gecko-dev/toolkit/recordreplay/MemorySnapshot.cpp

1370 строки
43 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MemorySnapshot.h"
#include "ipc/ChildInternal.h"
#include "mozilla/Maybe.h"
#include "DirtyMemoryHandler.h"
#include "InfallibleVector.h"
#include "ProcessRecordReplay.h"
#include "ProcessRewind.h"
#include "SpinLock.h"
#include "SplayTree.h"
#include "Thread.h"
#include <algorithm>
#include <mach/mach.h>
#include <mach/mach_vm.h>
// Define to enable the countdown debugging thread. See StartCountdown().
//#define WANT_COUNTDOWN_THREAD 1
namespace mozilla {
namespace recordreplay {
///////////////////////////////////////////////////////////////////////////////
// Memory Snapshots Overview.
//
// Checkpoints are periodically saved, storing in memory enough information
// for the process to restore the contents of all tracked memory as it
// rewinds to earlier checkpoitns. There are two components to a saved
// checkpoint:
//
// - Stack contents for each thread are completely saved on disk at each saved
// checkpoint. This is handled by ThreadSnapshot.cpp
//
// - Heap and static memory contents (tracked memory) are saved in memory as
// the contents of pages modified before either the the next saved checkpoint
// or the current execution point (if this is the last saved checkpoint).
// This is handled here.
//
// Heap memory is only tracked when allocated with TrackedMemoryKind.
//
// Snapshots of heap/static memory is modeled on the copy-on-write semantics
// used by fork. Instead of actually forking, we use write-protected memory and
// a fault handler to perform the copy-on-write, which both gives more control
// of the snapshot process and allows snapshots to be taken on platforms
// without fork (i.e. Windows). The following example shows how snapshots are
// generated:
//
// #1 Save Checkpoint A. The initial snapshot tabulates all allocated tracked
// memory in the process, and write-protects all of it.
//
// #2 Write pages P0 and P1. Writing to the pages trips the fault handler. The
// handler creates copies of the initial contents of P0 and P1 (P0a and P1a)
// and unprotects the pages.
//
// #3 Save Checkpoint B. P0a and P1a, along with any other pages modified
// between A and B, become associated with checkpoint A. All modified pages
// are reprotected.
//
// #4 Write pages P1 and P2. Again, writing to the pages trips the fault
// handler and copies P1b and P2b are created and the pages are unprotected.
//
// #5 Save Checkpoint C. P1b and P2b become associated with snapshot B, and the
// modified pages are reprotected.
//
// If we were to then rewind from C to A, we would read and restore P1b/P2b,
// followed by P0a/P1a. All data associated with checkpoints A and later is
// discarded (we can only rewind; we cannot jump forward in time).
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Snapshot Threads Overview.
//
// After step #3 above, the main thread has created a diff snapshot with the
// copies of the original contents of pages modified between two saved
// checkpoints. These page copies are initially all in memory. It is the
// responsibility of the snapshot threads to do the following:
//
// 1. When rewinding to the last saved checkpoint, snapshot threads are used to
// restore the original contents of pages using their in-memory copies.
//
// There are a fixed number of snapshot threads that are spawned when the
// first checkpoint is saved. Threads are each responsible for distinct sets of
// heap memory pages (see AddDirtyPageToWorklist), avoiding synchronization
// issues between different snapshot threads.
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Memory Snapshot Structures
///////////////////////////////////////////////////////////////////////////////
// A region of allocated memory which should be tracked by MemoryInfo.
struct AllocatedMemoryRegion {
uint8_t* mBase;
size_t mSize;
bool mExecutable;
AllocatedMemoryRegion()
: mBase(nullptr), mSize(0), mExecutable(false)
{}
AllocatedMemoryRegion(uint8_t* aBase, size_t aSize, bool aExecutable)
: mBase(aBase), mSize(aSize), mExecutable(aExecutable)
{}
// For sorting regions by base address.
struct AddressSort {
typedef void* Lookup;
static void* getLookup(const AllocatedMemoryRegion& aRegion) {
return aRegion.mBase;
}
static ssize_t compare(void* aAddress, const AllocatedMemoryRegion& aRegion) {
return (uint8_t*) aAddress - aRegion.mBase;
}
};
// For sorting regions by size, from largest to smallest.
struct SizeReverseSort {
typedef size_t Lookup;
static size_t getLookup(const AllocatedMemoryRegion& aRegion) {
return aRegion.mSize;
}
static ssize_t compare(size_t aSize, const AllocatedMemoryRegion& aRegion) {
return aRegion.mSize - aSize;
}
};
};
// Information about a page which was modified between two saved checkpoints.
struct DirtyPage {
// Base address of the page.
uint8_t* mBase;
// Copy of the page at the first checkpoint. Written by the dirty memory
// handler via HandleDirtyMemoryFault if this is in the active page set,
// otherwise accessed by snapshot threads.
uint8_t* mOriginal;
bool mExecutable;
DirtyPage(uint8_t* aBase, uint8_t* aOriginal, bool aExecutable)
: mBase(aBase), mOriginal(aOriginal), mExecutable(aExecutable)
{}
struct AddressSort {
typedef uint8_t* Lookup;
static uint8_t* getLookup(const DirtyPage& aPage) {
return aPage.mBase;
}
static ssize_t compare(uint8_t* aBase, const DirtyPage& aPage) {
return aBase - aPage.mBase;
}
};
};
// A set of dirty pages that can be searched quickly.
typedef SplayTree<DirtyPage, DirtyPage::AddressSort,
AllocPolicy<MemoryKind::SortedDirtyPageSet>, 4> SortedDirtyPageSet;
// A set of dirty pages associated with some checkpoint.
struct DirtyPageSet {
// Checkpoint associated with this set.
CheckpointId mCheckpoint;
// All dirty pages in the set. Pages may be added or destroyed by the main
// thread when all other threads are idle, by the dirty memory handler when
// it is active and this is the active page set, and by the snapshot thread
// which owns this set.
