зеркало из https://github.com/mozilla/gecko-dev.git
757 строки
29 KiB
C++
757 строки
29 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef MOZILLA_GFX_COMPOSITOR_H
|
|
#define MOZILLA_GFX_COMPOSITOR_H
|
|
|
|
#include "Units.h" // for ScreenPoint
|
|
#include "mozilla/Assertions.h" // for MOZ_ASSERT, etc
|
|
#include "mozilla/RefPtr.h" // for already_AddRefed, RefCounted
|
|
#include "mozilla/gfx/2D.h" // for DrawTarget
|
|
#include "mozilla/gfx/MatrixFwd.h" // for Matrix, Matrix4x4
|
|
#include "mozilla/gfx/Point.h" // for IntSize, Point
|
|
#include "mozilla/gfx/Polygon.h" // for Polygon
|
|
#include "mozilla/gfx/Rect.h" // for Rect, IntRect
|
|
#include "mozilla/gfx/Types.h" // for Float
|
|
#include "mozilla/gfx/Triangle.h" // for Triangle, TexturedTriangle
|
|
#include "mozilla/layers/CompositorTypes.h" // for DiagnosticTypes, etc
|
|
#include "mozilla/layers/LayersTypes.h" // for LayersBackend
|
|
#include "mozilla/layers/SurfacePool.h" // for SurfacePoolHandle
|
|
#include "mozilla/layers/TextureSourceProvider.h"
|
|
#include "mozilla/widget/CompositorWidget.h"
|
|
#include "nsISupportsImpl.h" // for MOZ_COUNT_CTOR, etc
|
|
#include "nsRegion.h"
|
|
#include <vector>
|
|
#include "mozilla/WidgetUtils.h"
|
|
|
|
/**
|
|
* Different elements of a web pages are rendered into separate "layers" before
|
|
* they are flattened into the final image that is brought to the screen.
|
|
* See Layers.h for more informations about layers and why we use retained
|
|
* structures.
|
|
* Most of the documentation for layers is directly in the source code in the
|
|
* form of doc comments. An overview can also be found in the the wiki:
|
|
* https://wiki.mozilla.org/Gecko:Overview#Graphics
|
|
*
|
|
*
|
|
* # Main interfaces and abstractions
|
|
*
|
|
* - Layer, ShadowableLayer and LayerComposite
|
|
* (see Layers.h and ipc/ShadowLayers.h)
|
|
* - CompositableClient and CompositableHost
|
|
* (client/CompositableClient.h composite/CompositableHost.h)
|
|
* - TextureClient and TextureHost
|
|
* (client/TextureClient.h composite/TextureHost.h)
|
|
* - TextureSource
|
|
* (composite/TextureHost.h)
|
|
* - Forwarders
|
|
* (ipc/CompositableForwarder.h ipc/ShadowLayers.h)
|
|
* - Compositor
|
|
* (this file)
|
|
* - IPDL protocols
|
|
* (.ipdl files under the gfx/layers/ipc directory)
|
|
*
|
|
* The *Client and Shadowable* classes are always used on the content thread.
|
|
* Forwarders are always used on the content thread.
|
|
* The *Host and Shadow* classes are always used on the compositor thread.
|
|
* Compositors, TextureSource, and Effects are always used on the compositor
|
|
* thread.
|
|
* Most enums and constants are declared in LayersTypes.h and CompositorTypes.h.
|
|
*
|
|
*
|
|
* # Texture transfer
|
|
*
|
|
* Most layer classes own a Compositable plus some extra information like
|
|
* transforms and clip rects. They are platform independent.
|
|
* Compositable classes manipulate Texture objects and are reponsible for
|
|
* things like tiling, buffer rotation or double buffering. Compositables
|
|
* are also platform-independent. Examples of compositable classes are:
|
|
* - ImageClient
|
|
* - CanvasClient
|
|
* - ContentHost
|
|
* - etc.
|
|
* Texture classes (TextureClient and TextureHost) are thin abstractions over
|
|
* platform-dependent texture memory. They are maniplulated by compositables
|
|
* and don't know about buffer rotations and such. The purposes of TextureClient
|
|
* and TextureHost are to synchronize, serialize and deserialize texture data.
|
|
* TextureHosts provide access to TextureSources that are views on the
|
|
* Texture data providing the necessary api for Compositor backend to composite
|
|
* them.
