gecko-dev/startupcache/StartupCache.cpp

1584 строки
52 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "prio.h"
#include "PLDHashTable.h"
#include "mozilla/IOInterposer.h"
#include "mozilla/AppShutdown.h"
#include "mozilla/AutoMemMap.h"
#include "mozilla/IOBuffers.h"
#include "mozilla/ipc/FileDescriptor.h"
#include "mozilla/ipc/GeckoChildProcessHost.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/MemUtils.h"
#include "mozilla/MmapFaultHandler.h"
#include "mozilla/ResultExtensions.h"
#include "mozilla/scache/StartupCache.h"
#include "mozilla/scache/StartupCacheChild.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/ContentParent.h"
#include "mozilla/dom/ipc/MemMapSnapshot.h"
#include "nsClassHashtable.h"
#include "nsComponentManagerUtils.h"
#include "nsCRT.h"
#include "nsDirectoryServiceUtils.h"
#include "nsIClassInfo.h"
#include "nsIFile.h"
#include "nsIObserver.h"
#include "nsIOutputStream.h"
#include "nsISupports.h"
#include "nsITimer.h"
#include "mozilla/Omnijar.h"
#include "prenv.h"
#include "mozilla/Telemetry.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "nsIProtocolHandler.h"
#include "GeckoProfiler.h"
#include "nsAppRunner.h"
#if defined(XP_WIN)
# include <windows.h>
#endif
#ifdef IS_BIG_ENDIAN
# define SC_ENDIAN "big"
#else
# define SC_ENDIAN "little"
#endif
#if PR_BYTES_PER_WORD == 4
# define SC_WORDSIZE "4"
#else
# define SC_WORDSIZE "8"
#endif
#define DOC_ELEM_INSERTED_TOPIC "document-element-inserted"
#define CONTENT_DOCUMENT_LOADED_TOPIC "content-document-loaded"
using namespace mozilla::Compression;
namespace mozilla {
namespace scache {
// This is included here, rather than as a member of the StartupCache
// singleton, because including it there would mean we need to pull
// in the chromium IPC headers everywhere we reference StartupCache.h
static ipc::FileDescriptor sSharedDataFD;
MOZ_DEFINE_MALLOC_SIZE_OF(StartupCacheMallocSizeOf)
NS_IMETHODIMP
StartupCache::CollectReports(nsIHandleReportCallback* aHandleReport,
nsISupports* aData, bool aAnonymize) {
MutexAutoLock lock(mLock);
if (XRE_IsParentProcess()) {
MOZ_COLLECT_REPORT(
"explicit/startup-cache/mapping", KIND_NONHEAP, UNITS_BYTES,
mCacheData.nonHeapSizeOfExcludingThis(),
"Memory used to hold the mapping of the startup cache from file. "
"This memory is likely to be swapped out shortly after start-up.");
} else {
// In the child process, mCacheData actually points to the parent's
// mSharedData. We just want to report this once as explicit under
// the parent process's report.
MOZ_COLLECT_REPORT(
"startup-cache-shared-mapping", KIND_NONHEAP, UNITS_BYTES,
mCacheData.nonHeapSizeOfExcludingThis(),
"Memory used to hold the decompressed contents of part of the "
"startup cache, to be used by child processes. This memory is "
"likely to be swapped out shortly after start-up.");
}
MOZ_COLLECT_REPORT("explicit/startup-cache/data", KIND_HEAP, UNITS_BYTES,
HeapSizeOfIncludingThis(StartupCacheMallocSizeOf),
"Memory used by the startup cache for things other than "
"the file mapping.");
MOZ_COLLECT_REPORT(
"explicit/startup-cache/shared-mapping", KIND_NONHEAP, UNITS_BYTES,
mSharedData.nonHeapSizeOfExcludingThis(),
"Memory used to hold the decompressed contents of part of the "
"startup cache, to be used by child processes. This memory is "
"likely to be swapped out shortly after start-up.");
return NS_OK;
}
static const uint8_t MAGIC[] = "startupcache0002";
// This is a heuristic value for how much to reserve for mTable to avoid
// rehashing. This is not a hard limit in release builds, but it is in
// debug builds as it should be stable. If we exceed this number we should
// just increase it.
static const size_t STARTUP_CACHE_RESERVE_CAPACITY = 450;
// This is a hard limit which we will assert on, to ensure that we don't
// have some bug causing runaway cache growth.
static const size_t STARTUP_CACHE_MAX_CAPACITY = 5000;
// Not const because we change it for gtests.
static uint8_t STARTUP_CACHE_WRITE_TIMEOUT = 60;
#define STARTUP_CACHE_NAME "startupCache." SC_WORDSIZE "." SC_ENDIAN
static inline Result<Ok, nsresult> Write(PRFileDesc* fd, const void* data,
int32_t len) {
if (PR_Write(fd, data, len) != len) {
return Err(NS_ERROR_FAILURE);
}
return Ok();
}
static inline Result<Ok, nsresult> Seek(PRFileDesc* fd, int32_t offset) {
if (PR_Seek(fd, offset, PR_SEEK_SET) == -1) {
return Err(NS_ERROR_FAILURE);
}
return Ok();
}
static nsresult MapLZ4ErrorToNsresult(size_t aError) {
return NS_ERROR_FAILURE;
}
StartupCache* StartupCache::GetSingleton() {
return StartupCache::gStartupCache;
}
void StartupCache::DeleteSingleton() { StartupCache::gStartupCache = nullptr; }
nsresult StartupCache::PartialInitSingleton(nsIFile* aProfileLocalDir) {
#ifdef MOZ_DISABLE_STARTUPCACHE
return NS_OK;
#else
if (!XRE_IsParentProcess()) {
return NS_OK;
}
nsresult rv;
StartupCache::gStartupCache = new StartupCache();
rv = StartupCache::gStartupCache->PartialInit(aProfileLocalDir);
if (NS_FAILED(rv)) {
StartupCache::gStartupCache = nullptr;
}
return rv;
#endif
}
nsresult StartupCache::InitChildSingleton(char* aScacheHandleStr,
char* aScacheSizeStr) {
#ifdef MOZ_DISABLE_STARTUPCACHE
return NS_OK;
#else
MOZ_ASSERT(!XRE_IsParentProcess());
nsresult rv;
StartupCache::gStartupCache = new StartupCache();
rv = StartupCache::gStartupCache->ParseStartupCacheCmdLineArgs(
aScacheHandleStr, aScacheSizeStr);
if (NS_FAILED(rv)) {
StartupCache::gStartupCache = nullptr;
}
return rv;
#endif
}
nsresult StartupCache::FullyInitSingleton() {
if (!StartupCache::gStartupCache) {
return NS_OK;
}
return StartupCache::gStartupCache->FullyInit();
}
StaticRefPtr<StartupCache> StartupCache::gStartupCache;
ProcessType sProcessType;
bool StartupCache::gIgnoreDiskCache;
bool StartupCache::gFoundDiskCacheOnInit;
NS_IMPL_ISUPPORTS(StartupCache, nsIMemoryReporter)
StartupCache::StartupCache()
: mLock("StartupCache::mLock"),
mDirty(false),
mWrittenOnce(false),
mCurTableReferenced(false),
mLoaded(false),
mFullyInitialized(false),
mRequestedCount(0),
mPrefetchSize(0),
mSharedDataSize(0),
mCacheEntriesBaseOffset(0),
mPrefetchThread(nullptr) {}
StartupCache::~StartupCache() { UnregisterWeakMemoryReporter(this); }
nsresult StartupCache::InitChild(StartupCacheChild* cacheChild) {
mChildActor = cacheChild;
sProcessType =
GetChildProcessType(dom::ContentChild::GetSingleton()->GetRemoteType());
mObserverService = do_GetService("@mozilla.org/observer-service;1");
if (!mObserverService) {
NS_WARNING("Could not get observerService.");
return NS_ERROR_UNEXPECTED;
}
mListener = new StartupCacheListener();
nsresult rv = mObserverService->AddObserver(
mListener, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false);
NS_ENSURE_SUCCESS(rv, rv);
rv = mObserverService->AddObserver(mListener, "startupcache-invalidate",
false);
NS_ENSURE_SUCCESS(rv, rv);
if (mChildActor) {
if (sProcessType == ProcessType::PrivilegedAbout) {
// Since we control all of the documents loaded in the privileged
// content process, we can increase the window of active time for the
// StartupCache to include the scripts that are loaded until the
// first document finishes loading.
