>::find(aSearchStart.get(), fragmentLength, aChar);
|
|
if (charFoundAt) {
|
|
aSearchStart.advance(charFoundAt - aSearchStart.get());
|
|
return true;
|
|
}
|
|
|
|
aSearchStart.advance(fragmentLength);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FindInReadable(const nsAString& aPattern, nsScannerIterator& aSearchStart,
|
|
nsScannerIterator& aSearchEnd,
|
|
const nsStringComparator& compare) {
|
|
bool found_it = false;
|
|
|
|
// only bother searching at all if we're given a non-empty range to search
|
|
if (aSearchStart != aSearchEnd) {
|
|
nsAString::const_iterator aPatternStart, aPatternEnd;
|
|
aPattern.BeginReading(aPatternStart);
|
|
aPattern.EndReading(aPatternEnd);
|
|
|
|
// outer loop keeps searching till we find it or run out of string to search
|
|
while (!found_it) {
|
|
// fast inner loop (that's what it's called, not what it is) looks for a
|
|
// potential match
|
|
while (aSearchStart != aSearchEnd &&
|
|
compare(aPatternStart.get(), aSearchStart.get(), 1, 1))
|
|
++aSearchStart;
|
|
|
|
// if we broke out of the `fast' loop because we're out of string ...
|
|
// we're done: no match
|
|
if (aSearchStart == aSearchEnd) break;
|
|
|
|
// otherwise, we're at a potential match, let's see if we really hit one
|
|
nsAString::const_iterator testPattern(aPatternStart);
|
|
nsScannerIterator testSearch(aSearchStart);
|
|
|
|
// slow inner loop verifies the potential match (found by the `fast' loop)
|
|
// at the current position
|
|
for (;;) {
|
|
// we already compared the first character in the outer loop,
|
|
// so we'll advance before the next comparison
|
|
++testPattern;
|
|
++testSearch;
|
|
|
|
// if we verified all the way to the end of the pattern, then we found
|
|
// it!
|
|
if (testPattern == aPatternEnd) {
|
|
found_it = true;
|
|
aSearchEnd = testSearch; // return the exact found range through the
|
|
// parameters
|
|
break;
|
|
}
|
|
|
|
// if we got to end of the string we're searching before we hit the end
|
|
// of the
|
|
// pattern, we'll never find what we're looking for
|
|
if (testSearch == aSearchEnd) {
|
|
aSearchStart = aSearchEnd;
|
|
break;
|
|
}
|
|
|
|
// else if we mismatched ... it's time to advance to the next search
|
|
// position
|
|
// and get back into the `fast' loop
|
|
if (compare(testPattern.get(), testSearch.get(), 1, 1)) {
|
|
++aSearchStart;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return found_it;
|
|
}
|
|
|
|
/**
|
|
* This implementation is simple, but does too much work.
|
|
* It searches the entire string from left to right, and returns the last match
|
|
* found, if any. This implementation will be replaced when I get
|
|
* |reverse_iterator|s working.
|
|
*/
|
|
bool RFindInReadable(const nsAString& aPattern, nsScannerIterator& aSearchStart,
|
|
nsScannerIterator& aSearchEnd,
|
|
const nsStringComparator& aComparator) {
|
|
bool found_it = false;
|
|
|
|
nsScannerIterator savedSearchEnd(aSearchEnd);
|
|
nsScannerIterator searchStart(aSearchStart), searchEnd(aSearchEnd);
|
|
|
|
while (searchStart != searchEnd) {
|
|
if (FindInReadable(aPattern, searchStart, searchEnd, aComparator)) {
|
|
found_it = true;
|
|
|
|
// this is the best match so far, so remember it
|
|
aSearchStart = searchStart;
|
|
aSearchEnd = searchEnd;
|
|
|
|
// ...and get ready to search some more
|
|
// (it's tempting to set |searchStart=searchEnd| ... but that misses
|
|
// overlapping patterns)
|
|
++searchStart;
|
|
searchEnd = savedSearchEnd;
|
|
}
|
|
}
|
|
|
|
// if we never found it, return an empty range
|
|
if (!found_it) aSearchStart = aSearchEnd;
|
|
|
|
return found_it;
|
|
}
|