InfallibleVector<DirtyPage, 256, AllocPolicy<MemoryKind::DirtyPageSet>> mPages;
explicit DirtyPageSet(const CheckpointId& aCheckpoint)
: mCheckpoint(aCheckpoint)
{}
};
// Worklist used by each snapshot thread.
struct SnapshotThreadWorklist {
// Index into gMemoryInfo->mSnapshotWorklists of the thread.
size_t mThreadIndex;
// Record/replay ID of the thread.
size_t mThreadId;
// Sets of pages in the thread's worklist. Each set is for a different diff,
// with the oldest checkpoints first.
InfallibleVector<DirtyPageSet, 256, AllocPolicy<MemoryKind::Generic>> mSets;
};
// Structure used to coordinate activity between the main thread and all
// snapshot threads. The workflow with this structure is as follows:
//
// 1. The main thread calls ActivateBegin(), marking the condition as active
// and notifying each snapshot thread. The main thread blocks in this call.
//
// 2. Each snapshot thread, maybe after waking up, checks the condition, does
// any processing it needs to (knowing the main thread is blocked) and
// then calls WaitUntilNoLongerActive(), blocking in the call.
//
// 3. Once all snapshot threads are blocked in WaitUntilNoLongerActive(), the
// main thread is unblocked from ActivateBegin(). It can then do whatever
// processing it needs to (knowing all snapshot threads are blocked) and
// then calls ActivateEnd(), blocking in the call.
//
// 4. Snapshot threads are now unblocked from WaitUntilNoLongerActive(). The
// main thread does not unblock from ActivateEnd() until all snapshot
// threads have left WaitUntilNoLongerActive().
//
// The intent with this class is to ensure that the main thread knows exactly
// when the snapshot threads are operating and that there is no potential for
// races between them.
class SnapshotThreadCondition {
Atomic<bool, SequentiallyConsistent, Behavior::DontPreserve> mActive;
Atomic<int32_t, SequentiallyConsistent, Behavior::DontPreserve> mCount;
public:
void ActivateBegin();
void ActivateEnd();
bool IsActive();
void WaitUntilNoLongerActive();
};
static const size_t NumSnapshotThreads = 8;
// A set of free regions in the process. There are two of these, for the
// free regions in tracked and untracked memory.
class FreeRegionSet {
// Kind of memory being managed. This also describes the memory used by the
// set itself.
MemoryKind mKind;
// Lock protecting contents of the structure.
SpinLock mLock;
// To avoid reentrancy issues when growing the set, a chunk of pages for
// the splay tree is preallocated for use the next time the tree needs to
// expand its size.
static const size_t ChunkPages = 4;
void* mNextChunk;
// Ensure there is a chunk available for the splay tree.
void MaybeRefillNextChunk(AutoSpinLock& aLockHeld);
// Get the next chunk from the free region set for this memory kind.
void* TakeNextChunk();
struct MyAllocPolicy {
FreeRegionSet& mSet;
template <typename T>
void free_(T* aPtr, size_t aSize) { MOZ_CRASH(); }
template <typename T>
T* pod_malloc(size_t aNumElems) {
MOZ_RELEASE_ASSERT(sizeof(T) * aNumElems <= ChunkPages * PageSize);
return (T*) mSet.TakeNextChunk();
}
explicit MyAllocPolicy(FreeRegionSet& aSet)
: mSet(aSet)
{}
};
// All memory in gMemoryInfo->mTrackedRegions that is not in use at the current
// point in execution.
typedef SplayTree<AllocatedMemoryRegion,
AllocatedMemoryRegion::SizeReverseSort,
MyAllocPolicy, ChunkPages> Tree;
Tree mRegions;
void InsertLockHeld(void* aAddress, size_t aSize, AutoSpinLock& aLockHeld);
void* ExtractLockHeld(size_t aSize, AutoSpinLock& aLockHeld);
public:
explicit FreeRegionSet(MemoryKind aKind)
: mKind(aKind), mRegions(MyAllocPolicy(*this))
{}
// Get the single region set for a given memory kind.
static FreeRegionSet& Get(MemoryKind aKind);
// Add a free region to the set.
void Insert(void* aAddress, size_t aSize);
// Remove a free region of the specified size. If aAddress is specified then
// this address will be prioritized, but a different pointer may be returned.
// The resulting memory will be zeroed.
void* Extract(void* aAddress, size_t aSize);
// Return whether a memory range intersects this set at all.
bool Intersects(void* aAddress, size_t aSize);
};
// Information about the current memory state. The contents of this structure
// are in untracked memory.
struct MemoryInfo {
// Whether new dirty pages or allocated regions are allowed.
bool mMemoryChangesAllowed;
// Untracked memory regions allocated before the first checkpoint. This is only
// accessed on the main thread, and is not a vector because of reentrancy
// issues.
static const size_t MaxInitialUntrackedRegions = 256;
AllocatedMemoryRegion mInitialUntrackedRegions[MaxInitialUntrackedRegions];
SpinLock mInitialUntrackedRegionsLock;
// All tracked memory in the process. This may be updated by any thread while
// holding mTrackedRegionsLock.
SplayTree<AllocatedMemoryRegion, AllocatedMemoryRegion::AddressSort,
AllocPolicy<MemoryKind::TrackedRegions>, 4>
mTrackedRegions;
InfallibleVector<AllocatedMemoryRegion, 512, AllocPolicy<MemoryKind::TrackedRegions>>
mTrackedRegionsByAllocationOrder;
SpinLock mTrackedRegionsLock;
// Pages from |trackedRegions| modified since the last saved checkpoint.
// Accessed by any thread (usually the dirty memory handler) when memory
// changes are allowed, and by the main thread when memory changes are not
// allowed.
SortedDirtyPageSet mActiveDirty;
SpinLock mActiveDirtyLock;
// All untracked memory which is available for new allocations.
FreeRegionSet mFreeUntrackedRegions;
// Worklists for each snapshot thread.
SnapshotThreadWorklist mSnapshotWorklists[NumSnapshotThreads];
// Whether snapshot threads should update memory to that when the last saved
// diff was started.
SnapshotThreadCondition mSnapshotThreadsShouldRestore;
// Whether snapshot threads should idle.
SnapshotThreadCondition mSnapshotThreadsShouldIdle;
// Counter used by the countdown thread.
