gecko-dev/xpcom/io/nsBinaryStream.cpp

829 строки
23 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998-1999
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/**
* This file contains implementations of the nsIBinaryInputStream and
* nsIBinaryOutputStream interfaces. Together, these interfaces allows reading
* and writing of primitive data types (integers, floating-point values,
* booleans, etc.) to a stream in a binary, untagged, fixed-endianness format.
* This might be used, for example, to implement network protocols or to
* produce architecture-neutral binary disk files, i.e. ones that can be read
* and written by both big-endian and little-endian platforms. Output is
* written in big-endian order (high-order byte first), as this is traditional
* network order.
*
* @See nsIBinaryInputStream
* @See nsIBinaryOutputStream
*/
#include <string.h>
#include "nsBinaryStream.h"
#include "nsCRT.h"
#include "nsIStreamBufferAccess.h"
#include "nsMemory.h"
#include "prlong.h"
#include "nsString.h"
#include "nsISerializable.h"
#include "nsIClassInfo.h"
#include "nsComponentManagerUtils.h"
#include "nsIURI.h" // for NS_IURI_IID
NS_IMPL_ISUPPORTS3(nsBinaryOutputStream, nsIObjectOutputStream, nsIBinaryOutputStream, nsIOutputStream)
NS_IMETHODIMP
nsBinaryOutputStream::Flush()
{
NS_ENSURE_STATE(mOutputStream);
return mOutputStream->Flush();
}
NS_IMETHODIMP
nsBinaryOutputStream::Close()
{
NS_ENSURE_STATE(mOutputStream);
return mOutputStream->Close();
}
NS_IMETHODIMP
nsBinaryOutputStream::Write(const char *aBuf, PRUint32 aCount, PRUint32 *aActualBytes)
{
NS_ENSURE_STATE(mOutputStream);
return mOutputStream->Write(aBuf, aCount, aActualBytes);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteFrom(nsIInputStream *inStr, PRUint32 count, PRUint32 *_retval)
{
NS_NOTREACHED("WriteFrom");
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteSegments(nsReadSegmentFun reader, void * closure, PRUint32 count, PRUint32 *_retval)
{
NS_NOTREACHED("WriteSegments");
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsBinaryOutputStream::IsNonBlocking(PRBool *aNonBlocking)
{
NS_ENSURE_STATE(mOutputStream);
return mOutputStream->IsNonBlocking(aNonBlocking);
}
nsresult
nsBinaryOutputStream::WriteFully(const char *aBuf, PRUint32 aCount)
{
NS_ENSURE_STATE(mOutputStream);
nsresult rv;
PRUint32 bytesWritten;
rv = mOutputStream->Write(aBuf, aCount, &bytesWritten);
if (NS_FAILED(rv)) return rv;
if (bytesWritten != aCount)
return NS_ERROR_FAILURE;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryOutputStream::SetOutputStream(nsIOutputStream *aOutputStream)
{
NS_ENSURE_ARG_POINTER(aOutputStream);
mOutputStream = aOutputStream;
mBufferAccess = do_QueryInterface(aOutputStream);
return NS_OK;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteBoolean(PRBool aBoolean)
{
return Write8(aBoolean);
}
NS_IMETHODIMP
nsBinaryOutputStream::Write8(PRUint8 aByte)
{
return WriteFully((const char*)&aByte, sizeof aByte);
}
NS_IMETHODIMP
nsBinaryOutputStream::Write16(PRUint16 a16)
{
a16 = NS_SWAP16(a16);
return WriteFully((const char*)&a16, sizeof a16);
}
NS_IMETHODIMP
nsBinaryOutputStream::Write32(PRUint32 a32)
{
a32 = NS_SWAP32(a32);
return WriteFully((const char*)&a32, sizeof a32);
}
NS_IMETHODIMP
nsBinaryOutputStream::Write64(PRUint64 a64)
{
nsresult rv;
PRUint32 bytesWritten;
a64 = NS_SWAP64(a64);
rv = Write(reinterpret_cast<char*>(&a64), sizeof a64, &bytesWritten);
if (NS_FAILED(rv)) return rv;
if (bytesWritten != sizeof a64)
return NS_ERROR_FAILURE;
return rv;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteFloat(float aFloat)
{
NS_ASSERTION(sizeof(float) == sizeof (PRUint32),
"False assumption about sizeof(float)");
return Write32(*reinterpret_cast<PRUint32*>(&aFloat));
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteDouble(double aDouble)
{
NS_ASSERTION(sizeof(double) == sizeof(PRUint64),
"False assumption about sizeof(double)");
return Write64(*reinterpret_cast<PRUint64*>(&aDouble));
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteStringZ(const char *aString)
{
PRUint32 length;
nsresult rv;
length = strlen(aString);
rv = Write32(length);
if (NS_FAILED(rv)) return rv;
return WriteFully(aString, length);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteWStringZ(const PRUnichar* aString)
{
PRUint32 length, byteCount;
nsresult rv;
length = nsCRT::strlen(aString);
rv = Write32(length);
if (NS_FAILED(rv)) return rv;
if (length == 0)
return NS_OK;
byteCount = length * sizeof(PRUnichar);
#ifdef IS_BIG_ENDIAN
rv = WriteBytes(reinterpret_cast<const char*>(aString), byteCount);
#else
// XXX use WriteSegments here to avoid copy!