|
|
*
|
|
* Compositable and Texture clients and hosts are created using factory methods.
|
|
* They should only be created by using their constructor in exceptional
|
|
* circumstances. The factory methods are located:
|
|
* TextureClient - CompositableClient::CreateTextureClient
|
|
* TextureHost - TextureHost::CreateTextureHost, which calls a
|
|
* platform-specific function, e.g.,
|
|
* CreateTextureHostOGL CompositableClient - in the appropriate subclass, e.g.,
|
|
* CanvasClient::CreateCanvasClient
|
|
* CompositableHost - CompositableHost::Create
|
|
*
|
|
*
|
|
* # IPDL
|
|
*
|
|
* If off-main-thread compositing (OMTC) is enabled, compositing is performed
|
|
* in a dedicated thread. In some setups compositing happens in a dedicated
|
|
* process. Documentation may refer to either the compositor thread or the
|
|
* compositor process.
|
|
* See explanations in ShadowLayers.h.
|
|
*
|
|
*
|
|
* # Backend implementations
|
|
*
|
|
* Compositor backends like OpenGL or flavours of D3D live in their own
|
|
* directory under gfx/layers/. To add a new backend, implement at least the
|
|
* following interfaces:
|
|
* - Compositor (ex. CompositorOGL)
|
|
* - TextureHost (ex. SurfaceTextureHost)
|
|
* Depending on the type of data that needs to be serialized, you may need to
|
|
* add specific TextureClient implementations.
|
|
*/
|
|
|
|
class nsIWidget;
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
class DrawTarget;
|
|
class DataSourceSurface;
|
|
} // namespace gfx
|
|
|
|
namespace layers {
|
|
|
|
struct Effect;
|
|
struct EffectChain;
|
|
class Image;
|
|
class Layer;
|
|
class TextureSource;
|
|
class DataTextureSource;
|
|
class CompositingRenderTarget;
|
|
class CompositorBridgeParent;
|
|
class LayerManagerComposite;
|
|
class NativeLayer;
|
|
class CompositorOGL;
|
|
class CompositorD3D11;
|
|
class BasicCompositor;
|
|
class TextureReadLock;
|
|
struct GPUStats;
|
|
class AsyncReadbackBuffer;
|
|
class RecordedFrame;
|
|
|
|
enum SurfaceInitMode { INIT_MODE_NONE, INIT_MODE_CLEAR };
|
|
|
|
/**
|
|
* Common interface for compositor backends.
|
|
*
|
|
* Compositor provides a cross-platform interface to a set of operations for
|
|
* compositing quads. Compositor knows nothing about the layer tree. It must be
|
|
* told everything about each composited quad - contents, location, transform,
|
|
* opacity, etc.
|
|
*
|
|
* In theory it should be possible for different widgets to use the same
|
|
* compositor. In practice, we use one compositor per window.
|
|
*
|
|
* # Usage
|
|
*
|
|
* For an example of a user of Compositor, see LayerManagerComposite.
|
|
*
|
|
* Initialization: create a Compositor object, call Initialize().
|
|
*
|
|
* Destruction: destroy any resources associated with the compositor, call
|
|
* Destroy(), delete the Compositor object.
|
|
*
|
|
* Composition:
|
|
* call BeginFrame,
|
|
* for each quad to be composited:
|
|
* call MakeCurrent if necessary (not necessary if no other context has been
|
|
* made current),
|
|
* take care of any texture upload required to composite the quad, this step
|
|
* is backend-dependent,
|
|
* construct an EffectChain for the quad,
|
|
* call DrawQuad,
|
|
* call EndFrame.
|
|
*
|
|
* By default, the compositor will render to the screen if BeginFrameForWindow
|
|
* is called. To render to a target, call BeginFrameForTarget or
|
|
* or SetRenderTarget, the latter with a target created
|
|
* by CreateRenderTarget or CreateRenderTargetFromSource.
|
|
*
|
|
* The target and viewport methods can be called before any DrawQuad call and
|
|
* affect any subsequent DrawQuad calls.
|
|
*/
|
|
class Compositor : public TextureSourceProvider {
|
|
protected:
|
|
virtual ~Compositor();
|
|
|
|
public:
|
|
explicit Compositor(widget::CompositorWidget* aWidget,
|
|
CompositorBridgeParent* aParent = nullptr);
|
|
|
|
virtual bool Initialize(nsCString* const out_failureReason) = 0;
|
|
void Destroy() override;
|
|
bool IsDestroyed() const { return mIsDestroyed; }
|
|
|
|
/**
|
|
* Request a texture host identifier that may be used for creating textures
|
|
* across process or thread boundaries that are compatible with this
|
|
* compositor.