Atomic<size_t, SequentiallyConsistent, Behavior::DontPreserve> mCountdown;
// Information for timers.
double mStartTime;
uint32_t mTimeHits[(size_t) TimerKind::Count];
double mTimeTotals[(size_t) TimerKind::Count];
// Information for memory allocation.
Atomic<ssize_t, Relaxed, Behavior::DontPreserve> mMemoryBalance[(size_t) MemoryKind::Count];
// Recent dirty memory faults.
void* mDirtyMemoryFaults[50];
// Whether RecordReplayDirective may crash this process.
bool mIntentionalCrashesAllowed;
// Whether the CrashSoon directive has been given to this process.
bool mCrashSoon;
MemoryInfo()
: mMemoryChangesAllowed(true)
, mFreeUntrackedRegions(MemoryKind::FreeRegions)
, mStartTime(CurrentTime())
, mIntentionalCrashesAllowed(true)
{
// The singleton MemoryInfo is allocated with zeroed memory, so other
// fields do not need explicit initialization.
}
};
static MemoryInfo* gMemoryInfo = nullptr;
void
SetMemoryChangesAllowed(bool aAllowed)
{
MOZ_RELEASE_ASSERT(gMemoryInfo->mMemoryChangesAllowed == !aAllowed);
gMemoryInfo->mMemoryChangesAllowed = aAllowed;
}
static void
EnsureMemoryChangesAllowed()
{
while (!gMemoryInfo->mMemoryChangesAllowed) {
ThreadYield();
}
}
void
StartCountdown(size_t aCount)
{
gMemoryInfo->mCountdown = aCount;
}
AutoCountdown::AutoCountdown(size_t aCount)
{
StartCountdown(aCount);
}
AutoCountdown::~AutoCountdown()
{
StartCountdown(0);
}
#ifdef WANT_COUNTDOWN_THREAD
static void
CountdownThreadMain(void*)
{
while (true) {
if (gMemoryInfo->mCountdown && --gMemoryInfo->mCountdown == 0) {
// When debugging hangs in the child process, we can break here in lldb
// to inspect what the process is doing.
child::ReportFatalError("CountdownThread activated");
}
ThreadYield();
}
}
#endif // WANT_COUNTDOWN_THREAD
///////////////////////////////////////////////////////////////////////////////
// Profiling
///////////////////////////////////////////////////////////////////////////////
AutoTimer::AutoTimer(TimerKind aKind)
: mKind(aKind), mStart(CurrentTime())
{}
AutoTimer::~AutoTimer()
{
if (gMemoryInfo) {
gMemoryInfo->mTimeHits[(size_t) mKind]++;
gMemoryInfo->mTimeTotals[(size_t) mKind] += CurrentTime() - mStart;
}
}
static const char* gTimerKindNames[] = {
#define DefineTimerKindName(aKind) #aKind,
ForEachTimerKind(DefineTimerKindName)
#undef DefineTimerKindName
};
void
DumpTimers()
{
if (!gMemoryInfo) {
return;
}
Print("Times %.2fs\n", (CurrentTime() - gMemoryInfo->mStartTime) / 1000000.0);
for (size_t i = 0; i < (size_t) TimerKind::Count; i++) {
uint32_t hits = gMemoryInfo->mTimeHits[i];
double time = gMemoryInfo->mTimeTotals[i];
Print("%s: %d hits, %.2fs\n",
gTimerKindNames[i], (int) hits, time / 1000000.0);
}
}
///////////////////////////////////////////////////////////////////////////////
// Directives
///////////////////////////////////////////////////////////////////////////////
void
SetAllowIntentionalCrashes(bool aAllowed)
{
gMemoryInfo->mIntentionalCrashesAllowed = aAllowed;
}
extern "C" {
MOZ_EXPORT void
RecordReplayInterface_InternalRecordReplayDirective(long aDirective)
{
switch ((Directive) aDirective) {
case Directive::CrashSoon:
gMemoryInfo->mCrashSoon = true;
break;
case Directive::MaybeCrash:
if (gMemoryInfo->mIntentionalCrashesAllowed && gMemoryInfo->mCrashSoon) {
PrintSpew("Intentionally Crashing!\n");
MOZ_CRASH("RecordReplayDirective intentional crash");
}
gMemoryInfo->mCrashSoon = false;
break;
case Directive::AlwaysSaveTemporaryCheckpoints:
navigation::AlwaysSaveTemporaryCheckpoints();
break;
case Directive::AlwaysMarkMajorCheckpoints:
child::NotifyAlwaysMarkMajorCheckpoints();
break;
default:
MOZ_CRASH("Unknown directive");
}
}
} // extern "C"
///////////////////////////////////////////////////////////////////////////////
// Snapshot Thread Conditions
///////////////////////////////////////////////////////////////////////////////
void
SnapshotThreadCondition::ActivateBegin()
{
MOZ_RELEASE_ASSERT(Thread::CurrentIsMainThread());
MOZ_RELEASE_ASSERT(!mActive);
mActive = true;
for (size_t i = 0; i < NumSnapshotThreads; i++) {
Thread::Notify(gMemoryInfo->mSnapshotWorklists[i].mThreadId);
}
while (mCount != NumSnapshotThreads) {
Thread::WaitNoIdle();
}
}
void
SnapshotThreadCondition::ActivateEnd()
{
MOZ_RELEASE_ASSERT(Thread::CurrentIsMainThread());
MOZ_RELEASE_ASSERT(mActive);
mActive = false;
for (size_t i = 0; i < NumSnapshotThreads; i++) {
Thread::Notify(gMemoryInfo->mSnapshotWorklists[i].mThreadId);
}
while (mCount) {
Thread::WaitNoIdle();
}
}
bool
SnapshotThreadCondition::IsActive()
{
MOZ_RELEASE_ASSERT(!Thread::CurrentIsMainThread());
return mActive;
}
void
SnapshotThreadCondition::WaitUntilNoLongerActive()
{
MOZ_RELEASE_ASSERT(!Thread::CurrentIsMainThread());
MOZ_RELEASE_ASSERT(mActive);
if (NumSnapshotThreads == ++mCount) {
Thread::Notify(MainThreadId);
}
while (mActive) {
Thread::WaitNoIdle();
}
if (0 == --mCount) {
Thread::Notify(MainThreadId);
}
}
///////////////////////////////////////////////////////////////////////////////
// Snapshot Page Allocation
///////////////////////////////////////////////////////////////////////////////
// Get a page in untracked memory that can be used as a copy of a tracked page.
