зеркало из https://github.com/mozilla/gecko-dev.git
430 строки
16 KiB
C++
430 строки
16 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef MOZILLA_GFX_BASERECT_H_
|
|
#define MOZILLA_GFX_BASERECT_H_
|
|
|
|
#include <cmath>
|
|
#include <mozilla/Assertions.h>
|
|
#include <algorithm>
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
/**
|
|
* Rectangles have two interpretations: a set of (zero-size) points,
|
|
* and a rectangular area of the plane. Most rectangle operations behave
|
|
* the same no matter what interpretation is being used, but some operations
|
|
* differ:
|
|
* -- Equality tests behave differently. When a rectangle represents an area,
|
|
* all zero-width and zero-height rectangles are equal to each other since they
|
|
* represent the empty area. But when a rectangle represents a set of
|
|
* mathematical points, zero-width and zero-height rectangles can be unequal.
|
|
* -- The union operation can behave differently. When rectangles represent
|
|
* areas, taking the union of a zero-width or zero-height rectangle with
|
|
* another rectangle can just ignore the empty rectangle. But when rectangles
|
|
* represent sets of mathematical points, we may need to extend the latter
|
|
* rectangle to include the points of a zero-width or zero-height rectangle.
|
|
*
|
|
* To ensure that these interpretations are explicitly disambiguated, we
|
|
* deny access to the == and != operators and require use of IsEqualEdges and
|
|
* IsEqualInterior instead. Similarly we provide separate Union and UnionEdges
|
|
* methods.
|
|
*
|
|
* Do not use this class directly. Subclass it, pass that subclass as the
|
|
* Sub parameter, and only use that subclass.
|
|
*/
|
|
template <class T, class Sub, class Point, class SizeT, class Margin>
|
|
struct BaseRect {
|
|
T x, y, width, height;
|
|
|
|
// Constructors
|
|
BaseRect() : x(0), y(0), width(0), height(0) {}
|
|
BaseRect(const Point& aOrigin, const SizeT &aSize) :
|
|
x(aOrigin.x), y(aOrigin.y), width(aSize.width), height(aSize.height)
|
|
{
|
|
}
|
|
BaseRect(T aX, T aY, T aWidth, T aHeight) :
|
|
x(aX), y(aY), width(aWidth), height(aHeight)
|
|
{
|
|
}
|
|
|
|
// Emptiness. An empty rect is one that has no area, i.e. its height or width
|
|
// is <= 0
|
|
bool IsEmpty() const { return height <= 0 || width <= 0; }
|
|
void SetEmpty() { width = height = 0; }
|
|
|
|
// Returns true if this rectangle contains the interior of aRect. Always
|
|
// returns true if aRect is empty, and always returns false is aRect is
|
|
// nonempty but this rect is empty.
|
|
bool Contains(const Sub& aRect) const
|
|
{
|
|
return aRect.IsEmpty() ||
|
|
(x <= aRect.x && aRect.XMost() <= XMost() &&
|
|
y <= aRect.y && aRect.YMost() <= YMost());
|
|
}
|
|
// Returns true if this rectangle contains the rectangle (aX,aY,1,1).
|
|
bool Contains(T aX, T aY) const
|
|
{
|
|
return x <= aX && aX + 1 <= XMost() &&
|
|
y <= aY && aY + 1 <= YMost();
|
|
}
|
|
// Returns true if this rectangle contains the rectangle (aPoint.x,aPoint.y,1,1).
|
|
bool Contains(const Point& aPoint) const { return Contains(aPoint.x, aPoint.y); }
|
|
|
|
// Intersection. Returns TRUE if the receiver's area has non-empty
|
|
// intersection with aRect's area, and FALSE otherwise.
|
|
// Always returns false if aRect is empty or 'this' is empty.
|
|
bool Intersects(const Sub& aRect) const
|
|
{
|
|
return x < aRect.XMost() && aRect.x < XMost() &&
|
|
y < aRect.YMost() && aRect.y < YMost();
|
|
}
|
|
// Returns the rectangle containing the intersection of the points
|
|
// (including edges) of *this and aRect. If there are no points in that
|
|
// intersection, returns an empty rectangle with x/y set to the std::max of the x/y
|
|
// of *this and aRect.