|
|
*/
|
|
virtual TextureFactoryIdentifier GetTextureFactoryIdentifier() = 0;
|
|
|
|
/**
|
|
* Properties of the compositor.
|
|
*/
|
|
virtual bool CanUseCanvasLayerForSize(const gfx::IntSize& aSize) = 0;
|
|
|
|
typedef uint32_t MakeCurrentFlags;
|
|
static const MakeCurrentFlags ForceMakeCurrent = 0x1;
|
|
/**
|
|
* Make this compositor's rendering context the current context for the
|
|
* underlying graphics API. This may be a global operation, depending on the
|
|
* API. Our context will remain the current one until someone else changes it.
|
|
*
|
|
* Clients of the compositor should call this at the start of the compositing
|
|
* process, it might be required by texture uploads etc.
|
|
*
|
|
* If aFlags == ForceMakeCurrent then we will (re-)set our context on the
|
|
* underlying API even if it is already the current context.
|
|
*/
|
|
virtual void MakeCurrent(MakeCurrentFlags aFlags = 0) = 0;
|
|
|
|
/**
|
|
* Creates a Surface that can be used as a rendering target by this
|
|
* compositor.
|
|
*/
|
|
virtual already_AddRefed<CompositingRenderTarget> CreateRenderTarget(
|
|
const gfx::IntRect& aRect, SurfaceInitMode aInit) = 0;
|
|
|
|
/**
|
|
* Creates a Surface that can be used as a rendering target by this
|
|
* compositor, and initializes the surface by copying from aSource.
|
|
* If aSource is null, then the current screen buffer is used as source.
|
|
*
|
|
* aSourcePoint specifies the point in aSource to copy data from.
|
|
*/
|
|
virtual already_AddRefed<CompositingRenderTarget>
|
|
CreateRenderTargetFromSource(const gfx::IntRect& aRect,
|
|
const CompositingRenderTarget* aSource,
|
|
const gfx::IntPoint& aSourcePoint) = 0;
|
|
|
|
/**
|
|
* Grab a snapshot of aSource and store it in aDest, so that the pixels can
|
|
* be read on the CPU by mapping aDest at some point in the future.
|
|
* aSource and aDest must have the same size.
|
|
* If this is a GPU compositor, this call must not block on the GPU.
|
|
* Returns whether the operation was successful.
|
|
*/
|
|
virtual bool ReadbackRenderTarget(CompositingRenderTarget* aSource,
|
|
AsyncReadbackBuffer* aDest) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Create an AsyncReadbackBuffer of the specified size. Can return null.
|
|
*/
|
|
virtual already_AddRefed<AsyncReadbackBuffer> CreateAsyncReadbackBuffer(
|
|
const gfx::IntSize& aSize) {
|
|
return nullptr;
|
|
}
|
|
|
|
/**
|
|
* Draw a part of aSource into the current render target.
|
|
* Scaling is done with linear filtering.
|
|
* Returns whether the operation was successful.
|
|
*/
|
|
virtual bool BlitRenderTarget(CompositingRenderTarget* aSource,
|
|
const gfx::IntSize& aSourceSize,
|
|
const gfx::IntSize& aDestSize) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Sets the given surface as the target for subsequent calls to DrawQuad.
|
|
* Passing null as aSurface sets the screen as the target.
|
|
*/
|
|
virtual void SetRenderTarget(CompositingRenderTarget* aSurface) = 0;
|
|
|
|
/**
|
|
* Returns the current target for rendering. Will return null if we are
|
|
* rendering to the screen.
|
|
*/
|
|
virtual already_AddRefed<CompositingRenderTarget> GetCurrentRenderTarget()
|
|
const = 0;
|
|
|
|
/**
|
|
* Returns a render target which contains the entire window's drawing.
|
|
* On platforms where no such render target is used during compositing (e.g.
|
|
* with buffered BasicCompositor, where only the invalid area is drawn to a
|
|
* render target), this will return null.