static uint8_t*
AllocatePageCopy()
{
return (uint8_t*) AllocateMemory(PageSize, MemoryKind::PageCopy);
}
// Free a page allocated by AllocatePageCopy.
static void
FreePageCopy(uint8_t* aPage)
{
DeallocateMemory(aPage, PageSize, MemoryKind::PageCopy);
}
///////////////////////////////////////////////////////////////////////////////
// Page Fault Handling
///////////////////////////////////////////////////////////////////////////////
void
MemoryMove(void* aDst, const void* aSrc, size_t aSize)
{
MOZ_RELEASE_ASSERT((size_t)aDst % sizeof(uint32_t) == 0);
MOZ_RELEASE_ASSERT((size_t)aSrc % sizeof(uint32_t) == 0);
MOZ_RELEASE_ASSERT(aSize % sizeof(uint32_t) == 0);
MOZ_RELEASE_ASSERT((size_t)aDst <= (size_t)aSrc || (size_t)aDst >= (size_t)aSrc + aSize);
uint32_t* ndst = (uint32_t*)aDst;
const uint32_t* nsrc = (const uint32_t*)aSrc;
for (size_t i = 0; i < aSize / sizeof(uint32_t); i++) {
ndst[i] = nsrc[i];
}
}
void
MemoryZero(void* aDst, size_t aSize)
{
MOZ_RELEASE_ASSERT((size_t)aDst % sizeof(uint32_t) == 0);
MOZ_RELEASE_ASSERT(aSize % sizeof(uint32_t) == 0);
// Use volatile here to avoid annoying clang optimizations.
volatile uint32_t* ndst = (uint32_t*)aDst;
for (size_t i = 0; i < aSize / sizeof(uint32_t); i++) {
ndst[i] = 0;
}
}
// Return whether an address is in a tracked region. This excludes memory that
// is in an active new region and is not write protected.
static bool
IsTrackedAddress(void* aAddress, bool* aExecutable)
{
AutoSpinLock lock(gMemoryInfo->mTrackedRegionsLock);
Maybe<AllocatedMemoryRegion> region =
gMemoryInfo->mTrackedRegions.lookupClosestLessOrEqual(aAddress);
if (region.isSome() && MemoryContains(region.ref().mBase, region.ref().mSize, aAddress)) {
if (aExecutable) {
*aExecutable = region.ref().mExecutable;
}
return true;
}
return false;
}
bool
HandleDirtyMemoryFault(uint8_t* aAddress)
{
EnsureMemoryChangesAllowed();
bool different = false;
for (size_t i = ArrayLength(gMemoryInfo->mDirtyMemoryFaults) - 1; i; i--) {
gMemoryInfo->mDirtyMemoryFaults[i] = gMemoryInfo->mDirtyMemoryFaults[i - 1];
if (gMemoryInfo->mDirtyMemoryFaults[i] != aAddress) {
different = true;
}
}
gMemoryInfo->mDirtyMemoryFaults[0] = aAddress;
if (!different) {
Print("WARNING: Repeated accesses to the same dirty address %p\n", aAddress);
}
// Round down to the base of the page.
aAddress = PageBase(aAddress);
AutoSpinLock lock(gMemoryInfo->mActiveDirtyLock);
// Check to see if this is already an active dirty page. Once a page has been
// marked as dirty it will be accessible until the next checkpoint is saved,
// but it's possible for multiple threads to access the same protected memory
// before we have a chance to unprotect it, in which case we'll end up here
// multiple times for the page.
if (gMemoryInfo->mActiveDirty.maybeLookup(aAddress)) {
return true;
}
// Crash if this address is not in a tracked region.
bool executable;
if (!IsTrackedAddress(aAddress, &executable)) {
return false;
}
// Copy the page's original contents into the active dirty set, and unprotect
// it so that execution can proceed.
uint8_t* original = AllocatePageCopy();
MemoryMove(original, aAddress, PageSize);
gMemoryInfo->mActiveDirty.insert(aAddress, DirtyPage(aAddress, original, executable));
DirectUnprotectMemory(aAddress, PageSize, executable);
return true;
}
void
UnrecoverableSnapshotFailure()
{
AutoSpinLock lock(gMemoryInfo->mTrackedRegionsLock);
DirectUnprotectMemory(PageBase(&errno), PageSize, false);
for (auto region : gMemoryInfo->mTrackedRegionsByAllocationOrder) {
DirectUnprotectMemory(region.mBase, region.mSize, region.mExecutable,
/* aIgnoreFailures = */ true);
}
}
///////////////////////////////////////////////////////////////////////////////
// Initial Memory Region Processing
///////////////////////////////////////////////////////////////////////////////
void
AddInitialUntrackedMemoryRegion(uint8_t* aBase, size_t aSize)
{
MOZ_RELEASE_ASSERT(!HasSavedCheckpoint());
if (gInitializationFailureMessage) {
return;
}
static void* gSkippedRegion;
if (!gSkippedRegion) {
// We are allocating gMemoryInfo itself, and will directly call this
// function again shortly.
gSkippedRegion = aBase;
return;
}
MOZ_RELEASE_ASSERT(gSkippedRegion == gMemoryInfo);
AutoSpinLock lock(gMemoryInfo->mInitialUntrackedRegionsLock);
for (AllocatedMemoryRegion& region : gMemoryInfo->mInitialUntrackedRegions) {
if (!region.mBase) {
region.mBase = aBase;
region.mSize = aSize;
return;
}
}
// If we end up here then MaxInitialUntrackedRegions should be larger.