|
|
Sub Intersect(const Sub& aRect) const
|
|
{
|
|
Sub result;
|
|
result.x = std::max(x, aRect.x);
|
|
result.y = std::max(y, aRect.y);
|
|
result.width = std::min(XMost(), aRect.XMost()) - result.x;
|
|
result.height = std::min(YMost(), aRect.YMost()) - result.y;
|
|
if (result.width < 0 || result.height < 0) {
|
|
result.SizeTo(0, 0);
|
|
}
|
|
return result;
|
|
}
|
|
// Sets *this to be the rectangle containing the intersection of the points
|
|
// (including edges) of *this and aRect. If there are no points in that
|
|
// intersection, sets *this to be an empty rectangle with x/y set to the std::max
|
|
// of the x/y of *this and aRect.
|
|
//
|
|
// 'this' can be the same object as either aRect1 or aRect2
|
|
bool IntersectRect(const Sub& aRect1, const Sub& aRect2)
|
|
{
|
|
*static_cast<Sub*>(this) = aRect1.Intersect(aRect2);
|
|
return !IsEmpty();
|
|
}
|
|
|
|
// Returns the smallest rectangle that contains both the area of both
|
|
// this and aRect2.
|
|
// Thus, empty input rectangles are ignored.
|
|
// If both rectangles are empty, returns this.
|
|
Sub Union(const Sub& aRect) const
|
|
{
|
|
if (IsEmpty()) {
|
|
return aRect;
|
|
} else if (aRect.IsEmpty()) {
|
|
return *static_cast<const Sub*>(this);
|
|
} else {
|
|
return UnionEdges(aRect);
|
|
}
|
|
}
|
|
// Returns the smallest rectangle that contains both the points (including
|
|
// edges) of both aRect1 and aRect2.
|
|
// Thus, empty input rectangles are allowed to affect the result.
|
|
Sub UnionEdges(const Sub& aRect) const
|
|
{
|
|
Sub result;
|
|
result.x = std::min(x, aRect.x);
|
|
result.y = std::min(y, aRect.y);
|
|
result.width = std::max(XMost(), aRect.XMost()) - result.x;
|
|
result.height = std::max(YMost(), aRect.YMost()) - result.y;
|
|
return result;
|
|
}
|
|
// Computes the smallest rectangle that contains both the area of both
|
|
// aRect1 and aRect2, and fills 'this' with the result.
|
|
// Thus, empty input rectangles are ignored.
|
|
// If both rectangles are empty, sets 'this' to aRect2.
|
|
//
|
|
// 'this' can be the same object as either aRect1 or aRect2
|
|
void UnionRect(const Sub& aRect1, const Sub& aRect2)
|
|
{
|
|
*static_cast<Sub*>(this) = aRect1.Union(aRect2);
|
|
}
|
|
|
|
// Computes the smallest rectangle that contains both the points (including
|
|
// edges) of both aRect1 and aRect2.
|
|
// Thus, empty input rectangles are allowed to affect the result.