|
|
*/
|
|
virtual already_AddRefed<CompositingRenderTarget> GetWindowRenderTarget()
|
|
const {
|
|
return nullptr;
|
|
}
|
|
|
|
/**
|
|
* Mostly the compositor will pull the size from a widget and this method will
|
|
* be ignored, but compositor implementations are free to use it if they like.
|
|
*/
|
|
virtual void SetDestinationSurfaceSize(const gfx::IntSize& aSize) = 0;
|
|
|
|
/**
|
|
* Declare an offset to use when rendering layers. This will be ignored when
|
|
* rendering to a target instead of the screen.
|
|
*/
|
|
virtual void SetScreenRenderOffset(const ScreenPoint& aOffset) = 0;
|
|
|
|
void DrawGeometry(const gfx::Rect& aRect, const gfx::IntRect& aClipRect,
|
|
const EffectChain& aEffectChain, gfx::Float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const gfx::Rect& aVisibleRect,
|
|
const Maybe<gfx::Polygon>& aGeometry);
|
|
|
|
void DrawGeometry(const gfx::Rect& aRect, const gfx::IntRect& aClipRect,
|
|
const EffectChain& aEffectChain, gfx::Float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const Maybe<gfx::Polygon>& aGeometry) {
|
|
DrawGeometry(aRect, aClipRect, aEffectChain, aOpacity, aTransform, aRect,
|
|
aGeometry);
|
|
}
|
|
|
|
/**
|
|
* Tell the compositor to draw a quad. What to do draw and how it is
|
|
* drawn is specified by aEffectChain. aRect is the quad to draw, in user
|
|
* space. aTransform transforms from user space to screen space. If texture
|
|
* coords are required, these will be in the primary effect in the effect
|
|
* chain. aVisibleRect is used to determine which edges should be antialiased,
|
|
* without applying the effect to the inner edges of a tiled layer.
|
|
*/
|
|
virtual void DrawQuad(const gfx::Rect& aRect, const gfx::IntRect& aClipRect,
|
|
const EffectChain& aEffectChain, gfx::Float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const gfx::Rect& aVisibleRect) = 0;
|
|
|
|
/**
|
|
* Overload of DrawQuad, with aVisibleRect defaulted to the value of aRect.
|
|
* Use this when you are drawing a single quad that is not part of a tiled
|
|
* layer.
|
|
*/
|
|
void DrawQuad(const gfx::Rect& aRect, const gfx::IntRect& aClipRect,
|
|
const EffectChain& aEffectChain, gfx::Float aOpacity,
|
|
const gfx::Matrix4x4& aTransform) {
|
|
DrawQuad(aRect, aClipRect, aEffectChain, aOpacity, aTransform, aRect);
|
|
}
|
|
|
|
virtual void DrawTriangle(const gfx::TexturedTriangle& aTriangle,
|
|
const gfx::IntRect& aClipRect,
|
|
const EffectChain& aEffectChain,
|
|
gfx::Float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const gfx::Rect& aVisibleRect) {
|
|
MOZ_CRASH(
|
|
"Compositor::DrawTriangle is not implemented for the current "
|
|
"platform!");
|
|
}
|
|
|
|
virtual bool SupportsLayerGeometry() const { return false; }
|
|
|
|
/**
|
|
* Draw an unfilled solid color rect. Typically used for debugging overlays.
|
|
*/
|
|
void SlowDrawRect(const gfx::Rect& aRect, const gfx::DeviceColor& color,
|
|
const gfx::IntRect& aClipRect = gfx::IntRect(),
|
|
const gfx::Matrix4x4& aTransform = gfx::Matrix4x4(),
|
|
int aStrokeWidth = 1);
|
|
|
|
/**
|
|
* Draw a solid color filled rect. This is a simple DrawQuad helper.
|
|
*/
|
|
void FillRect(const gfx::Rect& aRect, const gfx::DeviceColor& color,
|
|
const gfx::IntRect& aClipRect = gfx::IntRect(),
|
|
const gfx::Matrix4x4& aTransform = gfx::Matrix4x4());
|
|
|
|
void SetClearColor(const gfx::DeviceColor& aColor) { mClearColor = aColor; }
|
|
|
|
void SetDefaultClearColor(const gfx::DeviceColor& aColor) {
|
|
mDefaultClearColor = aColor;
|
|
}
|
|
|
|
void SetClearColorToDefault() { mClearColor = mDefaultClearColor; }
|
|
|
|
/*
|
|
* Clear aRect on current render target.