PRUnichar *copy, temp[64];
if (length <= 64) {
copy = temp;
} else {
copy = reinterpret_cast<PRUnichar*>(nsMemory::Alloc(byteCount));
if (!copy)
return NS_ERROR_OUT_OF_MEMORY;
}
NS_ASSERTION((PRUptrdiff(aString) & 0x1) == 0, "aString not properly aligned");
for (PRUint32 i = 0; i < length; i++)
copy[i] = NS_SWAP16(aString[i]);
rv = WriteBytes(reinterpret_cast<const char*>(copy), byteCount);
if (copy != temp)
nsMemory::Free(copy);
#endif
return rv;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteUtf8Z(const PRUnichar* aString)
{
return WriteStringZ(NS_ConvertUTF16toUTF8(aString).get());
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteBytes(const char *aString, PRUint32 aLength)
{
nsresult rv;
PRUint32 bytesWritten;
rv = Write(aString, aLength, &bytesWritten);
if (NS_FAILED(rv)) return rv;
if (bytesWritten != aLength)
return NS_ERROR_FAILURE;
return rv;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteByteArray(PRUint8 *aBytes, PRUint32 aLength)
{
return WriteBytes(reinterpret_cast<char *>(aBytes), aLength);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteObject(nsISupports* aObject, PRBool aIsStrongRef)
{
return WriteCompoundObject(aObject, NS_GET_IID(nsISupports),
aIsStrongRef);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteSingleRefObject(nsISupports* aObject)
{
return WriteCompoundObject(aObject, NS_GET_IID(nsISupports),
PR_TRUE);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteCompoundObject(nsISupports* aObject,
const nsIID& aIID,
PRBool aIsStrongRef)
{
// Can't deal with weak refs
NS_ENSURE_TRUE(aIsStrongRef, NS_ERROR_UNEXPECTED);
nsCOMPtr<nsIClassInfo> classInfo = do_QueryInterface(aObject);
NS_ENSURE_TRUE(classInfo, NS_ERROR_NOT_AVAILABLE);
nsCOMPtr<nsISerializable> serializable = do_QueryInterface(aObject);
NS_ENSURE_TRUE(serializable, NS_ERROR_NOT_AVAILABLE);
nsCID cid;
classInfo->GetClassIDNoAlloc(&cid);
nsresult rv = WriteID(cid);
NS_ENSURE_SUCCESS(rv, rv);
rv = WriteID(aIID);
NS_ENSURE_SUCCESS(rv, rv);
return serializable->Write(this);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteID(const nsIID& aIID)
{
nsresult rv = Write32(aIID.m0);
NS_ENSURE_SUCCESS(rv, rv);
rv = Write16(aIID.m1);
NS_ENSURE_SUCCESS(rv, rv);
rv = Write16(aIID.m2);
NS_ENSURE_SUCCESS(rv, rv);
for (int i = 0; i < 8; ++i) {
rv = Write8(aIID.m3[i]);
NS_ENSURE_SUCCESS(rv, rv);
}
return NS_OK;
}
NS_IMETHODIMP_(char*)
nsBinaryOutputStream::GetBuffer(PRUint32 aLength, PRUint32 aAlignMask)
{
if (mBufferAccess)
return mBufferAccess->GetBuffer(aLength, aAlignMask);
return nsnull;
}
NS_IMETHODIMP_(void)
nsBinaryOutputStream::PutBuffer(char* aBuffer, PRUint32 aLength)
{
if (mBufferAccess)
mBufferAccess->PutBuffer(aBuffer, aLength);
}
NS_IMPL_ISUPPORTS3(nsBinaryInputStream, nsIObjectInputStream, nsIBinaryInputStream, nsIInputStream)
NS_IMETHODIMP
nsBinaryInputStream::Available(PRUint32* aResult)
{
NS_ENSURE_STATE(mInputStream);
return mInputStream->Available(aResult);
}
NS_IMETHODIMP
nsBinaryInputStream::Read(char* aBuffer, PRUint32 aCount, PRUint32 *aNumRead)
{
NS_ENSURE_STATE(mInputStream);
// mInputStream might give us short reads, so deal with that.