|
|
//
|
|
// 'this' can be the same object as either aRect1 or aRect2
|
|
void UnionRectEdges(const Sub& aRect1, const Sub& aRect2)
|
|
{
|
|
*static_cast<Sub*>(this) = aRect1.UnionEdges(aRect2);
|
|
}
|
|
|
|
void SetRect(T aX, T aY, T aWidth, T aHeight)
|
|
{
|
|
x = aX; y = aY; width = aWidth; height = aHeight;
|
|
}
|
|
void SetRect(const Point& aPt, const SizeT& aSize)
|
|
{
|
|
SetRect(aPt.x, aPt.y, aSize.width, aSize.height);
|
|
}
|
|
void MoveTo(T aX, T aY) { x = aX; y = aY; }
|
|
void MoveTo(const Point& aPoint) { x = aPoint.x; y = aPoint.y; }
|
|
void MoveBy(T aDx, T aDy) { x += aDx; y += aDy; }
|
|
void MoveBy(const Point& aPoint) { x += aPoint.x; y += aPoint.y; }
|
|
void SizeTo(T aWidth, T aHeight) { width = aWidth; height = aHeight; }
|
|
void SizeTo(const SizeT& aSize) { width = aSize.width; height = aSize.height; }
|
|
|
|
void Inflate(T aD) { Inflate(aD, aD); }
|
|
void Inflate(T aDx, T aDy)
|
|
{
|
|
x -= aDx;
|
|
y -= aDy;
|
|
width += 2 * aDx;
|
|
height += 2 * aDy;
|
|
}
|
|
void Inflate(const Margin& aMargin)
|
|
{
|
|
x -= aMargin.left;
|
|
y -= aMargin.top;
|
|
width += aMargin.LeftRight();
|
|
height += aMargin.TopBottom();
|
|
}
|
|
void Inflate(const SizeT& aSize) { Inflate(aSize.width, aSize.height); }
|
|
|
|
void Deflate(T aD) { Deflate(aD, aD); }
|
|
void Deflate(T aDx, T aDy)
|
|
{
|
|
x += aDx;
|
|
y += aDy;
|
|
width = std::max(T(0), width - 2 * aDx);
|
|
height = std::max(T(0), height - 2 * aDy);
|
|
}
|
|
void Deflate(const Margin& aMargin)
|
|
{
|
|
x += aMargin.left;
|
|
y += aMargin.top;
|
|
width = std::max(T(0), width - aMargin.LeftRight());
|
|
height = std::max(T(0), height - aMargin.TopBottom());
|
|
}
|
|
void Deflate(const SizeT& aSize) { Deflate(aSize.width, aSize.height); }
|
|
|
|
// Return true if the rectangles contain the same set of points, including
|
|
// points on the edges.
|
|
// Use when we care about the exact x/y/width/height values being
|
|
// equal (i.e. we care about differences in empty rectangles).
|
|
bool IsEqualEdges(const Sub& aRect) const
|
|
{
|
|
return x == aRect.x && y == aRect.y &&
|
|
width == aRect.width && height == aRect.height;
|
|
}
|
|
// Return true if the rectangles contain the same area of the plane.
|
|
// Use when we do not care about differences in empty rectangles.
|
|
bool IsEqualInterior(const Sub& aRect) const
|
|
{
|
|
return IsEqualEdges(aRect) || (IsEmpty() && aRect.IsEmpty());
|
|
}
|
|
|
|
Sub operator+(const Point& aPoint) const
|
|
{
|
|
return Sub(x + aPoint.x, y + aPoint.y, width, height);
|
|
}
|
|
Sub operator-(const Point& aPoint) const
|
|
{
|
|
return Sub(x - aPoint.x, y - aPoint.y, width, height);
|
|
}
|
|
Sub& operator+=(const Point& aPoint)
|
|
{
|
|
MoveBy(aPoint);
|
|
return *static_cast<Sub*>(this);
|
|
}
|
|
Sub& operator-=(const Point& aPoint)
|
|
{
|
|
MoveBy(-aPoint);
|
|
return *static_cast<Sub*>(this);
|
|
}
|
|
|
|
// Find difference as a Margin
|
|
Margin operator-(const Sub& aRect) const
|
|
{
|
|
return Margin(aRect.x - x, aRect.y - y,
|
|
XMost() - aRect.XMost(), YMost() - aRect.YMost());
|
|
}
|
|
|
|
// Helpers for accessing the vertices
|
|
Point TopLeft() const { return Point(x, y); }
|
|
Point TopRight() const { return Point(XMost(), y); }
|
|
Point BottomLeft() const { return Point(x, YMost()); }
|
|
Point BottomRight() const { return Point(XMost(), YMost()); }
|
|
Point Center() const { return Point(x, y) + Point(width, height)/2; }
|
|
SizeT Size() const { return SizeT(width, height); }
|
|
|
|
// Helper methods for computing the extents
|
|
T X() const { return x; }
|
|
T Y() const { return y; }
|
|
T Width() const { return width; }
|
|
T Height() const { return height; }
|
|
T XMost() const { return x + width; }
|
|
T YMost() const { return y + height; }
|
|
|
|
// Moves one edge of the rect without moving the opposite edge.