|
|
*/
|
|
virtual void ClearRect(const gfx::Rect& aRect) = 0;
|
|
|
|
/**
|
|
* Start a new frame for rendering to the window.
|
|
* Needs to be paired with a call to EndFrame() if the return value is not
|
|
* Nothing().
|
|
*
|
|
* aInvalidRegion is the invalid region of the window.
|
|
* aClipRect is the clip rect for all drawing (optional).
|
|
* aRenderBounds is the bounding rect for rendering.
|
|
* aOpaqueRegion is the area that contains opaque content.
|
|
* All coordinates are in window space.
|
|
*
|
|
* Returns the non-empty render bounds actually used by the compositor in
|
|
* window space, or Nothing() if composition should be aborted.
|
|
*/
|
|
virtual Maybe<gfx::IntRect> BeginFrameForWindow(
|
|
const nsIntRegion& aInvalidRegion, const Maybe<gfx::IntRect>& aClipRect,
|
|
const gfx::IntRect& aRenderBounds, const nsIntRegion& aOpaqueRegion) = 0;
|
|
|
|
/**
|
|
* Start a new frame for rendering to a DrawTarget. Rendering can happen
|
|
* directly into the DrawTarget, or it can happen in an offscreen GPU buffer
|
|
* and read back into the DrawTarget in EndFrame, or it can happen inside the
|
|
* window and read back into the DrawTarget in EndFrame.
|
|
* Needs to be paired with a call to EndFrame() if the return value is not
|
|
* Nothing().
|
|
*
|
|
* aInvalidRegion is the invalid region in the target.
|
|
* aClipRect is the clip rect for all drawing (optional).
|
|
* aRenderBounds is the bounding rect for rendering.
|
|
* aOpaqueRegion is the area that contains opaque content.
|
|
* aTarget is the DrawTarget which should contain the rendering after
|
|
* EndFrame() has been called.
|
|
* aTargetBounds are the DrawTarget's bounds.
|
|
* All coordinates are in window space.
|
|
*
|
|
* Returns the non-empty render bounds actually used by the compositor in
|
|
* window space, or Nothing() if composition should be aborted.
|
|
*
|
|
* If BeginFrame succeeds, the compositor keeps a reference to aTarget until
|
|
* EndFrame is called.
|
|
*/
|
|
virtual Maybe<gfx::IntRect> BeginFrameForTarget(
|
|
const nsIntRegion& aInvalidRegion, const Maybe<gfx::IntRect>& aClipRect,
|
|
const gfx::IntRect& aRenderBounds, const nsIntRegion& aOpaqueRegion,
|
|
gfx::DrawTarget* aTarget, const gfx::IntRect& aTargetBounds) = 0;
|
|
|
|
/**
|
|
* Start a new frame for rendering to one or more native layers. Needs to be
|
|
* paired with a call to EndFrame().
|
|
*
|
|
* This puts the compositor in a state where offscreen rendering is allowed.
|
|
* Rendering an actual native layer is only possible via a call to
|
|
* BeginRenderingToNativeLayer(), after BeginFrameForNativeLayers() has run.
|
|
*
|
|
* The following is true for the entire time between
|
|
* BeginFrameForNativeLayers() and EndFrame(), even outside pairs of calls to
|
|
* Begin/EndRenderingToNativeLayer():
|
|
* - GetCurrentRenderTarget() will return something non-null.
|
|
* - CreateRenderTarget() and SetRenderTarget() can be called, in order to
|
|
* facilitate offscreen rendering.
|
|
* The render target that this method sets as the current render target is not
|
|
* useful. Do not render to it. It exists so that calls of the form
|
|
* SetRenderTarget(previousTarget) do not crash.
|
|
*
|
|
* Do not call on platforms that do not support native layers.
|
|
*/
|
|
virtual void BeginFrameForNativeLayers() = 0;
|
|
|
|
/**
|
|
* Start rendering into aNativeLayer.
|
|
* Needs to be paired with a call to EndRenderingToNativeLayer() if the return
|
|
* value is not Nothing().
|
|
*
|
|
* Must be called between BeginFrameForNativeLayers() and EndFrame().
|
|
*
|
|
* aInvalidRegion is the invalid region in the native layer.
|
|
* aClipRect is the clip rect for all drawing (optional).
|
|
* aOpaqueRegion is the area that contains opaque content.