mContentStartupFinishedTopic.AssignLiteral(CONTENT_DOCUMENT_LOADED_TOPIC);
} else {
// In the child process, we need to freeze the startup cache before any
// untrusted code has been executed. The insertion of the first DOM
// document element may sometimes be earlier than is ideal, but at
// least it should always be safe.
mContentStartupFinishedTopic.AssignLiteral(DOC_ELEM_INSERTED_TOPIC);
}
mObserverService->AddObserver(mListener, mContentStartupFinishedTopic.get(),
false);
}
mFullyInitialized = true;
RegisterWeakMemoryReporter(this);
return NS_OK;
}
nsresult StartupCache::PartialInit(nsIFile* aProfileLocalDir) {
MutexAutoLock lock(mLock);
// workaround for bug 653936
nsCOMPtr<nsIProtocolHandler> jarInitializer(
do_GetService(NS_NETWORK_PROTOCOL_CONTRACTID_PREFIX "jar"));
sProcessType = ProcessType::Parent;
nsresult rv;
if (mozilla::RunningGTest()) {
STARTUP_CACHE_WRITE_TIMEOUT = 3;
}
// This allows to override the startup cache filename
// which is useful from xpcshell, when there is no ProfLDS directory to keep
// cache in.
char* env = PR_GetEnv("MOZ_STARTUP_CACHE");
if (env && *env) {
rv = NS_NewLocalFile(NS_ConvertUTF8toUTF16(env), false,
getter_AddRefs(mFile));
} else if (aProfileLocalDir) {
nsCOMPtr<nsIFile> file;
rv = aProfileLocalDir->Clone(getter_AddRefs(file));
if (NS_FAILED(rv)) {
// return silently, this will fail in mochitests's xpcshell process.
return rv;
}
rv = file->AppendNative("startupCache"_ns);
NS_ENSURE_SUCCESS(rv, rv);
// Try to create the directory if it's not there yet
rv = file->Create(nsIFile::DIRECTORY_TYPE, 0777);
if (NS_FAILED(rv) && rv != NS_ERROR_FILE_ALREADY_EXISTS) return rv;
rv = file->AppendNative(nsLiteralCString(STARTUP_CACHE_NAME));
NS_ENSURE_SUCCESS(rv, rv);
mFile = file;
} else {
return NS_ERROR_INVALID_ARG;
}
NS_ENSURE_TRUE(mFile, NS_ERROR_UNEXPECTED);
mDecompressionContext = MakeUnique<LZ4FrameDecompressionContext>(true);
Unused << mCacheData.init(mFile);
auto result = LoadArchive();
rv = result.isErr() ? result.unwrapErr() : NS_OK;
gFoundDiskCacheOnInit = rv != NS_ERROR_FILE_NOT_FOUND;
// Sometimes we don't have a cache yet, that's ok.
// If it's corrupted, just remove it and start over.
if (gIgnoreDiskCache || (NS_FAILED(rv) && rv != NS_ERROR_FILE_NOT_FOUND)) {
NS_WARNING("Failed to load startupcache file correctly, removing!");
InvalidateCacheImpl();
}
return NS_OK;
}
nsresult StartupCache::FullyInit() {
mObserverService = do_GetService("@mozilla.org/observer-service;1");
if (!mObserverService) {
NS_WARNING("Could not get observerService.");
return NS_ERROR_UNEXPECTED;
}
mListener = new StartupCacheListener();
nsresult rv = mObserverService->AddObserver(
mListener, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = mObserverService->AddObserver(mListener, "startupcache-invalidate",
false);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
RegisterWeakMemoryReporter(this);
mFullyInitialized = true;
return NS_OK;
}
void StartupCache::InitContentChild(dom::ContentParent& parent) {
auto* cache = GetSingleton();
if (!cache) {
return;
}
Unused << parent.SendPStartupCacheConstructor();
}
void StartupCache::AddStartupCacheCmdLineArgs(
mozilla::ipc::GeckoChildProcessHost& procHost,
const nsACString& aRemoteType, std::vector<std::string>& aExtraOpts) {
#ifndef ANDROID
// Don't send original cache data to new processes if the cache has been
// invalidated.
if (!mSharedData.initialized() || gIgnoreDiskCache) {
auto processType = GetChildProcessType(aRemoteType);
bool wantScriptData = !mInitializedProcesses.contains(processType);
mInitializedProcesses += processType;
if (!wantScriptData) {
aExtraOpts.push_back("-noScache");
}
return;
}
// Formats a pointer or pointer-sized-integer as a string suitable for
// passing in an arguments list.
auto formatPtrArg = [](auto arg) {
return nsPrintfCString("%zu", uintptr_t(arg));
};
if (!mSharedDataHandle) {
auto fd = mSharedData.cloneHandle();
MOZ_ASSERT(fd.IsValid());
mSharedDataHandle = fd.TakePlatformHandle();
}
# if defined(XP_WIN)
procHost.AddHandleToShare(mSharedDataHandle.get());
aExtraOpts.push_back("-scacheHandle");
aExtraOpts.push_back(formatPtrArg(mSharedDataHandle.get()).get());
# else
procHost.AddFdToRemap(mSharedDataHandle.get(), kStartupCacheFd);
# endif
aExtraOpts.push_back("-scacheSize");
aExtraOpts.push_back(formatPtrArg(mSharedDataSize).get());
#endif
}
nsresult StartupCache::ParseStartupCacheCmdLineArgs(char* aScacheHandleStr,
char* aScacheSizeStr) {
// Parses an arg containing a pointer-sized-integer.
auto parseUIntPtrArg = [](char*& aArg) {
// ContentParent uses %zu to print a word-sized unsigned integer. So
// even though strtoull() returns a long long int, it will fit in a
// uintptr_t.
return uintptr_t(strtoull(aArg, &aArg, 10));
};
MutexAutoLock lock(mLock);
if (aScacheHandleStr) {
#ifdef XP_WIN
auto parseHandleArg = [&](char*& aArg) {
return HANDLE(parseUIntPtrArg(aArg));
};
sSharedDataFD = FileDescriptor(parseHandleArg(aScacheHandleStr));
#endif
#ifdef XP_UNIX
sSharedDataFD = FileDescriptor(UniqueFileHandle(kStartupCacheFd));
#endif
MOZ_TRY(mCacheData.initWithHandle(sSharedDataFD,
parseUIntPtrArg(aScacheSizeStr)));
mCacheData.setPersistent();
}
nsresult rv;
auto result = LoadArchive();
rv = result.isErr() ? result.unwrapErr() : NS_OK;
// Sometimes we don't have a cache yet, that's ok.