|
|
void SetLeftEdge(T aX) {
|
|
MOZ_ASSERT(aX <= XMost());
|
|
width = XMost() - aX;
|
|
x = aX;
|
|
}
|
|
void SetRightEdge(T aXMost) {
|
|
MOZ_ASSERT(aXMost >= x);
|
|
width = aXMost - x;
|
|
}
|
|
void SetTopEdge(T aY) {
|
|
MOZ_ASSERT(aY <= YMost());
|
|
height = YMost() - aY;
|
|
y = aY;
|
|
}
|
|
void SetBottomEdge(T aYMost) {
|
|
MOZ_ASSERT(aYMost >= y);
|
|
height = aYMost - y;
|
|
}
|
|
|
|
// Round the rectangle edges to integer coordinates, such that the rounded
|
|
// rectangle has the same set of pixel centers as the original rectangle.
|
|
// Edges at offset 0.5 round up.
|
|
// Suitable for most places where integral device coordinates
|
|
// are needed, but note that any translation should be applied first to
|
|
// avoid pixel rounding errors.
|
|
// Note that this is *not* rounding to nearest integer if the values are negative.
|
|
// They are always rounding as floor(n + 0.5).
|
|
// See https://bugzilla.mozilla.org/show_bug.cgi?id=410748#c14
|
|
// If you need similar method which is using NS_round(), you should create
|
|
// new |RoundAwayFromZero()| method.
|
|
void Round()
|
|
{
|
|
T x0 = static_cast<T>(floor(T(X()) + 0.5));
|
|
T y0 = static_cast<T>(floor(T(Y()) + 0.5));
|
|
T x1 = static_cast<T>(floor(T(XMost()) + 0.5));
|
|
T y1 = static_cast<T>(floor(T(YMost()) + 0.5));
|
|
|
|
x = x0;
|
|
y = y0;
|
|
|
|
width = x1 - x0;
|
|
height = y1 - y0;
|
|
}
|
|
|
|
// Snap the rectangle edges to integer coordinates, such that the
|
|
// original rectangle contains the resulting rectangle.
|
|
void RoundIn()
|
|
{
|
|
T x0 = static_cast<T>(ceil(T(X())));
|
|
T y0 = static_cast<T>(ceil(T(Y())));
|
|
T x1 = static_cast<T>(floor(T(XMost())));
|
|
T y1 = static_cast<T>(floor(T(YMost())));
|
|
|
|
x = x0;
|
|
y = y0;
|
|
|
|
width = x1 - x0;
|
|
height = y1 - y0;
|
|
}
|
|
|
|
// Snap the rectangle edges to integer coordinates, such that the
|
|
// resulting rectangle contains the original rectangle.
|
|
void RoundOut()
|
|
{
|
|
T x0 = static_cast<T>(floor(T(X())));
|
|
T y0 = static_cast<T>(floor(T(Y())));
|
|
T x1 = static_cast<T>(ceil(T(XMost())));
|
|
T y1 = static_cast<T>(ceil(T(YMost())));
|
|
|
|
x = x0;
|
|
y = y0;
|
|
|
|
width = x1 - x0;
|
|
height = y1 - y0;
|
|
}
|
|
|
|
// Scale 'this' by aScale, converting coordinates to integers so that the result is
|
|
// the smallest integer-coordinate rectangle containing the unrounded result.
|
|
// Note: this can turn an empty rectangle into a non-empty rectangle
|
|
void ScaleRoundOut(double aScale) { ScaleRoundOut(aScale, aScale); }
|
|
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
|
|
// that the result is the smallest integer-coordinate rectangle containing the
|
|
// unrounded result.