MOZ_CRASH();
}
static void
RemoveInitialUntrackedRegion(uint8_t* aBase, size_t aSize)
{
MOZ_RELEASE_ASSERT(!HasSavedCheckpoint());
AutoSpinLock lock(gMemoryInfo->mInitialUntrackedRegionsLock);
for (AllocatedMemoryRegion& region : gMemoryInfo->mInitialUntrackedRegions) {
if (region.mBase == aBase) {
MOZ_RELEASE_ASSERT(region.mSize == aSize);
region.mBase = nullptr;
region.mSize = 0;
return;
}
}
MOZ_CRASH();
}
static void
MarkThreadStacksAsUntracked()
{
// Thread stacks are excluded from the tracked regions.
for (size_t i = MainThreadId; i <= MaxThreadId; i++) {
Thread* thread = Thread::GetById(i);
AddInitialUntrackedMemoryRegion(thread->StackBase(), thread->StackSize());
}
}
// Given an address region [*aAddress, *aAddress + *aSize], return true if
// there is any intersection with an excluded region
// [aExclude, aExclude + aExcludeSize], set *aSize to contain the subregion
// starting at aAddress which which is not excluded, and *aRemaining and
// *aRemainingSize to any additional subregion which is not excluded.
static bool
MaybeExtractMemoryRegion(uint8_t* aAddress, size_t* aSize,
uint8_t** aRemaining, size_t* aRemainingSize,
uint8_t* aExclude, size_t aExcludeSize)
{
uint8_t* addrLimit = aAddress + *aSize;
// Expand the excluded region out to the containing page boundaries.
MOZ_RELEASE_ASSERT((size_t)aExclude % PageSize == 0);
aExcludeSize = RoundupSizeToPageBoundary(aExcludeSize);
uint8_t* excludeLimit = aExclude + aExcludeSize;
if (excludeLimit <= aAddress || addrLimit <= aExclude) {
// No intersection.
return false;
}
*aSize = std::max<ssize_t>(aExclude - aAddress, 0);
if (aRemaining) {
*aRemaining = excludeLimit;
*aRemainingSize = std::max<ssize_t>(addrLimit - *aRemaining, 0);
}
return true;
}
// Set *aSize to describe the number of bytes starting at aAddress that should
// be considered tracked memory. *aRemaining and *aRemainingSize are set to any
// remaining portion of the initial region after the first excluded portion
// that is found.
static void
ExtractTrackedInitialMemoryRegion(uint8_t* aAddress, size_t* aSize,
uint8_t** aRemaining, size_t* aRemainingSize)
{
// Look for the earliest untracked region which intersects the given region.
const AllocatedMemoryRegion* earliestIntersect = nullptr;
for (const AllocatedMemoryRegion& region : gMemoryInfo->mInitialUntrackedRegions) {
size_t size = *aSize;
if (MaybeExtractMemoryRegion(aAddress, &size, nullptr, nullptr, region.mBase, region.mSize)) {
// There was an intersection.
if (!earliestIntersect || region.mBase < earliestIntersect->mBase) {
earliestIntersect = &region;
}
}
}
if (earliestIntersect) {
if (!MaybeExtractMemoryRegion(aAddress, aSize, aRemaining, aRemainingSize,
earliestIntersect->mBase, earliestIntersect->mSize)) {
MOZ_CRASH();
}
} else {
// If there is no intersection then the entire region is tracked.
*aRemaining = aAddress + *aSize;
*aRemainingSize = 0;
}
}
static void
AddTrackedRegion(uint8_t* aAddress, size_t aSize, bool aExecutable)
{
if (aSize) {
AutoSpinLock lock(gMemoryInfo->mTrackedRegionsLock);
gMemoryInfo->mTrackedRegions.insert(aAddress,
AllocatedMemoryRegion(aAddress, aSize, aExecutable));
gMemoryInfo->mTrackedRegionsByAllocationOrder.emplaceBack(aAddress, aSize, aExecutable);
}
}
// Add any tracked subregions of [aAddress, aAddress + aSize].
void
AddInitialTrackedMemoryRegions(uint8_t* aAddress, size_t aSize, bool aExecutable)
{
while (aSize) {
uint8_t* remaining;
size_t remainingSize;
ExtractTrackedInitialMemoryRegion(aAddress, &aSize, &remaining, &remainingSize);
AddTrackedRegion(aAddress, aSize, aExecutable);
aAddress = remaining;
aSize = remainingSize;
}
}
static void UpdateNumTrackedRegionsForSnapshot();
// Handle all initial untracked memory regions in the process.
static void
ProcessAllInitialMemoryRegions()
{
MOZ_ASSERT(!AreThreadEventsPassedThrough());
{
AutoPassThroughThreadEvents pt;
for (mach_vm_address_t addr = 0;;) {
mach_vm_size_t nbytes;
vm_region_basic_info_64 info;
mach_msg_type_number_t info_count = sizeof(vm_region_basic_info_64);
mach_port_t some_port;
kern_return_t rv = mach_vm_region(mach_task_self(), &addr, &nbytes, VM_REGION_BASIC_INFO,
(vm_region_info_t) &info, &info_count, &some_port);
if (rv == KERN_INVALID_ADDRESS) {
break;
}
MOZ_RELEASE_ASSERT(rv == KERN_SUCCESS);
if (info.max_protection & VM_PROT_WRITE) {
MOZ_RELEASE_ASSERT(info.max_protection & VM_PROT_READ);
AddInitialTrackedMemoryRegions(reinterpret_cast<uint8_t*>(addr), nbytes,
info.max_protection & VM_PROT_EXECUTE);
}
addr += nbytes;
}
}
UpdateNumTrackedRegionsForSnapshot();
// Write protect all tracked memory.