// If it's corrupted, just remove it and start over.
if (gIgnoreDiskCache || (NS_FAILED(rv) && rv != NS_ERROR_FILE_NOT_FOUND)) {
NS_WARNING("Failed to load startupcache file correctly, removing!");
InvalidateCacheImpl();
}
return NS_OK;
}
ProcessType StartupCache::GetChildProcessType(const nsACString& remoteType) {
if (remoteType == EXTENSION_REMOTE_TYPE) {
return ProcessType::Extension;
}
if (remoteType == PRIVILEGEDABOUT_REMOTE_TYPE) {
return ProcessType::PrivilegedAbout;
}
return ProcessType::Web;
}
void StartupCache::StartPrefetchMemoryThread() {
// XXX: It would be great for this to not create its own thread, unfortunately
// there doesn't seem to be an existing thread that makes sense for this, so
// barring a coordinated global scheduling system this is the best we get.
mPrefetchThread = PR_CreateThread(
PR_USER_THREAD, StartupCache::ThreadedPrefetch, this, PR_PRIORITY_NORMAL,
PR_GLOBAL_THREAD, PR_JOINABLE_THREAD, 256 * 1024);
}
Result<Ok, nsresult> StartupCache::LoadEntriesOffDisk() {
mLock.AssertCurrentThreadOwns();
auto size = mCacheData.size();
uint32_t headerSize;
uint32_t prefetchSize;
size_t headerOffset =
sizeof(MAGIC) + sizeof(headerSize) + sizeof(prefetchSize);
if (size < headerOffset) {
return Err(NS_ERROR_UNEXPECTED);
}
auto data = mCacheData.get<uint8_t>();
auto end = data + size;
auto cleanup = MakeScopeExit([&]() {
WaitOnPrefetchThread();
mTable.clear();
mCacheData.reset();
mSharedDataSize = 0;
});
MMAP_FAULT_HANDLER_BEGIN_BUFFER(data.get(), size)
if (memcmp(MAGIC, data.get(), sizeof(MAGIC))) {
return Err(NS_ERROR_UNEXPECTED);
}
data += sizeof(MAGIC);
headerSize = LittleEndian::readUint32(data.get());
data += sizeof(headerSize);
prefetchSize = LittleEndian::readUint32(data.get());
data += sizeof(prefetchSize);
if (size < prefetchSize) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
if (size < headerOffset + headerSize) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
if (CanPrefetchMemory()) {
mPrefetchSize = prefetchSize;
StartPrefetchMemoryThread();
}
Range<uint8_t> header(data, data + headerSize);
data += headerSize;
uint32_t numSharedEntries = 0;
mCacheEntriesBaseOffset = headerOffset + headerSize;
{
if (!mTable.reserve(STARTUP_CACHE_RESERVE_CAPACITY)) {
return Err(NS_ERROR_UNEXPECTED);
}
loader::InputBuffer buf(header);
uint32_t currentOffset = 0;
mSharedDataSize = sizeof(MAGIC) + sizeof(numSharedEntries);
while (!buf.finished()) {
uint32_t offset = 0;
uint32_t compressedSize = 0;
uint32_t uncompressedSize = 0;
uint8_t sharedToChild = 0;
uint16_t keyLenWithNullTerm;
buf.codeUint32(offset);
buf.codeUint32(compressedSize);
buf.codeUint32(uncompressedSize);
buf.codeUint8(sharedToChild);
buf.codeUint16(keyLenWithNullTerm);
if (!buf.checkCapacity(keyLenWithNullTerm)) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
const char* keyBuf =
reinterpret_cast<const char*>(buf.read(keyLenWithNullTerm));
if (keyBuf[keyLenWithNullTerm - 1] != 0) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
MaybeOwnedCharPtr key(MakeUnique<char[]>(keyLenWithNullTerm));
memcpy(key.get(), keyBuf, keyLenWithNullTerm);
if (offset + compressedSize > end - data) {
if (XRE_IsParentProcess()) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
// If we're not the parent process, then we received a buffer with
// only data that was already prefetched. If that's the case, then
// just break because we've hit the end of that range.
break;
}
EnumSet<StartupCacheEntryFlags> entryFlags;
if (sharedToChild) {
// We encode the key as a u16 indicating the length, followed by the
// contents of the string, plus a null terminator (to simplify things
// by using existing c-string hashers). We encode the uncompressed data
// as simply a u32 length, followed by the contents of the string.
size_t sharedEntrySize = sizeof(uint16_t) + keyLenWithNullTerm +
sizeof(uint32_t) + uncompressedSize;
numSharedEntries++;
mSharedDataSize += sharedEntrySize;
entryFlags += StartupCacheEntryFlags::Shared;
}
// Make sure offsets match what we'd expect based on script ordering and
// size, as a basic sanity check.
if (offset != currentOffset) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
currentOffset += compressedSize;
// We could use mTable.putNew if we knew the file we're loading weren't
// corrupt. However, we don't know that, so check if the key already
// exists. If it does, we know the file must be corrupt.
decltype(mTable)::AddPtr p = mTable.lookupForAdd(key.get());
if (p) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
if (!mTable.add(p, std::move(key),
StartupCacheEntry(offset, compressedSize,
uncompressedSize, entryFlags))) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
}
if (buf.error()) {
MOZ_ASSERT(false, "StartupCache file is corrupt.");
return Err(NS_ERROR_UNEXPECTED);
}
// We only get to init mSharedData once - we can't edit it after we created
// it, otherwise we'd be pulling memory out from underneath our child
// processes.