|
|
// Note: this can turn an empty rectangle into a non-empty rectangle
|
|
void ScaleRoundOut(double aXScale, double aYScale)
|
|
{
|
|
T right = static_cast<T>(ceil(double(XMost()) * aXScale));
|
|
T bottom = static_cast<T>(ceil(double(YMost()) * aYScale));
|
|
x = static_cast<T>(floor(double(x) * aXScale));
|
|
y = static_cast<T>(floor(double(y) * aYScale));
|
|
width = right - x;
|
|
height = bottom - y;
|
|
}
|
|
// Scale 'this' by aScale, converting coordinates to integers so that the result is
|
|
// the largest integer-coordinate rectangle contained by the unrounded result.
|
|
void ScaleRoundIn(double aScale) { ScaleRoundIn(aScale, aScale); }
|
|
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
|
|
// that the result is the largest integer-coordinate rectangle contained by the
|
|
// unrounded result.
|
|
void ScaleRoundIn(double aXScale, double aYScale)
|
|
{
|
|
T right = static_cast<T>(floor(double(XMost()) * aXScale));
|
|
T bottom = static_cast<T>(floor(double(YMost()) * aYScale));
|
|
x = static_cast<T>(ceil(double(x) * aXScale));
|
|
y = static_cast<T>(ceil(double(y) * aYScale));
|
|
width = std::max<T>(0, right - x);
|
|
height = std::max<T>(0, bottom - y);
|
|
}
|
|
// Scale 'this' by 1/aScale, converting coordinates to integers so that the result is
|
|
// the smallest integer-coordinate rectangle containing the unrounded result.
|
|
// Note: this can turn an empty rectangle into a non-empty rectangle
|
|
void ScaleInverseRoundOut(double aScale) { ScaleInverseRoundOut(aScale, aScale); }
|
|
// Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers so
|
|
// that the result is the smallest integer-coordinate rectangle containing the
|
|
// unrounded result.
|
|
// Note: this can turn an empty rectangle into a non-empty rectangle
|
|
void ScaleInverseRoundOut(double aXScale, double aYScale)
|
|
{
|
|
T right = static_cast<T>(ceil(double(XMost()) / aXScale));
|
|
T bottom = static_cast<T>(ceil(double(YMost()) / aYScale));
|
|
x = static_cast<T>(floor(double(x) / aXScale));
|
|
y = static_cast<T>(floor(double(y) / aYScale));
|
|
width = right - x;
|
|
height = bottom - y;
|
|
}
|
|
// Scale 'this' by 1/aScale, converting coordinates to integers so that the result is
|
|
// the largest integer-coordinate rectangle contained by the unrounded result.
|
|
void ScaleInverseRoundIn(double aScale) { ScaleInverseRoundIn(aScale, aScale); }
|
|
// Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers so
|
|
// that the result is the largest integer-coordinate rectangle contained by the
|
|
// unrounded result.
|
|
void ScaleInverseRoundIn(double aXScale, double aYScale)
|
|
{
|
|
T right = static_cast<T>(floor(double(XMost()) / aXScale));
|
|
T bottom = static_cast<T>(floor(double(YMost()) / aYScale));
|
|
x = static_cast<T>(ceil(double(x) / aXScale));
|
|
y = static_cast<T>(ceil(double(y) / aYScale));
|
|
width = std::max<T>(0, right - x);
|
|
height = std::max<T>(0, bottom - y);
|
|
}
|
|
|
|
/**
|
|
* Clamp aPoint to this rectangle. It is allowed to end up on any
|
|
* edge of the rectangle.
|
|
*/
|
|
Point ClampPoint(const Point& aPoint) const
|
|
{
|
|
return Point(std::max(x, std::min(XMost(), aPoint.x)),
|
|
std::max(y, std::min(YMost(), aPoint.y)));
|
|
}
|
|
|
|
private:
|
|
// Do not use the default operator== or operator!= !
|
|
// Use IsEqualEdges or IsEqualInterior explicitly.
|
|
bool operator==(const Sub& aRect) const { return false; }
|
|
bool operator!=(const Sub& aRect) const { return false; }
|
|
};
|
|
|
|
}
|
|
}
|
|
|
|
#endif /* MOZILLA_GFX_BASERECT_H_ */
|