|
|
* aNativeLayer is the native layer.
|
|
* All coordinates, including aNativeLayer->GetRect(), are in window space.
|
|
*
|
|
* Returns the non-empty layer rect, or Nothing() if rendering to this layer
|
|
* should be skipped.
|
|
*
|
|
* If BeginRenderingToNativeLayer succeeds, the compositor keeps a reference
|
|
* to aNativeLayer until EndRenderingToNativeLayer is called.
|
|
*
|
|
* Do not call on platforms that do not support native layers.
|
|
*/
|
|
virtual Maybe<gfx::IntRect> BeginRenderingToNativeLayer(
|
|
const nsIntRegion& aInvalidRegion, const Maybe<gfx::IntRect>& aClipRect,
|
|
const nsIntRegion& aOpaqueRegion, NativeLayer* aNativeLayer) = 0;
|
|
|
|
/**
|
|
* Stop rendering to the native layer and submit the rendering as the layer's
|
|
* new content.
|
|
*
|
|
* Do not call on platforms that do not support native layers.
|
|
*/
|
|
virtual void EndRenderingToNativeLayer() = 0;
|
|
|
|
/**
|
|
* Notification that we've finished issuing draw commands for normal
|
|
* layers (as opposed to the diagnostic overlay which comes after).
|
|
* This is called between BeginFrame* and EndFrame, and it's called before
|
|
* GetWindowRenderTarget() is called for the purposes of screenshot capturing.
|
|
* That next call to GetWindowRenderTarget() expects up-to-date contents for
|
|
* the current frame.
|
|
* When rendering to native layers, this should be called for every layer,
|
|
* between BeginRenderingToNativeLayer and EndRenderingToNativeLayer, at a
|
|
* time at which the current render target is the one that
|
|
* BeginRenderingToNativeLayer has put in place.
|
|
* When not rendering to native layers, this should be called at a time when
|
|
* the current render target is the one that BeginFrameForWindow put in place.
|
|
*/
|
|
virtual void NormalDrawingDone() {}
|
|
|
|
/**
|
|
* Flush the current frame to the screen and tidy up.
|
|
*
|
|
* Derived class overriding this should call Compositor::EndFrame.
|
|
*/
|
|
virtual void EndFrame();
|
|
|
|
virtual void CancelFrame(bool aNeedFlush = true) { ReadUnlockTextures(); }
|
|
|
|
virtual void WaitForGPU() {}
|
|
|
|
virtual RefPtr<SurfacePoolHandle> GetSurfacePoolHandle() { return nullptr; }
|
|
|
|
/**
|
|
* Whether textures created by this compositor can receive partial updates.
|
|
*/
|
|
virtual bool SupportsPartialTextureUpdate() = 0;
|
|
|
|
void SetDiagnosticTypes(DiagnosticTypes aDiagnostics) {
|
|
mDiagnosticTypes = aDiagnostics;
|
|
}
|
|
|
|
DiagnosticTypes GetDiagnosticTypes() const { return mDiagnosticTypes; }
|
|
|
|
void DrawDiagnostics(DiagnosticFlags aFlags, const gfx::Rect& visibleRect,
|
|
const gfx::IntRect& aClipRect,
|
|
const gfx::Matrix4x4& transform,
|
|
uint32_t aFlashCounter = DIAGNOSTIC_FLASH_COUNTER_MAX);
|
|
|
|
void DrawDiagnostics(DiagnosticFlags aFlags, const nsIntRegion& visibleRegion,
|
|
const gfx::IntRect& aClipRect,
|
|
const gfx::Matrix4x4& transform,
|
|
uint32_t aFlashCounter = DIAGNOSTIC_FLASH_COUNTER_MAX);
|
|
|
|
#ifdef MOZ_DUMP_PAINTING
|
|
virtual const char* Name() const = 0;
|
|
#endif // MOZ_DUMP_PAINTING
|
|
|
|
virtual LayersBackend GetBackendType() const = 0;
|
|
|
|
virtual CompositorD3D11* AsCompositorD3D11() { return nullptr; }
|
|
|
|
Compositor* AsCompositor() override { return this; }
|
|
|
|
TimeStamp GetLastCompositionEndTime() const override {
|
|
return mLastCompositionEndTime;
|
|
}
|
|
|
|
void UnlockAfterComposition(TextureHost* aTexture) override;
|
|
bool NotifyNotUsedAfterComposition(TextureHost* aTextureHost) override;
|
|
|
|
/**
|
|
* Notify the compositor that composition is being paused. This allows the
|
|
* compositor to temporarily release any resources.