if (!mSharedData.initialized()) {
ipc::MemMapSnapshot mem;
if (mem.Init(mSharedDataSize).isErr()) {
MOZ_ASSERT(false, "Failed to init shared StartupCache data.");
return Err(NS_ERROR_UNEXPECTED);
}
auto ptr = mem.Get<uint8_t>();
Range<uint8_t> ptrRange(ptr, ptr + mSharedDataSize);
loader::PreallocatedOutputBuffer sharedBuf(ptrRange);
if (sizeof(MAGIC) > sharedBuf.remainingCapacity()) {
MOZ_ASSERT(false);
return Err(NS_ERROR_UNEXPECTED);
}
uint8_t* sharedMagic = sharedBuf.write(sizeof(MAGIC));
memcpy(sharedMagic, MAGIC, sizeof(MAGIC));
sharedBuf.codeUint32(numSharedEntries);
for (auto iter = mTable.iter(); !iter.done(); iter.next()) {
const auto& key = iter.get().key();
auto& value = iter.get().value();
if (!value.mFlags.contains(StartupCacheEntryFlags::Shared)) {
continue;
}
uint16_t keyLenWithNullTerm =
strnlen(key.get(), kStartupCacheKeyLengthCap) + 1;
if (keyLenWithNullTerm >= kStartupCacheKeyLengthCap) {
MOZ_ASSERT(false, "StartupCache key too large or not terminated.");
return Err(NS_ERROR_UNEXPECTED);
}
sharedBuf.codeUint16(keyLenWithNullTerm);
if (!sharedBuf.checkCapacity(keyLenWithNullTerm)) {
MOZ_ASSERT(false, "Exceeded shared StartupCache buffer size.");
return Err(NS_ERROR_UNEXPECTED);
}
uint8_t* keyBuffer = sharedBuf.write(keyLenWithNullTerm);
memcpy(keyBuffer, key.get(), keyLenWithNullTerm);
sharedBuf.codeUint32(value.mUncompressedSize);
if (value.mUncompressedSize > sharedBuf.remainingCapacity()) {
MOZ_ASSERT(false);
return Err(NS_ERROR_UNEXPECTED);
}
auto sharedDataOffset = sharedBuf.cursor();
auto decompressionBuffer = MaybeOwnedCharPtr(
(char*)(sharedBuf.write(value.mUncompressedSize)));
if (sharedBuf.error()) {
MOZ_ASSERT(false, "Failed serializing to shared memory.");
return Err(NS_ERROR_UNEXPECTED);
}
// NOTE: we decompress the entry here, but we don't want to assign mData
// for the table entry, because all we have is a pointer into the
// ipc::MemMapSnapshot's buffer - once we've finalized the snapshot with
// mem.Finalize below, we can cut pointers into mSharedData's buffer.
// This happens inside GetBuffer, using value.mSharedDataOffset which we
// set here.
MOZ_TRY(DecompressEntry(value, decompressionBuffer));
value.mSharedDataOffset = sharedDataOffset;
}
if (mem.Finalize(mSharedData).isErr()) {
MOZ_ASSERT(false, "Failed to freeze shared StartupCache data.");
return Err(NS_ERROR_UNEXPECTED);
}
mSharedData.setPersistent();
}
}
MMAP_FAULT_HANDLER_CATCH(Err(NS_ERROR_UNEXPECTED))
cleanup.release();
return Ok();
}
Result<Ok, nsresult> StartupCache::LoadEntriesFromSharedMemory() {
mLock.AssertCurrentThreadOwns();
auto size = mCacheData.size();
auto start = mCacheData.get<uint8_t>();
auto end = start + size;
Range<uint8_t> range(start, end);
loader::InputBuffer buf(range);
if (sizeof(MAGIC) > buf.remainingCapacity()) {
MOZ_ASSERT(false, "Bad shared StartupCache buffer.");
return Err(NS_ERROR_UNEXPECTED);
}
const uint8_t* magic = buf.read(sizeof(MAGIC));
if (memcmp(magic, MAGIC, sizeof(MAGIC)) != 0) {
MOZ_ASSERT(false, "Bad shared StartupCache buffer.");
return Err(NS_ERROR_UNEXPECTED);
}
uint32_t numEntries = 0;
if (!buf.codeUint32(numEntries) || numEntries > STARTUP_CACHE_MAX_CAPACITY) {
MOZ_ASSERT(false, "Bad number of entries in shared StartupCache buffer.");
return Err(NS_ERROR_UNEXPECTED);
}
if (!mTable.reserve(STARTUP_CACHE_RESERVE_CAPACITY)) {
return Err(NS_ERROR_UNEXPECTED);
}
uint32_t entriesSeen = 0;
while (!buf.finished()) {
entriesSeen++;
if (entriesSeen > numEntries) {
MOZ_ASSERT(false, "More entries than expected in StartupCache buffer.");
return Err(NS_ERROR_UNEXPECTED);
}
uint16_t keyLenWithNullTerm = 0;
buf.codeUint16(keyLenWithNullTerm);
// NOTE: this will fail if the above codeUint16 call failed.
if (!buf.checkCapacity(keyLenWithNullTerm)) {
MOZ_ASSERT(false, "Corrupt StartupCache shared buffer.");
return Err(NS_ERROR_UNEXPECTED);
}
MaybeOwnedCharPtr key(const_cast<char*>(
reinterpret_cast<const char*>(buf.read(keyLenWithNullTerm))));
if (key.get()[keyLenWithNullTerm - 1] != 0) {
MOZ_ASSERT(false, "StartupCache key was not null-terminated");
return Err(NS_ERROR_UNEXPECTED);
}
uint32_t uncompressedSize = 0;
buf.codeUint32(uncompressedSize);
if (!buf.checkCapacity(uncompressedSize)) {
MOZ_ASSERT(false,
"StartupCache entry larger than remaining buffer size.");
return Err(NS_ERROR_UNEXPECTED);
}
const char* data =
reinterpret_cast<const char*>(buf.read(uncompressedSize));
StartupCacheEntry entry(0, 0, uncompressedSize,
StartupCacheEntryFlags::Shared);
// The const cast is unfortunate here. We have runtime guarantees via memory
// protections that mData will not be modified, but we do not have compile
// time guarantees.
entry.mData = MaybeOwnedCharPtr(const_cast<char*>(data));
if (!mTable.putNew(std::move(key), std::move(entry))) {
return Err(NS_ERROR_UNEXPECTED);
}
}
return Ok();
}
/**
* LoadArchive can only be called from the main thread.
*/
Result<Ok, nsresult> StartupCache::LoadArchive() {
mLock.AssertCurrentThreadOwns();
if (gIgnoreDiskCache) {
return Err(NS_ERROR_FAILURE);
}
mLoaded = true;
if (!mCacheData.initialized()) {
return Err(NS_ERROR_FILE_NOT_FOUND);
}
if (XRE_IsParentProcess()) {
MOZ_TRY(LoadEntriesOffDisk());
} else {
MOZ_TRY(LoadEntriesFromSharedMemory());
}
return Ok();
}
Result<Ok, nsresult> StartupCache::DecompressEntry(StartupCacheEntry& aEntry,
MaybeOwnedCharPtr& aBuffer) {
MOZ_ASSERT(XRE_IsParentProcess());
mLock.AssertCurrentThreadOwns();
size_t totalRead = 0;
size_t totalWritten = 0;
Span<const char> compressed = Span(
mCacheData.get<char>().get() + mCacheEntriesBaseOffset + aEntry.mOffset,
aEntry.mCompressedSize);
Span<char> uncompressed = Span(aBuffer.get(), aEntry.mUncompressedSize);
bool finished = false;
while (!finished) {
auto result = mDecompressionContext->Decompress(
uncompressed.From(totalWritten), compressed.From(totalRead));
if (NS_WARN_IF(result.isErr())) {
InvalidateCacheImpl();
return Err(NS_ERROR_UNEXPECTED);
}
auto decompressionResult = result.unwrap();
totalRead += decompressionResult.mSizeRead;
totalWritten += decompressionResult.mSizeWritten;
finished = decompressionResult.mFinished;
}
return Ok();
}
bool StartupCache::HasEntry(const char* id) {
AUTO_PROFILER_LABEL("StartupCache::HasEntry", OTHER);
MOZ_ASSERT(
strnlen(id, kStartupCacheKeyLengthCap) + 1 < kStartupCacheKeyLengthCap,
"StartupCache key too large or not terminated.");
// The lock could be held here by the write thread, which could take a while.