PRUint32 totalRead = 0;
PRUint32 bytesRead;
do {
nsresult rv = mInputStream->Read(aBuffer, aCount, &bytesRead);
if (rv == NS_BASE_STREAM_WOULD_BLOCK && totalRead != 0) {
// We already read some data. Return it.
break;
}
if (NS_FAILED(rv)) {
return rv;
}
totalRead += bytesRead;
aBuffer += bytesRead;
aCount -= bytesRead;
} while (aCount != 0 && bytesRead != 0);
*aNumRead = totalRead;
return NS_OK;
}
// when forwarding ReadSegments to mInputStream, we need to make sure
// 'this' is being passed to the writer each time. To do this, we need
// a thunking function which keeps the real input stream around.
// the closure wrapper
struct ReadSegmentsClosure {
nsIInputStream* mRealInputStream;
void* mRealClosure;
nsWriteSegmentFun mRealWriter;
nsresult mRealResult;
PRUint32 mBytesRead; // to properly implement aToOffset
};
// the thunking function
static NS_METHOD
ReadSegmentForwardingThunk(nsIInputStream* aStream,
void *aClosure,
const char* aFromSegment,
PRUint32 aToOffset,
PRUint32 aCount,
PRUint32 *aWriteCount)
{
ReadSegmentsClosure* thunkClosure =
reinterpret_cast<ReadSegmentsClosure*>(aClosure);
NS_ASSERTION(NS_SUCCEEDED(thunkClosure->mRealResult),
"How did this get to be a failure status?");
thunkClosure->mRealResult =
thunkClosure->mRealWriter(thunkClosure->mRealInputStream,
thunkClosure->mRealClosure,
aFromSegment,
thunkClosure->mBytesRead + aToOffset,
aCount, aWriteCount);
return thunkClosure->mRealResult;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadSegments(nsWriteSegmentFun writer, void * closure, PRUint32 count, PRUint32 *_retval)
{
NS_ENSURE_STATE(mInputStream);
ReadSegmentsClosure thunkClosure = { this, closure, writer, NS_OK, 0 };
// mInputStream might give us short reads, so deal with that.
PRUint32 bytesRead;
do {
nsresult rv = mInputStream->ReadSegments(ReadSegmentForwardingThunk,
&thunkClosure,
count, &bytesRead);
if (rv == NS_BASE_STREAM_WOULD_BLOCK && thunkClosure.mBytesRead != 0) {
// We already read some data. Return it.