|
|
* Between calling Pause and Resume, compositing may fail.
|
|
*/
|
|
virtual void Pause() {}
|
|
/**
|
|
* Notify the compositor that composition is being resumed. The compositor
|
|
* regain any resources it requires for compositing.
|
|
* Returns true if succeeded.
|
|
*/
|
|
virtual bool Resume() { return true; }
|
|
|
|
/**
|
|
* Call before rendering begins to ensure the compositor is ready to
|
|
* composite. Returns false if rendering should be aborted.
|
|
*/
|
|
virtual bool Ready() { return true; }
|
|
|
|
virtual void ForcePresent() {}
|
|
|
|
virtual bool IsPendingComposite() { return false; }
|
|
|
|
virtual void FinishPendingComposite() {}
|
|
|
|
widget::CompositorWidget* GetWidget() const { return mWidget; }
|
|
|
|
// Return statistics for the most recent frame we computed statistics for.
|
|
virtual void GetFrameStats(GPUStats* aStats);
|
|
|
|
ScreenRotation GetScreenRotation() const { return mScreenRotation; }
|
|
void SetScreenRotation(ScreenRotation aRotation) {
|
|
mScreenRotation = aRotation;
|
|
}
|
|
|
|
// A stale Compositor has no CompositorBridgeParent; it will not process
|
|
// frames and should not be used.
|
|
void SetInvalid();
|
|
bool IsValid() const override;
|
|
CompositorBridgeParent* GetCompositorBridgeParent() const { return mParent; }
|
|
|
|
/**
|
|
* Request the compositor to allow recording its frames.
|
|
*
|
|
* This is a noop on |CompositorOGL|.
|
|
*/
|
|
virtual void RequestAllowFrameRecording(bool aWillRecord) {
|
|
mRecordFrames = aWillRecord;
|
|
}
|
|
|
|
/**
|
|
* Record the current frame for readback by the |CompositionRecorder|.
|
|
*
|
|
* If this compositor does not support this feature, a null pointer is
|
|
* returned instead.
|
|
*/
|
|
already_AddRefed<RecordedFrame> RecordFrame(const TimeStamp& aTimeStamp);
|
|
|
|
protected:
|
|
void DrawDiagnosticsInternal(DiagnosticFlags aFlags,
|
|
const gfx::Rect& aVisibleRect,
|
|
const gfx::IntRect& aClipRect,
|
|
const gfx::Matrix4x4& transform,
|
|
uint32_t aFlashCounter);
|
|
|
|
bool ShouldDrawDiagnostics(DiagnosticFlags);
|
|
|
|
/**
|
|
* Given a layer rect, clip, and transform, compute the area of the backdrop
|
|
* that needs to be copied for mix-blending. The output transform translates
|
|
* from 0..1 space into the backdrop rect space.
|
|
*
|
|
* The transformed layer quad is also optionally returned - this is the same
|
|
* as the result rect, before rounding.
|
|
*/
|
|
gfx::IntRect ComputeBackdropCopyRect(const gfx::Rect& aRect,
|
|
const gfx::IntRect& aClipRect,
|
|
const gfx::Matrix4x4& aTransform,
|
|
gfx::Matrix4x4* aOutTransform,
|
|
gfx::Rect* aOutLayerQuad = nullptr);
|
|
|
|
gfx::IntRect ComputeBackdropCopyRect(const gfx::Triangle& aTriangle,
|
|
const gfx::IntRect& aClipRect,
|
|
const gfx::Matrix4x4& aTransform,
|
|
gfx::Matrix4x4* aOutTransform,
|
|
gfx::Rect* aOutLayerQuad = nullptr);
|
|
|
|
virtual void DrawTriangles(const nsTArray<gfx::TexturedTriangle>& aTriangles,
|
|
const gfx::Rect& aRect,
|
|
const gfx::IntRect& aClipRect,
|
|
const EffectChain& aEffectChain,
|
|
gfx::Float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const gfx::Rect& aVisibleRect);
|
|
|
|
virtual void DrawPolygon(const gfx::Polygon& aPolygon, const gfx::Rect& aRect,
|
|
const gfx::IntRect& aClipRect,
|
|
const EffectChain& aEffectChain, gfx::Float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const gfx::Rect& aVisibleRect);
|
|
|
|
/**
|
|
* Whether or not the compositor should be prepared to record frames. While
|
|
* this returns true, compositors are expected to maintain a full window
|
|
* render target that they return from GetWindowRenderTarget() between
|
|
* NormalDrawingDone() and EndFrame().