// scache reads/writes are never critical enough to block waiting for the
// entire cache to be written to disk, so if we can't acquire the lock, we
// just exit.
Maybe<MutexAutoLock> tryLock;
if (!MutexAutoLock::TryMake(mLock, tryLock)) {
return false;
}
bool result = mTable.has(id);
return result;
}
nsresult StartupCache::GetBuffer(const char* id, const char** outbuf,
uint32_t* length) {
Telemetry::LABELS_STARTUP_CACHE_REQUESTS label =
Telemetry::LABELS_STARTUP_CACHE_REQUESTS::Miss;
auto telemetry =
MakeScopeExit([&label] { Telemetry::AccumulateCategorical(label); });
// The lock could be held here by the write thread, which could take a while.
// scache reads/writes are never critical enough to block waiting for the
// entire cache to be written to disk, so if we can't acquire the lock, we
// just exit.
Maybe<MutexAutoLock> tryLock;
if (!MutexAutoLock::TryMake(mLock, tryLock)) {
return NS_ERROR_NOT_AVAILABLE;
}
if (!mLoaded) {
return NS_ERROR_NOT_AVAILABLE;
}
MOZ_ASSERT(
strnlen(id, kStartupCacheKeyLengthCap) + 1 < kStartupCacheKeyLengthCap,
"StartupCache key too large or not terminated.");
decltype(mTable)::Ptr p = mTable.lookup(id);
if (!p) {
return NS_ERROR_NOT_AVAILABLE;
}
// Track that something holds a reference into mTable, so we know to hold
// onto it in case the cache is invalidated.
mCurTableReferenced = true;
auto& value = p->value();
if (value.mData) {
label = Telemetry::LABELS_STARTUP_CACHE_REQUESTS::HitMemory;
} else if (value.mSharedDataOffset != kStartupcacheEntryNotInSharedData) {
if (!XRE_IsParentProcess() || !mSharedData.initialized()) {
return NS_ERROR_NOT_AVAILABLE;
}
value.mData = MaybeOwnedCharPtr(mSharedData.get<char>().get() +
value.mSharedDataOffset);
label = Telemetry::LABELS_STARTUP_CACHE_REQUESTS::HitMemory;
} else {
// We do not decompress entries in child processes: we receive them
// uncompressed in shared memory.
if (!XRE_IsParentProcess() || !mCacheData.initialized()) {
return NS_ERROR_NOT_AVAILABLE;
}
MMAP_FAULT_HANDLER_BEGIN_BUFFER(value.mData.get(), value.mUncompressedSize)
auto decompressionBuffer = MaybeOwnedCharPtr(value.mUncompressedSize);
auto decompressionResult = DecompressEntry(value, decompressionBuffer);
if (decompressionResult.isErr()) {
return decompressionResult.unwrapErr();
}
value.mData = std::move(decompressionBuffer);
MMAP_FAULT_HANDLER_CATCH(NS_ERROR_FAILURE)
label = Telemetry::LABELS_STARTUP_CACHE_REQUESTS::HitDisk;
}
if (value.mRequestedOrder == kStartupCacheEntryNotRequested) {
value.mRequestedOrder = ++mRequestedCount;
MOZ_ASSERT(mRequestedCount <= mTable.count(),
"Somehow we requested more StartupCache items than exist.");
ResetStartupWriteTimerCheckingReadCount();
}
*outbuf = value.mData.get();
*length = value.mUncompressedSize;
if (value.mData.IsOwned()) {
// We're returning a raw reference to this entry's owned buffer, so we can
// no longer free that buffer.
value.mFlags += StartupCacheEntryFlags::DoNotFree;
}
return NS_OK;
}
// Client gives ownership of inbuf.
nsresult StartupCache::PutBuffer(const char* id, UniquePtr<char[]>&& inbuf,
uint32_t len, bool isFromChildProcess) {
// We use this to update the RequestedByChild flag.
MOZ_RELEASE_ASSERT(
inbuf || isFromChildProcess,
"Null input to PutBuffer should only be used by child actor.");
if (!XRE_IsParentProcess() && !mChildActor && mFullyInitialized) {
return NS_ERROR_NOT_AVAILABLE;
}
// If we've already written to disk, just go ahead and exit. There's no point
// in putting something in the cache since we're not going to write again.
if (mWrittenOnce) {
return NS_ERROR_NOT_AVAILABLE;
}
// The lock could be held here by the write thread, which could take a while.
// scache reads/writes are never critical enough to block waiting for the
// entire cache to be written to disk, so if we can't acquire the lock, we
// just exit.
Maybe<MutexAutoLock> tryLock;
if (!MutexAutoLock::TryMake(mLock, tryLock)) {
return NS_ERROR_NOT_AVAILABLE;
}
if (!mLoaded) {
return NS_ERROR_NOT_AVAILABLE;
}
uint32_t keyLenWithNullTerm = strnlen(id, kStartupCacheKeyLengthCap) + 1;
if (keyLenWithNullTerm >= kStartupCacheKeyLengthCap) {
MOZ_ASSERT(false, "StartupCache key too large or not terminated.");
return NS_ERROR_UNEXPECTED;
}
decltype(mTable)::AddPtr p = mTable.lookupForAdd(id);
if (p) {
if (isFromChildProcess) {
auto& value = p->value();
value.mFlags += StartupCacheEntryFlags::RequestedByChild;
if (value.mRequestedOrder == kStartupCacheEntryNotRequested) {
value.mRequestedOrder = ++mRequestedCount;
MOZ_ASSERT(mRequestedCount <= mTable.count(),
"Somehow we requested more StartupCache items than exist.");
ResetStartupWriteTimerCheckingReadCount();
}
} else {
NS_WARNING("Existing entry in StartupCache.");
}
// Double-caching is undesirable but not an error.
return NS_OK;
}
if (!inbuf) {
MOZ_ASSERT(false,
"Should only PutBuffer with null buffer for existing entries.");
return NS_ERROR_UNEXPECTED;
}
EnumSet<StartupCacheEntryFlags> flags =
StartupCacheEntryFlags::AddedThisSession;
if (isFromChildProcess) {
flags += StartupCacheEntryFlags::RequestedByChild;
}
UniquePtr<char[]> key = MakeUnique<char[]>(keyLenWithNullTerm);
memcpy(key.get(), id, keyLenWithNullTerm);
// add returns false on alloc failure - in the very unlikely event we hit
// that and aren't going to crash elsewhere, there's no reason we need to
// crash here.
if (mTable.add(
p, MaybeOwnedCharPtr(std::move(key)),
StartupCacheEntry(std::move(inbuf), len, ++mRequestedCount, flags))) {
return ResetStartupWriteTimerImpl();
}
MOZ_DIAGNOSTIC_ASSERT(mTable.count() < STARTUP_CACHE_MAX_CAPACITY,
"Too many StartupCache entries.");
return NS_OK;
}
size_t StartupCache::HeapSizeOfIncludingThis(
mozilla::MallocSizeOf aMallocSizeOf) const {
// This function could measure more members, but they haven't been found by
// DMD to be significant. They can be added later if necessary.