break;
}
if (NS_FAILED(rv)) {
return rv;
}
thunkClosure.mBytesRead += bytesRead;
count -= bytesRead;
} while (count != 0 && bytesRead != 0 &&
NS_SUCCEEDED(thunkClosure.mRealResult));
*_retval = thunkClosure.mBytesRead;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::IsNonBlocking(PRBool *aNonBlocking)
{
NS_ENSURE_STATE(mInputStream);
return mInputStream->IsNonBlocking(aNonBlocking);
}
NS_IMETHODIMP
nsBinaryInputStream::Close()
{
NS_ENSURE_STATE(mInputStream);
return mInputStream->Close();
}
NS_IMETHODIMP
nsBinaryInputStream::SetInputStream(nsIInputStream *aInputStream)
{
NS_ENSURE_ARG_POINTER(aInputStream);
mInputStream = aInputStream;
mBufferAccess = do_QueryInterface(aInputStream);
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadBoolean(PRBool* aBoolean)
{
PRUint8 byteResult;
nsresult rv = Read8(&byteResult);
if (NS_FAILED(rv)) return rv;
*aBoolean = !!byteResult;
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read8(PRUint8* aByte)
{
nsresult rv;
PRUint32 bytesRead;
rv = Read(reinterpret_cast<char*>(aByte), sizeof(*aByte), &bytesRead);
if (NS_FAILED(rv)) return rv;
if (bytesRead != 1)
return NS_ERROR_FAILURE;
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read16(PRUint16* a16)
{
nsresult rv;
PRUint32 bytesRead;
rv = Read(reinterpret_cast<char*>(a16), sizeof *a16, &bytesRead);
if (NS_FAILED(rv)) return rv;
if (bytesRead != sizeof *a16)
return NS_ERROR_FAILURE;
*a16 = NS_SWAP16(*a16);
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read32(PRUint32* a32)
{
nsresult rv;
PRUint32 bytesRead;
rv = Read(reinterpret_cast<char*>(a32), sizeof *a32, &bytesRead);
if (NS_FAILED(rv)) return rv;
if (bytesRead != sizeof *a32)
return NS_ERROR_FAILURE;
*a32 = NS_SWAP32(*a32);
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read64(PRUint64* a64)
{
nsresult rv;
PRUint32 bytesRead;
rv = Read(reinterpret_cast<char*>(a64), sizeof *a64, &bytesRead);
if (NS_FAILED(rv)) return rv;
if (bytesRead != sizeof *a64)
return NS_ERROR_FAILURE;
*a64 = NS_SWAP64(*a64);
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadFloat(float* aFloat)
{
NS_ASSERTION(sizeof(float) == sizeof (PRUint32),
"False assumption about sizeof(float)");
return Read32(reinterpret_cast<PRUint32*>(aFloat));
}
NS_IMETHODIMP
nsBinaryInputStream::ReadDouble(double* aDouble)
{
NS_ASSERTION(sizeof(double) == sizeof(PRUint64),
"False assumption about sizeof(double)");
return Read64(reinterpret_cast<PRUint64*>(aDouble));
}
static NS_METHOD
WriteSegmentToCString(nsIInputStream* aStream,
void *aClosure,
const char* aFromSegment,
PRUint32 aToOffset,
PRUint32 aCount,
PRUint32 *aWriteCount)
{
nsACString* outString = static_cast<nsACString*>(aClosure);
outString->Append(aFromSegment, aCount);
*aWriteCount = aCount;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadCString(nsACString& aString)
{
nsresult rv;
PRUint32 length, bytesRead;
rv = Read32(&length);
if (NS_FAILED(rv)) return rv;
aString.Truncate();
rv = ReadSegments(WriteSegmentToCString, &aString, length, &bytesRead);
if (NS_FAILED(rv)) return rv;
if (bytesRead != length)
return NS_ERROR_FAILURE;
return NS_OK;
}
// sometimes, WriteSegmentToString will be handed an odd-number of
// bytes, which means we only have half of the last PRUnichar
struct WriteStringClosure {
PRUnichar *mWriteCursor;
PRPackedBool mHasCarryoverByte;
char mCarryoverByte;
};
// there are a few cases we have to account for here:
// * even length buffer, no carryover - easy, just append
// * odd length buffer, no carryover - the last byte needs to be saved
// for carryover
// * odd length buffer, with carryover - first byte needs to be used
// with the carryover byte, and
// the rest of the even length
// buffer is appended as normal
// * even length buffer, with carryover - the first byte needs to be
// used with the previous carryover byte.