|
|
*
|
|
* This will be true when either we are recording a profile with screenshots
|
|
* enabled or the |LayerManagerComposite| has requested us to record frames
|
|
* for the |CompositionRecorder|.
|
|
*/
|
|
bool ShouldRecordFrames() const;
|
|
|
|
/**
|
|
* Last Composition end time.
|
|
*/
|
|
TimeStamp mLastCompositionEndTime;
|
|
|
|
DiagnosticTypes mDiagnosticTypes;
|
|
CompositorBridgeParent* mParent;
|
|
|
|
/**
|
|
* We keep track of the total number of pixels filled as we composite the
|
|
* current frame. This value is an approximation and is not accurate,
|
|
* especially in the presence of transforms.
|
|
*/
|
|
size_t mPixelsPerFrame;
|
|
size_t mPixelsFilled;
|
|
|
|
ScreenRotation mScreenRotation;
|
|
|
|
widget::CompositorWidget* mWidget;
|
|
|
|
bool mIsDestroyed;
|
|
|
|
gfx::DeviceColor mClearColor;
|
|
gfx::DeviceColor mDefaultClearColor;
|
|
|
|
bool mRecordFrames = false;
|
|
|
|
private:
|
|
static LayersBackend sBackend;
|
|
};
|
|
|
|
// Returns the number of rects. (Up to 4)
|
|
typedef gfx::Rect decomposedRectArrayT[4];
|
|
size_t DecomposeIntoNoRepeatRects(const gfx::Rect& aRect,
|
|
const gfx::Rect& aTexCoordRect,
|
|
decomposedRectArrayT* aLayerRects,
|
|
decomposedRectArrayT* aTextureRects);
|
|
|
|
static inline bool BlendOpIsMixBlendMode(gfx::CompositionOp aOp) {
|
|
switch (aOp) {
|
|
case gfx::CompositionOp::OP_MULTIPLY:
|
|
case gfx::CompositionOp::OP_SCREEN:
|
|
case gfx::CompositionOp::OP_OVERLAY:
|
|
case gfx::CompositionOp::OP_DARKEN:
|
|
case gfx::CompositionOp::OP_LIGHTEN:
|
|
case gfx::CompositionOp::OP_COLOR_DODGE:
|
|
case gfx::CompositionOp::OP_COLOR_BURN:
|
|
case gfx::CompositionOp::OP_HARD_LIGHT:
|
|
case gfx::CompositionOp::OP_SOFT_LIGHT:
|
|
case gfx::CompositionOp::OP_DIFFERENCE:
|
|
case gfx::CompositionOp::OP_EXCLUSION:
|
|
case gfx::CompositionOp::OP_HUE:
|
|
case gfx::CompositionOp::OP_SATURATION:
|
|
case gfx::CompositionOp::OP_COLOR:
|
|
case gfx::CompositionOp::OP_LUMINOSITY:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
class AsyncReadbackBuffer {
|
|
public:
|
|
NS_INLINE_DECL_REFCOUNTING(AsyncReadbackBuffer)
|
|
|
|
gfx::IntSize GetSize() const { return mSize; }
|
|
virtual bool MapAndCopyInto(gfx::DataSourceSurface* aSurface,
|
|
const gfx::IntSize& aReadSize) const = 0;
|
|
|
|
protected:
|
|
explicit AsyncReadbackBuffer(const gfx::IntSize& aSize) : mSize(aSize) {}
|
|
virtual ~AsyncReadbackBuffer() = default;
|
|
|
|
gfx::IntSize mSize;
|
|
};
|
|
|
|
struct TexturedVertex {
|
|
float position[2];
|
|
float texCoords[2];
|
|
};
|
|
|
|
nsTArray<TexturedVertex> TexturedTrianglesToVertexArray(
|
|
const nsTArray<gfx::TexturedTriangle>& aTriangles);
|
|
|
|
} // namespace layers
|
|
} // namespace mozilla
|
|
|
|
#endif /* MOZILLA_GFX_COMPOSITOR_H */
|