size_t n = aMallocSizeOf(this);
n += mTable.shallowSizeOfExcludingThis(aMallocSizeOf);
for (auto iter = mTable.iter(); !iter.done(); iter.next()) {
if (iter.get().value().mData) {
n += aMallocSizeOf(iter.get().value().mData.get());
}
n += iter.get().key().SizeOfExcludingThis(aMallocSizeOf);
}
return n;
}
/**
* WriteToDisk writes the cache out to disk. Callers of WriteToDisk need to call
* WaitOnWriteComplete to make sure there isn't a write
* happening on another thread
*/
Result<Ok, nsresult> StartupCache::WriteToDisk() {
MOZ_ASSERT(XRE_IsParentProcess());
mLock.AssertCurrentThreadOwns();
if (!mDirty || mWrittenOnce) {
return Ok();
}
if (!mFile) {
return Err(NS_ERROR_UNEXPECTED);
}
nsCOMPtr<nsIFile> tmpFile;
nsresult rv = mFile->Clone(getter_AddRefs(tmpFile));
if (NS_FAILED(rv)) {
return Err(NS_ERROR_UNEXPECTED);
}
nsAutoCString leafName;
mFile->GetNativeLeafName(leafName);
tmpFile->SetNativeLeafName(leafName + "-tmp"_ns);
{
AutoFDClose fd;
MOZ_TRY(tmpFile->OpenNSPRFileDesc(PR_WRONLY | PR_CREATE_FILE | PR_TRUNCATE,
0644, &fd.rwget()));
nsTArray<std::pair<const MaybeOwnedCharPtr*, StartupCacheEntry*>> entries;
for (auto iter = mTable.iter(); !iter.done(); iter.next()) {
entries.AppendElement(
std::make_pair(&iter.get().key(), &iter.get().value()));
}
if (entries.IsEmpty()) {
return Ok();
}
entries.Sort(StartupCacheEntry::Comparator());
loader::OutputBuffer buf;
for (auto& e : entries) {
const auto* key = e.first;
auto* value = e.second;
auto uncompressedSize = value->mUncompressedSize;
uint8_t sharedToChild =
value->mFlags.contains(StartupCacheEntryFlags::RequestedByChild);
// Set the mHeaderOffsetInFile so we can go back and edit the offset.
value->mHeaderOffsetInFile = buf.cursor();
// Write a 0 offset/compressed size as a placeholder until we get the real
// offset after compressing.
buf.codeUint32(0);
buf.codeUint32(0);
buf.codeUint32(uncompressedSize);
buf.codeUint8(sharedToChild);
uint32_t keyLenWithNullTerm =
strnlen(key->get(), kStartupCacheKeyLengthCap) + 1;
if (keyLenWithNullTerm >= kStartupCacheKeyLengthCap) {
MOZ_ASSERT(false, "StartupCache key too large or not terminated.");
return Err(NS_ERROR_UNEXPECTED);
}
buf.codeUint16(keyLenWithNullTerm);
char* keyBuf = reinterpret_cast<char*>(buf.write(keyLenWithNullTerm));
memcpy(keyBuf, key->get(), keyLenWithNullTerm);
}
uint8_t headerSize[4];
LittleEndian::writeUint32(headerSize, buf.cursor());
MOZ_TRY(Write(fd, MAGIC, sizeof(MAGIC)));
MOZ_TRY(Write(fd, headerSize, sizeof(headerSize)));
size_t prefetchSizeOffset = sizeof(MAGIC) + sizeof(headerSize);
size_t headerStart = prefetchSizeOffset + sizeof(uint32_t);
size_t dataStart = headerStart + buf.cursor();
MOZ_TRY(Seek(fd, dataStart));
size_t offset = 0;
size_t prefetchSize = 0;
const size_t chunkSize = 1024 * 16;
LZ4FrameCompressionContext ctx(6, /* aCompressionLevel */
chunkSize, /* aReadBufLen */
true, /* aChecksum */
true); /* aStableSrc */
size_t writeBufLen = ctx.GetRequiredWriteBufferLength();
auto writeBuffer = MaybeOwnedCharPtr(writeBufLen);
auto writeSpan = Span(writeBuffer.get(), writeBufLen);
for (auto& e : entries) {
auto* value = e.second;
// If this is the first entry which was not requested, set the prefetch
// size to the offset before we include this item. We will then prefetch
// all items up to but not including this one during our next startup.
if (value->mRequestedOrder == kStartupCacheEntryNotRequested &&
prefetchSize == 0) {
prefetchSize = dataStart + offset;
}
// Reuse the existing compressed entry if possible
if (mCacheData.initialized() && value->mCompressedSize) {
Span<const char> compressed =
Span(mCacheData.get<char>().get() + mCacheEntriesBaseOffset +
value->mOffset,
value->mCompressedSize);
MOZ_TRY(Write(fd, compressed.Elements(), compressed.Length()));
value->mOffset = offset;
offset += compressed.Length();
} else {
value->mOffset = offset;
Span<const char> result;
MOZ_TRY_VAR(result, ctx.BeginCompressing(writeSpan).mapErr(
MapLZ4ErrorToNsresult));
MOZ_TRY(Write(fd, result.Elements(), result.Length()));
offset += result.Length();
for (size_t i = 0; i < value->mUncompressedSize; i += chunkSize) {
size_t size = std::min(chunkSize, value->mUncompressedSize - i);
char* uncompressed = value->mData.get() + i;
MOZ_TRY_VAR(result, ctx.ContinueCompressing(Span(uncompressed, size))
.mapErr(MapLZ4ErrorToNsresult));
MOZ_TRY(Write(fd, result.Elements(), result.Length()));
offset += result.Length();
}
MOZ_TRY_VAR(result, ctx.EndCompressing().mapErr(MapLZ4ErrorToNsresult));
MOZ_TRY(Write(fd, result.Elements(), result.Length()));
offset += result.Length();
value->mCompressedSize = offset - value->mOffset;
}
}
if (prefetchSize == 0) {
prefetchSize = dataStart + offset;
}
for (auto& e : entries) {
auto* value = e.second;
uint8_t* headerEntry = buf.Get() + value->mHeaderOffsetInFile;
LittleEndian::writeUint32(headerEntry, value->mOffset);
LittleEndian::writeUint32(headerEntry + sizeof(value->mOffset),
value->mCompressedSize);
}
uint8_t prefetchSizeBuf[4];
LittleEndian::writeUint32(prefetchSizeBuf, prefetchSize);
MOZ_TRY(Seek(fd, prefetchSizeOffset));
MOZ_TRY(Write(fd, prefetchSizeBuf, sizeof(prefetchSizeBuf)));
MOZ_TRY(Write(fd, buf.Get(), buf.cursor()));
}
mDirty = false;
mWrittenOnce = true;
mCacheData.reset();
tmpFile->MoveToNative(nullptr, leafName);
// If we're shutting down, we do not care about freeing up memory right now.
if (AppShutdown::IsShuttingDown()) {
return Ok();
}
// We've just written our buffers to disk, and we're 60 seconds out from
// startup, so they're unlikely to be needed again any time soon; let's
// clean up what we can.
for (auto iter = mTable.iter(); !iter.done(); iter.next()) {
auto& value = iter.get().value();
if (!value.mFlags.contains(StartupCacheEntryFlags::DoNotFree)) {
value.mData = nullptr;
}
}
return Ok();
}
void StartupCache::InvalidateCache() {
MutexAutoLock lock(mLock);
InvalidateCacheImpl();
}
void StartupCache::InvalidateCacheImpl(bool memoryOnly) {
mLock.AssertCurrentThreadOwns();
WaitOnPrefetchThread();
mWrittenOnce = false;
if (memoryOnly) {
// This should only be called in tests.
auto writeResult = WriteToDisk();
if (NS_WARN_IF(writeResult.isErr())) {
gIgnoreDiskCache = true;
return;
}
}
if (mCurTableReferenced) {
// There should be no way for this assert to fail other than a user
// manually sending startupcache-invalidate messages through the Browser
// Toolbox.