AutoDisallowMemoryChanges disallow;
for (const AllocatedMemoryRegion& region : gMemoryInfo->mTrackedRegionsByAllocationOrder) {
DirectWriteProtectMemory(region.mBase, region.mSize, region.mExecutable);
}
}
///////////////////////////////////////////////////////////////////////////////
// Free Region Management
///////////////////////////////////////////////////////////////////////////////
// All memory in gMemoryInfo->mTrackedRegions that is not in use at the current
// point in execution.
static FreeRegionSet gFreeRegions(MemoryKind::Tracked);
// The size of gMemoryInfo->mTrackedRegionsByAllocationOrder we expect to see
// at the point of the last saved checkpoint.
static size_t gNumTrackedRegions;
static void
UpdateNumTrackedRegionsForSnapshot()
{
MOZ_ASSERT(Thread::CurrentIsMainThread());
gNumTrackedRegions = gMemoryInfo->mTrackedRegionsByAllocationOrder.length();
}
void
FixupFreeRegionsAfterRewind()
{
// All memory that has been allocated since the associated checkpoint was
// reached is now free, and may be reused for new allocations.
size_t newTrackedRegions = gMemoryInfo->mTrackedRegionsByAllocationOrder.length();
for (size_t i = gNumTrackedRegions; i < newTrackedRegions; i++) {
const AllocatedMemoryRegion& region = gMemoryInfo->mTrackedRegionsByAllocationOrder[i];
gFreeRegions.Insert(region.mBase, region.mSize);
}
gNumTrackedRegions = newTrackedRegions;
}
/* static */ FreeRegionSet&
FreeRegionSet::Get(MemoryKind aKind)
{
return (aKind == MemoryKind::Tracked) ? gFreeRegions : gMemoryInfo->mFreeUntrackedRegions;
}
void*
FreeRegionSet::TakeNextChunk()
{
MOZ_RELEASE_ASSERT(mNextChunk);
void* res = mNextChunk;
mNextChunk = nullptr;
return res;
}
void
FreeRegionSet::InsertLockHeld(void* aAddress, size_t aSize, AutoSpinLock& aLockHeld)
{
mRegions.insert(aSize, AllocatedMemoryRegion((uint8_t*) aAddress, aSize, true));
}
void
FreeRegionSet::MaybeRefillNextChunk(AutoSpinLock& aLockHeld)
{
if (mNextChunk) {
return;
}
// Look for a free region we can take the next chunk from.
size_t size = ChunkPages * PageSize;
gMemoryInfo->mMemoryBalance[(size_t) mKind] += size;
mNextChunk = ExtractLockHeld(size, aLockHeld);
if (!mNextChunk) {
// Allocate memory from the system.
mNextChunk = DirectAllocateMemory(nullptr, size);
RegisterAllocatedMemory(mNextChunk, size, mKind);
}
}
void
FreeRegionSet::Insert(void* aAddress, size_t aSize)
{
MOZ_RELEASE_ASSERT(aAddress && aAddress == PageBase(aAddress));
MOZ_RELEASE_ASSERT(aSize && aSize == RoundupSizeToPageBoundary(aSize));
AutoSpinLock lock(mLock);
MaybeRefillNextChunk(lock);
InsertLockHeld(aAddress, aSize, lock);
}
void*
FreeRegionSet::ExtractLockHeld(size_t aSize, AutoSpinLock& aLockHeld)
{
Maybe<AllocatedMemoryRegion> best =
mRegions.lookupClosestLessOrEqual(aSize, /* aRemove = */ true);
if (best.isSome()) {
MOZ_RELEASE_ASSERT(best.ref().mSize >= aSize);
uint8_t* res = best.ref().mBase;
if (best.ref().mSize > aSize) {
InsertLockHeld(res + aSize, best.ref().mSize - aSize, aLockHeld);
}
MemoryZero(res, aSize);
return res;
}
return nullptr;
}
void*
FreeRegionSet::Extract(void* aAddress, size_t aSize)
{
MOZ_RELEASE_ASSERT(aAddress == PageBase(aAddress));
MOZ_RELEASE_ASSERT(aSize && aSize == RoundupSizeToPageBoundary(aSize));
AutoSpinLock lock(mLock);
if (aAddress) {
MaybeRefillNextChunk(lock);
// We were given a point at which to try to place the allocation. Look for
// a free region which contains [aAddress, aAddress + aSize] entirely.
for (typename Tree::Iter iter = mRegions.begin(); !iter.done(); ++iter) {
uint8_t* regionBase = iter.ref().mBase;
uint8_t* regionExtent = regionBase + iter.ref().mSize;
uint8_t* addrBase = (uint8_t*)aAddress;
uint8_t* addrExtent = addrBase + aSize;
if (regionBase <= addrBase && regionExtent >= addrExtent) {
iter.removeEntry();
if (regionBase < addrBase) {
InsertLockHeld(regionBase, addrBase - regionBase, lock);
}
if (regionExtent > addrExtent) {
InsertLockHeld(addrExtent, regionExtent - addrExtent, lock);
}
MemoryZero(aAddress, aSize);
return aAddress;
}
}
// Fall through and look for a free region at another address.
}
// No address hint, look for the smallest free region which is larger than
// the desired allocation size.
return ExtractLockHeld(aSize, lock);
}
bool
FreeRegionSet::Intersects(void* aAddress, size_t aSize)
{
AutoSpinLock lock(mLock);
for (typename Tree::Iter iter = mRegions.begin(); !iter.done(); ++iter) {
if (MemoryIntersects(iter.ref().mBase, iter.ref().mSize, aAddress, aSize)) {
return true;
}
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
// Memory Management
///////////////////////////////////////////////////////////////////////////////
void
RegisterAllocatedMemory(void* aBaseAddress, size_t aSize, MemoryKind aKind)
{
MOZ_RELEASE_ASSERT(aBaseAddress == PageBase(aBaseAddress));
MOZ_RELEASE_ASSERT(aSize == RoundupSizeToPageBoundary(aSize));
uint8_t* aAddress = reinterpret_cast<uint8_t*>(aBaseAddress);
if (aKind != MemoryKind::Tracked) {
if (!HasSavedCheckpoint()) {
AddInitialUntrackedMemoryRegion(aAddress, aSize);
}
} else if (HasSavedCheckpoint()) {
EnsureMemoryChangesAllowed();
DirectWriteProtectMemory(aAddress, aSize, true);
AddTrackedRegion(aAddress, aSize, true);
}
}
void
CheckFixedMemory(void* aAddress, size_t aSize)
{
MOZ_RELEASE_ASSERT(aAddress == PageBase(aAddress));
MOZ_RELEASE_ASSERT(aSize == RoundupSizeToPageBoundary(aSize));
if (!HasSavedCheckpoint()) {
return;
}
{
// The memory should already be tracked. Check each page in the allocation
// because there might be tracked regions adjacent to one another, neither
// of which entirely contains this memory.
