gecko-dev/toolkit/recordreplay/Assembler.cpp

346 строки
7.7 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Assembler.h"
#include "ProcessRecordReplay.h"
#include "udis86/types.h"
#include <sys/mman.h>
namespace mozilla {
namespace recordreplay {
Assembler::Assembler()
: mCursor(nullptr)
, mCursorEnd(nullptr)
, mCanAllocateStorage(true)
{}
Assembler::Assembler(uint8_t* aStorage, size_t aSize)
: mCursor(aStorage)
, mCursorEnd(aStorage + aSize)
, mCanAllocateStorage(false)
{}
Assembler::~Assembler()
{
// Patch each jump to the point where the jump's target was copied, if there
// is one.
for (auto pair : mJumps) {
uint8_t* source = pair.first;
uint8_t* target = pair.second;
for (auto copyPair : mCopiedInstructions) {
if (copyPair.first == target) {
PatchJump(source, copyPair.second);
break;
}
}
}
}
void
Assembler::NoteOriginalInstruction(uint8_t* aIp)
{
mCopiedInstructions.emplaceBack(aIp, Current());
}
void
Assembler::Advance(size_t aSize)
{
MOZ_RELEASE_ASSERT(aSize <= MaximumAdvance);
mCursor += aSize;
}
static const size_t JumpBytes = 17;
uint8_t*
Assembler::Current()
{
// Reallocate the buffer if there is not enough space. We need enough for the
// maximum space used by any of the assembling functions, as well as for a
// following jump for fallthrough to the next allocated space.
if (size_t(mCursorEnd - mCursor) <= MaximumAdvance + JumpBytes) {
MOZ_RELEASE_ASSERT(mCanAllocateStorage);
// Allocate some writable, executable memory.
static const size_t BufferSize = PageSize;
uint8_t* buffer = new uint8_t[PageSize];
UnprotectExecutableMemory(buffer, PageSize);
if (mCursor) {
// Patch a jump for fallthrough from the last allocation.
MOZ_RELEASE_ASSERT(size_t(mCursorEnd - mCursor) >= JumpBytes);
PatchJump(mCursor, buffer);
}
mCursor = buffer;
mCursorEnd = &buffer[BufferSize];
}
return mCursor;
}
static void
Push16(uint8_t** aIp, uint16_t aValue)
{
(*aIp)[0] = 0x66;
(*aIp)[1] = 0x68;
*reinterpret_cast<uint16_t*>(*aIp + 2) = aValue;
(*aIp) += 4;
}
/* static */ void
Assembler::PatchJump(uint8_t* aIp, void* aTarget)
{
// Push the target literal onto the stack, 2 bytes at a time. This is
// apparently the best way of getting an arbitrary 8 byte literal onto the
// stack, as 4 byte literals we push will be sign extended to 8 bytes.
size_t ntarget = reinterpret_cast<size_t>(aTarget);
Push16(&aIp, ntarget >> 48);
Push16(&aIp, ntarget >> 32);
Push16(&aIp, ntarget >> 16);
Push16(&aIp, ntarget);
*aIp = 0xC3; // ret
}
void
Assembler::Jump(void* aTarget)
{
PatchJump(Current(), aTarget);
mJumps.emplaceBack(Current(), (uint8_t*) aTarget);
Advance(JumpBytes);
}
static uint8_t
OppositeJump(uint8_t aOpcode)
{
// Get the opposite single byte jump opcode for a one or two byte conditional
// jump. Opposite opcodes are adjacent, e.g. 0x7C -> jl and 0x7D -> jge.
if (aOpcode >= 0x80 && aOpcode <= 0x8F) {
aOpcode -= 0x10;
} else {
MOZ_RELEASE_ASSERT(aOpcode >= 0x70 && aOpcode <= 0x7F);
}
return (aOpcode & 1) ? aOpcode - 1 : aOpcode + 1;
}
void
Assembler::ConditionalJump(uint8_t aCode, void* aTarget)
{
uint8_t* ip = Current();
ip[0] = OppositeJump(aCode);
ip[1] = (uint8_t) JumpBytes;
Advance(2);
Jump(aTarget);
}
void
Assembler::CopyInstruction(uint8_t* aIp, size_t aSize)
{
MOZ_RELEASE_ASSERT(aSize <= MaximumInstructionLength);
memcpy(Current(), aIp, aSize);
Advance(aSize);
}
void
Assembler::PushRax()
{
NewInstruction(0x50);
}
void
Assembler::PopRax()
{
NewInstruction(0x58);
}
void
Assembler::JumpToRax()
{
NewInstruction(0xFF, 0xE0);
}
void
Assembler::CallRax()
{
NewInstruction(0xFF, 0xD0);
}
void
Assembler::LoadRax(size_t aWidth)
{
switch (aWidth) {
case 1: NewInstruction(0x8A, 0x00); break;