MOZ_DIAGNOSTIC_ASSERT(xpc::IsInAutomation() || mOldTables.Length() < 10,
"Startup cache invalidated too many times.");
mOldTables.AppendElement(std::move(mTable));
mCurTableReferenced = false;
} else {
mTable.clear();
}
if (!XRE_IsParentProcess()) {
return;
}
mRequestedCount = 0;
if (!XRE_IsParentProcess()) {
gIgnoreDiskCache = true;
return;
}
if (!memoryOnly) {
mCacheData.reset();
nsresult rv = mFile->Remove(false);
if (NS_FAILED(rv) && rv != NS_ERROR_FILE_TARGET_DOES_NOT_EXIST &&
rv != NS_ERROR_FILE_NOT_FOUND) {
gIgnoreDiskCache = true;
return;
}
}
gIgnoreDiskCache = false;
Unused << mCacheData.init(mFile);
auto result = LoadArchive();
if (NS_WARN_IF(result.isErr())) {
gIgnoreDiskCache = true;
}
}
void StartupCache::MaybeInitShutdownWrite() {
if (!XRE_IsParentProcess()) {
return;
}
MutexAutoLock lock(mLock);
if (mWriteTimer) {
mWriteTimer->Cancel();
}
MaybeWriteOffMainThread();
}
void StartupCache::EnsureShutdownWriteComplete() {
if (!XRE_IsParentProcess()) {
return;
}
// Otherwise, ensure the write happens. The timer should have been cancelled
// already in MaybeInitShutdownWrite.
if (!mLock.TryLock()) {
// Uh oh, we're writing away from the main thread. Wait to gain the lock,
// to ensure the write completes.
mLock.Lock();
} else {
// We got the lock. Keep the following in sync with
// MaybeWriteOffMainThread:
// If we've already written or there's nothing to write,
// we don't need to do anything. This is the common case.
if (mWrittenOnce || (mCacheData.initialized() && !ShouldCompactCache())) {
mLock.Unlock();
return;
}
WaitOnPrefetchThread();
mDirty = true;
// Most of this should be redundant given MaybeWriteOffMainThread should
// have run before now.
auto writeResult = WriteToDisk();
Unused << NS_WARN_IF(writeResult.isErr());
// We've had the lock, and `WriteToDisk()` sets mWrittenOnce and mDirty
// when done, and checks for them when starting, so we don't need to do
// anything else.
}
mLock.Unlock();
}
void StartupCache::IgnoreDiskCache() {
gIgnoreDiskCache = true;
if (gStartupCache) {
gStartupCache->InvalidateCache();
}
}
void StartupCache::WaitOnPrefetchThread() {
if (!mPrefetchThread || mPrefetchThread == PR_GetCurrentThread()) return;
PR_JoinThread(mPrefetchThread);
mPrefetchThread = nullptr;
}
void StartupCache::ThreadedPrefetch(void* aClosure) {
AUTO_PROFILER_REGISTER_THREAD("StartupCache");
NS_SetCurrentThreadName("StartupCache");
mozilla::IOInterposer::RegisterCurrentThread();
StartupCache* startupCacheObj = static_cast<StartupCache*>(aClosure);
uint8_t* buf = startupCacheObj->mCacheData.get<uint8_t>().get();
size_t size = startupCacheObj->mPrefetchSize;
MMAP_FAULT_HANDLER_BEGIN_BUFFER(buf, size)
PrefetchMemory(buf, size);
MMAP_FAULT_HANDLER_CATCH()
mozilla::IOInterposer::UnregisterCurrentThread();
}
bool StartupCache::ShouldCompactCache() {
mLock.AssertCurrentThreadOwns();
// If we've requested less than 4/5 of the startup cache, then we should
// probably compact it down. This can happen quite easily after the first run,
// which seems to request quite a few more things than subsequent runs.
CheckedInt<uint32_t> threshold = CheckedInt<uint32_t>(mTable.count()) * 4 / 5;
MOZ_RELEASE_ASSERT(threshold.isValid(), "Runaway StartupCache size");
return mRequestedCount < threshold.value();
}
/*
* The write-thread is spawned on a timeout(which is reset with every write).
* This can avoid a slow shutdown.
*/
void StartupCache::WriteTimeout(nsITimer* aTimer, void* aClosure) {
/*
* It is safe to use the pointer passed in aClosure to reference the
* StartupCache object because the timer's lifetime is tightly coupled to
* the lifetime of the StartupCache object; this timer is canceled in the
* StartupCache destructor, guaranteeing that this function runs if and only
* if the StartupCache object is valid.
*/
StartupCache* startupCacheObj = static_cast<StartupCache*>(aClosure);
MutexAutoLock lock(startupCacheObj->mLock);
startupCacheObj->MaybeWriteOffMainThread();
}
void StartupCache::SendEntriesTimeout(nsITimer* aTimer, void* aClosure) {
StartupCache* sc = static_cast<StartupCache*>(aClosure);
MutexAutoLock lock(sc->mLock);
((StartupCacheChild*)sc->mChildActor)->SendEntriesAndFinalize(sc->mTable);
}
/*
* See StartupCache::WriteTimeout above - this is just the non-static body.
*/
void StartupCache::MaybeWriteOffMainThread() {
mLock.AssertCurrentThreadOwns();
if (!XRE_IsParentProcess()) {
return;
}
if (mWrittenOnce) {
return;
}
if (mCacheData.initialized() && !ShouldCompactCache()) {
return;
}
// Keep this code in sync with EnsureShutdownWriteComplete.
WaitOnPrefetchThread();
mDirty = true;
RefPtr<StartupCache> self = this;
nsCOMPtr<nsIRunnable> runnable =
NS_NewRunnableFunction("StartupCache::Write", [self]() mutable {
MutexAutoLock lock(self->mLock);
auto result = self->WriteToDisk();
Unused << NS_WARN_IF(result.isErr());
});
NS_DispatchBackgroundTask(runnable.forget(), NS_DISPATCH_EVENT_MAY_BLOCK);
}
// We don't want to refcount StartupCache, so we'll just
// hold a ref to this and pass it to observerService instead.