AutoSpinLock lock(gMemoryInfo->mTrackedRegionsLock);
for (size_t offset = 0; offset < aSize; offset += PageSize) {
uint8_t* page = (uint8_t*)aAddress + offset;
Maybe<AllocatedMemoryRegion> region =
gMemoryInfo->mTrackedRegions.lookupClosestLessOrEqual(page);
if (!region.isSome() ||
!MemoryContains(region.ref().mBase, region.ref().mSize, page, PageSize)) {
child::ReportFatalError("Fixed memory is not tracked!");
}
}
}
// The memory should not be free.
if (gFreeRegions.Intersects(aAddress, aSize)) {
child::ReportFatalError("Fixed memory is currently free!");
}
}
void
RestoreWritableFixedMemory(void* aAddress, size_t aSize)
{
MOZ_RELEASE_ASSERT(aAddress == PageBase(aAddress));
MOZ_RELEASE_ASSERT(aSize == RoundupSizeToPageBoundary(aSize));
if (!HasSavedCheckpoint()) {
return;
}
AutoSpinLock lock(gMemoryInfo->mActiveDirtyLock);
for (size_t offset = 0; offset < aSize; offset += PageSize) {
uint8_t* page = (uint8_t*)aAddress + offset;
if (gMemoryInfo->mActiveDirty.maybeLookup(page)) {
DirectUnprotectMemory(page, PageSize, true);
}
}
}
void*
AllocateMemoryTryAddress(void* aAddress, size_t aSize, MemoryKind aKind)
{
MOZ_RELEASE_ASSERT(aAddress == PageBase(aAddress));
aSize = RoundupSizeToPageBoundary(aSize);
if (gMemoryInfo) {
gMemoryInfo->mMemoryBalance[(size_t) aKind] += aSize;
}
if (HasSavedCheckpoint()) {
if (void* res = FreeRegionSet::Get(aKind).Extract(aAddress, aSize)) {
return res;
}
}
void* res = DirectAllocateMemory(aAddress, aSize);
RegisterAllocatedMemory(res, aSize, aKind);
return res;
}
void*
AllocateMemory(size_t aSize, MemoryKind aKind)
{
if (!IsReplaying()) {
return DirectAllocateMemory(nullptr, aSize);
}
return AllocateMemoryTryAddress(nullptr, aSize, aKind);
}
void
DeallocateMemory(void* aAddress, size_t aSize, MemoryKind aKind)
{
// Round the supplied region to the containing page boundaries.
aSize += (uint8_t*) aAddress - PageBase(aAddress);
aAddress = PageBase(aAddress);
aSize = RoundupSizeToPageBoundary(aSize);
if (!aAddress || !aSize) {
return;
}
if (gMemoryInfo) {
gMemoryInfo->mMemoryBalance[(size_t) aKind] -= aSize;
}
// Memory is returned to the system before saving the first checkpoint.
if (!HasSavedCheckpoint()) {
if (IsReplaying() && aKind != MemoryKind::Tracked) {
RemoveInitialUntrackedRegion((uint8_t*) aAddress, aSize);
}
DirectDeallocateMemory(aAddress, aSize);
return;
}
if (aKind == MemoryKind::Tracked) {
// For simplicity, all free regions must be executable, so ignore deallocated
// memory in regions that are not executable.
bool executable;
if (!IsTrackedAddress(aAddress, &executable) || !executable) {
return;
}
}
// Mark this region as free, but do not unmap it. It will become usable for
// later allocations, but will not need to be remapped if we end up
// rewinding to a point where this memory was in use.
FreeRegionSet::Get(aKind).Insert(aAddress, aSize);
}
///////////////////////////////////////////////////////////////////////////////
// Snapshot Threads
///////////////////////////////////////////////////////////////////////////////
// While on a snapshot thread, restore the contents of all pages belonging to
// this thread which were modified since the last recorded diff snapshot.
static void
SnapshotThreadRestoreLastDiffSnapshot(SnapshotThreadWorklist* aWorklist)
{
CheckpointId checkpoint = GetLastSavedCheckpoint();
DirtyPageSet& set = aWorklist->mSets.back();
MOZ_RELEASE_ASSERT(set.mCheckpoint == checkpoint);
// Copy the original contents of all pages.
for (size_t index = 0; index < set.mPages.length(); index++) {
const DirtyPage& page = set.mPages[index];
MOZ_RELEASE_ASSERT(page.mOriginal);
DirectUnprotectMemory(page.mBase, PageSize, page.mExecutable);
MemoryMove(page.mBase, page.mOriginal, PageSize);
DirectWriteProtectMemory(page.mBase, PageSize, page.mExecutable);
FreePageCopy(page.mOriginal);
}
// Remove the set from the worklist, if necessary.
if (!aWorklist->mSets.empty()) {
MOZ_RELEASE_ASSERT(&set == &aWorklist->mSets.back());
aWorklist->mSets.popBack();
}
}
// Start routine for a snapshot thread.
void
SnapshotThreadMain(void* aArgument)
{
size_t threadIndex = (size_t) aArgument;
SnapshotThreadWorklist* worklist = &gMemoryInfo->mSnapshotWorklists[threadIndex];
worklist->mThreadIndex = threadIndex;
while (true) {
// If the main thread is waiting for us to restore the most recent diff,
// then do so and notify the main thread we finished.
if (gMemoryInfo->mSnapshotThreadsShouldRestore.IsActive()) {
SnapshotThreadRestoreLastDiffSnapshot(worklist);
gMemoryInfo->mSnapshotThreadsShouldRestore.WaitUntilNoLongerActive();
}
// Idle if the main thread wants us to.
if (gMemoryInfo->mSnapshotThreadsShouldIdle.IsActive()) {
gMemoryInfo->mSnapshotThreadsShouldIdle.WaitUntilNoLongerActive();
}
// Idle until notified by the main thread.