case 2: NewInstruction(0x66, 0x8B, 0x00); break;
case 4: NewInstruction(0x8B, 0x00); break;
case 8: NewInstruction(0x48, 0x8B, 0x00); break;
default: MOZ_CRASH();
}
}
void
Assembler::CompareRaxWithTopOfStack()
{
NewInstruction(0x48, 0x39, 0x04, 0x24);
}
void
Assembler::PushRbx()
{
NewInstruction(0x53);
}
void
Assembler::PopRbx()
{
NewInstruction(0x5B);
}
void
Assembler::StoreRbxToRax(size_t aWidth)
{
switch (aWidth) {
case 1: NewInstruction(0x88, 0x18); break;
case 2: NewInstruction(0x66, 0x89, 0x18); break;
case 4: NewInstruction(0x89, 0x18); break;
case 8: NewInstruction(0x48, 0x89, 0x18); break;
default: MOZ_CRASH();
}
}
void
Assembler::CompareValueWithRax(uint8_t aValue, size_t aWidth)
{
switch (aWidth) {
case 1: NewInstruction(0x3C, aValue); break;
case 2: NewInstruction(0x66, 0x83, 0xF8, aValue); break;
case 4: NewInstruction(0x83, 0xF8, aValue); break;
case 8: NewInstruction(0x48, 0x83, 0xF8, aValue); break;
default: MOZ_CRASH();
}
}
static const size_t MoveImmediateBytes = 10;
/* static */ void
Assembler::PatchMoveImmediateToRax(uint8_t* aIp, void* aValue)
{
aIp[0] = 0x40 | (1 << 3);
aIp[1] = 0xB8;
*reinterpret_cast<void**>(aIp + 2) = aValue;
}
void
Assembler::MoveImmediateToRax(void* aValue)
{
PatchMoveImmediateToRax(Current(), aValue);
Advance(MoveImmediateBytes);
}
void
Assembler::MoveRaxToRegister(/*ud_type*/ int aRegister)
{
MOZ_RELEASE_ASSERT(aRegister == NormalizeRegister(aRegister));
uint8_t* ip = Current();
if (aRegister <= UD_R_RDI) {
ip[0] = 0x48;
ip[1] = 0x89;
ip[2] = 0xC0 + aRegister - UD_R_RAX;
} else {
ip[0] = 0x49;
ip[1] = 0x89;
ip[2] = 0xC0 + aRegister - UD_R_R8;
}
Advance(3);
}
void
Assembler::MoveRegisterToRax(/*ud_type*/ int aRegister)
{
MOZ_RELEASE_ASSERT(aRegister == NormalizeRegister(aRegister));
uint8_t* ip = Current();
if (aRegister <= UD_R_RDI) {
ip[0] = 0x48;
ip[1] = 0x89;
ip[2] = 0xC0 + (aRegister - UD_R_RAX) * 8;
} else {
ip[0] = 0x4C;
ip[1] = 0x89;
ip[2] = 0xC0 + (aRegister - UD_R_R8) * 8;
}
Advance(3);
}
/* static */ /*ud_type*/ int
Assembler::NormalizeRegister(/*ud_type*/ int aRegister)
{
if (aRegister >= UD_R_AL && aRegister <= UD_R_R15B) {
return aRegister - UD_R_AL + UD_R_RAX;
}
if (aRegister >= UD_R_AX && aRegister <= UD_R_R15W) {
return aRegister - UD_R_AX + UD_R_RAX;
}
if (aRegister >= UD_R_EAX && aRegister <= UD_R_R15D) {
return aRegister - UD_R_EAX + UD_R_RAX;
}
if (aRegister >= UD_R_RAX && aRegister <= UD_R_R15) {
return aRegister;
}
return UD_NONE;
}
/* static */ bool
Assembler::CanPatchShortJump(uint8_t* aIp, void* aTarget)
{
return (aIp + 2 - 128 <= aTarget) && (aIp + 2 + 127 >= aTarget);
}
/* static */ void
Assembler::PatchShortJump(uint8_t* aIp, void* aTarget)
{
MOZ_RELEASE_ASSERT(CanPatchShortJump(aIp, aTarget));
aIp[0] = 0xEB;
aIp[1] = uint8_t(static_cast<uint8_t*>(aTarget) - aIp - 2);
}
/* static */ void
Assembler::PatchJumpClobberRax(uint8_t* aIp, void* aTarget)
{
PatchMoveImmediateToRax(aIp, aTarget);
aIp[10] = 0x50; // push %rax
aIp[11] = 0xC3; // ret
}
/* static */ void
Assembler::PatchClobber(uint8_t* aIp)
{
aIp[0] = 0xCC; // int3
}
static uint8_t*
PageStart(uint8_t* aPtr)
{
static_assert(sizeof(size_t) == sizeof(uintptr_t), "Unsupported Platform");
return reinterpret_cast<uint8_t*>(reinterpret_cast<size_t>(aPtr) & ~(PageSize - 1));
}
void
UnprotectExecutableMemory(uint8_t* aAddress, size_t aSize)
{
MOZ_ASSERT(aSize);
uint8_t* pageStart = PageStart(aAddress);
uint8_t* pageEnd = PageStart(aAddress + aSize - 1) + PageSize;
int ret = mprotect(pageStart, pageEnd - pageStart, PROT_READ | PROT_EXEC | PROT_WRITE);
MOZ_RELEASE_ASSERT(ret >= 0);
}
} // namespace recordreplay
} // namespace mozilla