NS_IMPL_ISUPPORTS(StartupCacheListener, nsIObserver)
nsresult StartupCacheListener::Observe(nsISupports* subject, const char* topic,
const char16_t* data) {
StartupCache* sc = StartupCache::GetSingleton();
if (!sc) return NS_OK;
if (strcmp(topic, NS_XPCOM_SHUTDOWN_OBSERVER_ID) == 0) {
// Do not leave the thread running past xpcom shutdown
sc->WaitOnPrefetchThread();
// Note that we don't do anything special for the background write
// task; we expect the threadpool to finish running any tasks already
// posted to it prior to shutdown. FastShutdown will call
// EnsureShutdownWriteComplete() to ensure any pending writes happen
// in that case.
} else if (strcmp(topic, "startupcache-invalidate") == 0) {
MutexAutoLock lock(sc->mLock);
sc->InvalidateCacheImpl(data && nsCRT::strcmp(data, u"memoryOnly") == 0);
} else if (sc->mContentStartupFinishedTopic.Equals(topic) &&
sc->mChildActor) {
if (sProcessType == ProcessType::PrivilegedAbout) {
if (!sc->mSendEntriesTimer) {
sc->mSendEntriesTimer = NS_NewTimer();
sc->mSendEntriesTimer->InitWithNamedFuncCallback(
StartupCache::SendEntriesTimeout, sc, 10000,
nsITimer::TYPE_ONE_SHOT, "StartupCache::SendEntriesTimeout");
}
} else {
MutexAutoLock lock(sc->mLock);
((StartupCacheChild*)sc->mChildActor)->SendEntriesAndFinalize(sc->mTable);
}
}
return NS_OK;
}
nsresult StartupCache::GetDebugObjectOutputStream(
nsIObjectOutputStream* aStream, nsIObjectOutputStream** aOutStream) {
NS_ENSURE_ARG_POINTER(aStream);
#ifdef DEBUG
auto* stream = new StartupCacheDebugOutputStream(aStream, &mWriteObjectMap);
NS_ADDREF(*aOutStream = stream);
#else
NS_ADDREF(*aOutStream = aStream);
#endif
return NS_OK;
}
nsresult StartupCache::ResetStartupWriteTimerCheckingReadCount() {
mLock.AssertCurrentThreadOwns();
nsresult rv = NS_OK;
if (!mWriteTimer) {
mWriteTimer = NS_NewTimer();
} else {
rv = mWriteTimer->Cancel();
}
NS_ENSURE_SUCCESS(rv, rv);
// Wait for the specified timeout, then write out the cache.
mWriteTimer->InitWithNamedFuncCallback(
StartupCache::WriteTimeout, this, STARTUP_CACHE_WRITE_TIMEOUT * 1000,
nsITimer::TYPE_ONE_SHOT, "StartupCache::WriteTimeout");
return NS_OK;
}
nsresult StartupCache::ResetStartupWriteTimer() {
MutexAutoLock lock(mLock);
return ResetStartupWriteTimerImpl();
}
nsresult StartupCache::ResetStartupWriteTimerImpl() {
if (!XRE_IsParentProcess()) {
return NS_OK;
}
mLock.AssertCurrentThreadOwns();
mDirty = true;
nsresult rv = NS_OK;
if (!mWriteTimer) {
mWriteTimer = NS_NewTimer();
} else {
rv = mWriteTimer->Cancel();
}
NS_ENSURE_SUCCESS(rv, rv);
// Wait for the specified timeout, then write out the cache.
mWriteTimer->InitWithNamedFuncCallback(
StartupCache::WriteTimeout, this, STARTUP_CACHE_WRITE_TIMEOUT * 1000,
nsITimer::TYPE_ONE_SHOT, "StartupCache::WriteTimeout");
return NS_OK;
}
// Used only in tests:
bool StartupCache::StartupWriteComplete() { return !mDirty && mWrittenOnce; }
// StartupCacheDebugOutputStream implementation
#ifdef DEBUG
NS_IMPL_ISUPPORTS(StartupCacheDebugOutputStream, nsIObjectOutputStream,
nsIBinaryOutputStream, nsIOutputStream)
bool StartupCacheDebugOutputStream::CheckReferences(nsISupports* aObject) {
nsresult rv;
nsCOMPtr<nsIClassInfo> classInfo = do_QueryInterface(aObject);
if (!classInfo) {
NS_ERROR("aObject must implement nsIClassInfo");
return false;
}
uint32_t flags;
rv = classInfo->GetFlags(&flags);
NS_ENSURE_SUCCESS(rv, false);
if (flags & nsIClassInfo::SINGLETON) return true;
nsISupportsHashKey* key = mObjectMap->GetEntry(aObject);
if (key) {
NS_ERROR(
"non-singleton aObject is referenced multiple times in this"
"serialization, we don't support that.");
return false;
}
mObjectMap->PutEntry(aObject);
return true;
}
// nsIObjectOutputStream implementation
nsresult StartupCacheDebugOutputStream::WriteObject(nsISupports* aObject,
bool aIsStrongRef) {
nsCOMPtr<nsISupports> rootObject(do_QueryInterface(aObject));
NS_ASSERTION(rootObject.get() == aObject,
"bad call to WriteObject -- call WriteCompoundObject!");
bool check = CheckReferences(aObject);
NS_ENSURE_TRUE(check, NS_ERROR_FAILURE);
return mBinaryStream->WriteObject(aObject, aIsStrongRef);
}
nsresult StartupCacheDebugOutputStream::WriteSingleRefObject(
nsISupports* aObject) {
nsCOMPtr<nsISupports> rootObject(do_QueryInterface(aObject));
NS_ASSERTION(rootObject.get() == aObject,
"bad call to WriteSingleRefObject -- call WriteCompoundObject!");
bool check = CheckReferences(aObject);
NS_ENSURE_TRUE(check, NS_ERROR_FAILURE);
return mBinaryStream->WriteSingleRefObject(aObject);
}
nsresult StartupCacheDebugOutputStream::WriteCompoundObject(
nsISupports* aObject, const nsIID& aIID, bool aIsStrongRef) {
nsCOMPtr<nsISupports> rootObject(do_QueryInterface(aObject));
nsCOMPtr<nsISupports> roundtrip;
rootObject->QueryInterface(aIID, getter_AddRefs(roundtrip));
NS_ASSERTION(roundtrip.get() == aObject,
"bad aggregation or multiple inheritance detected by call to "
"WriteCompoundObject!");
bool check = CheckReferences(aObject);
NS_ENSURE_TRUE(check, NS_ERROR_FAILURE);
return mBinaryStream->WriteCompoundObject(aObject, aIID, aIsStrongRef);
}
nsresult StartupCacheDebugOutputStream::WriteID(nsID const& aID) {
return mBinaryStream->WriteID(aID);
}
char* StartupCacheDebugOutputStream::GetBuffer(uint32_t aLength,
uint32_t aAlignMask) {
return mBinaryStream->GetBuffer(aLength, aAlignMask);
}
void StartupCacheDebugOutputStream::PutBuffer(char* aBuffer, uint32_t aLength) {
mBinaryStream->PutBuffer(aBuffer, aLength);
}
#endif // DEBUG
} // namespace scache
} // namespace mozilla