Thread::WaitNoIdle();
}
}
// An alternative to memcmp that can be called from any place.
static bool
MemoryEquals(void* aDst, void* aSrc, size_t aSize)
{
MOZ_ASSERT((size_t)aDst % sizeof(size_t) == 0);
MOZ_ASSERT((size_t)aSrc % sizeof(size_t) == 0);
MOZ_ASSERT(aSize % sizeof(size_t) == 0);
size_t* ndst = (size_t*)aDst;
size_t* nsrc = (size_t*)aSrc;
for (size_t i = 0; i < aSize / sizeof(size_t); i++) {
if (ndst[i] != nsrc[i]) {
return false;
}
}
return true;
}
// Add a page to the last set in some snapshot thread's worklist. This is
// called on the main thread while the snapshot thread is idle.
static void
AddDirtyPageToWorklist(uint8_t* aAddress, uint8_t* aOriginal, bool aExecutable)
{
// Distribute pages to snapshot threads using the base address of a page.
// This guarantees that the same page will be consistently assigned to the
// same thread as different snapshots are taken.
MOZ_ASSERT((size_t)aAddress % PageSize == 0);
if (MemoryEquals(aAddress, aOriginal, PageSize)) {
FreePageCopy(aOriginal);
} else {
size_t pageIndex = ((size_t)aAddress / PageSize) % NumSnapshotThreads;
SnapshotThreadWorklist* worklist = &gMemoryInfo->mSnapshotWorklists[pageIndex];
MOZ_RELEASE_ASSERT(!worklist->mSets.empty());
DirtyPageSet& set = worklist->mSets.back();
MOZ_RELEASE_ASSERT(set.mCheckpoint == GetLastSavedCheckpoint());
set.mPages.emplaceBack(aAddress, aOriginal, aExecutable);
}
}
///////////////////////////////////////////////////////////////////////////////
// Snapshot Interface
///////////////////////////////////////////////////////////////////////////////
void
InitializeMemorySnapshots()
{
MOZ_RELEASE_ASSERT(gMemoryInfo == nullptr);
void* memory = AllocateMemory(sizeof(MemoryInfo), MemoryKind::Generic);
gMemoryInfo = new(memory) MemoryInfo();
// Mark gMemoryInfo as untracked. See AddInitialUntrackedMemoryRegion.
AddInitialUntrackedMemoryRegion(reinterpret_cast<uint8_t*>(memory), sizeof(MemoryInfo));
}
void
InitializeCountdownThread()
{
#ifdef WANT_COUNTDOWN_THREAD
Thread::SpawnNonRecordedThread(CountdownThreadMain, nullptr);
#endif
}
void
TakeFirstMemorySnapshot()
{
MOZ_RELEASE_ASSERT(Thread::CurrentIsMainThread());
MOZ_RELEASE_ASSERT(gMemoryInfo->mTrackedRegions.empty());
// Spawn all snapshot threads.
{
AutoPassThroughThreadEvents pt;
for (size_t i = 0; i < NumSnapshotThreads; i++) {
Thread* thread = Thread::SpawnNonRecordedThread(SnapshotThreadMain, (void*) i);
gMemoryInfo->mSnapshotWorklists[i].mThreadId = thread->Id();
}
}
// All threads should have been created by now.
MarkThreadStacksAsUntracked();
// Fill in the tracked regions for the process.
ProcessAllInitialMemoryRegions();
}
void
TakeDiffMemorySnapshot()
{
MOZ_RELEASE_ASSERT(Thread::CurrentIsMainThread());
UpdateNumTrackedRegionsForSnapshot();
AutoDisallowMemoryChanges disallow;
// Stop all snapshot threads while we modify their worklists.
gMemoryInfo->mSnapshotThreadsShouldIdle.ActivateBegin();
// Add a DirtyPageSet to each snapshot thread's worklist for this snapshot.
for (size_t i = 0; i < NumSnapshotThreads; i++) {
SnapshotThreadWorklist* worklist = &gMemoryInfo->mSnapshotWorklists[i];
worklist->mSets.emplaceBack(GetLastSavedCheckpoint());
}
// Distribute remaining active dirty pages to the snapshot thread worklists.
for (SortedDirtyPageSet::Iter iter = gMemoryInfo->mActiveDirty.begin(); !iter.done(); ++iter) {
AddDirtyPageToWorklist(iter.ref().mBase, iter.ref().mOriginal, iter.ref().mExecutable);
DirectWriteProtectMemory(iter.ref().mBase, PageSize, iter.ref().mExecutable);
}
gMemoryInfo->mActiveDirty.clear();
// Allow snapshot threads to resume execution.
gMemoryInfo->mSnapshotThreadsShouldIdle.ActivateEnd();
}
void
RestoreMemoryToLastSavedCheckpoint()
{
MOZ_RELEASE_ASSERT(Thread::CurrentIsMainThread());
MOZ_RELEASE_ASSERT(!gMemoryInfo->mMemoryChangesAllowed);
// Restore all dirty regions that have been modified since the last
// checkpoint was saved/restored.
for (SortedDirtyPageSet::Iter iter = gMemoryInfo->mActiveDirty.begin(); !iter.done(); ++iter) {
MemoryMove(iter.ref().mBase, iter.ref().mOriginal, PageSize);
FreePageCopy(iter.ref().mOriginal);
DirectWriteProtectMemory(iter.ref().mBase, PageSize, iter.ref().mExecutable);
}
gMemoryInfo->mActiveDirty.clear();
}
void
RestoreMemoryToLastSavedDiffCheckpoint()
{
MOZ_RELEASE_ASSERT(Thread::CurrentIsMainThread());
MOZ_RELEASE_ASSERT(!gMemoryInfo->mMemoryChangesAllowed);
MOZ_RELEASE_ASSERT(gMemoryInfo->mActiveDirty.empty());
// Wait while the snapshot threads restore all pages modified since the diff
// snapshot was recorded.
gMemoryInfo->mSnapshotThreadsShouldRestore.ActivateBegin();
gMemoryInfo->mSnapshotThreadsShouldRestore.ActivateEnd();
}
} // namespace recordreplay
} // namespace mozilla