// this gives you an odd length buffer,
// so you have to save the last byte for
// the next carryover
// same version of the above, but with correct casting and endian swapping
static NS_METHOD
WriteSegmentToString(nsIInputStream* aStream,
void *aClosure,
const char* aFromSegment,
PRUint32 aToOffset,
PRUint32 aCount,
PRUint32 *aWriteCount)
{
NS_PRECONDITION(aCount > 0, "Why are we being told to write 0 bytes?");
NS_PRECONDITION(sizeof(PRUnichar) == 2, "We can't handle other sizes!");
WriteStringClosure* closure = static_cast<WriteStringClosure*>(aClosure);
PRUnichar *cursor = closure->mWriteCursor;
// we're always going to consume the whole buffer no matter what
// happens, so take care of that right now.. that allows us to
// tweak aCount later. Do NOT move this!
*aWriteCount = aCount;
// if the last Write had an odd-number of bytes read, then
if (closure->mHasCarryoverByte) {
// re-create the two-byte sequence we want to work with
char bytes[2] = { closure->mCarryoverByte, *aFromSegment };
*cursor = *(PRUnichar*)bytes;
// Now the little endianness dance
#ifdef IS_LITTLE_ENDIAN
*cursor = (PRUnichar) NS_SWAP16(*cursor);
#endif
++cursor;
// now skip past the first byte of the buffer.. code from here
// can assume normal operations, but should not assume aCount
// is relative to the ORIGINAL buffer
++aFromSegment;
--aCount;
closure->mHasCarryoverByte = PR_FALSE;
}
// this array is possibly unaligned... be careful how we access it!
const PRUnichar *unicodeSegment =
reinterpret_cast<const PRUnichar*>(aFromSegment);
// calculate number of full characters in segment (aCount could be odd!)
PRUint32 segmentLength = aCount / sizeof(PRUnichar);
// copy all data into our aligned buffer. byte swap if necessary.
memcpy(cursor, unicodeSegment, segmentLength * sizeof(PRUnichar));
PRUnichar *end = cursor + segmentLength;
#ifdef IS_LITTLE_ENDIAN
for (; cursor < end; ++cursor)
*cursor = (PRUnichar) NS_SWAP16(*cursor);
#endif
closure->mWriteCursor = end;
// remember this is the modifed aCount and aFromSegment,
// so that will take into account the fact that we might have
// skipped the first byte in the buffer
if (aCount % sizeof(PRUnichar) != 0) {
// we must have had a carryover byte, that we'll need the next
// time around
closure->mCarryoverByte = aFromSegment[aCount - 1];
closure->mHasCarryoverByte = PR_TRUE;
}
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadString(nsAString& aString)
{
nsresult rv;
PRUint32 length, bytesRead;
rv = Read32(&length);
if (NS_FAILED(rv)) return rv;
if (length == 0) {
aString.Truncate();
return NS_OK;
}
// pre-allocate output buffer, and get direct access to buffer...
if (!EnsureStringLength(aString, length))
return NS_ERROR_OUT_OF_MEMORY;
nsAString::iterator start;
aString.BeginWriting(start);
WriteStringClosure closure;
closure.mWriteCursor = start.get();
closure.mHasCarryoverByte = PR_FALSE;
rv = ReadSegments(WriteSegmentToString, &closure,
length*sizeof(PRUnichar), &bytesRead);
if (NS_FAILED(rv)) return rv;
NS_ASSERTION(!closure.mHasCarryoverByte, "some strange stream corruption!");
if (bytesRead != length*sizeof(PRUnichar))
return NS_ERROR_FAILURE;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadBytes(PRUint32 aLength, char* *_rval)
{
nsresult rv;
PRUint32 bytesRead;
char* s;
s = reinterpret_cast<char*>(nsMemory::Alloc(aLength));
if (!s)
return NS_ERROR_OUT_OF_MEMORY;
rv = Read(s, aLength, &bytesRead);
if (NS_FAILED(rv)) {
nsMemory::Free(s);
return rv;
}
if (bytesRead != aLength) {
nsMemory::Free(s);
return NS_ERROR_FAILURE;
}
*_rval = s;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadByteArray(PRUint32 aLength, PRUint8* *_rval)
{
return ReadBytes(aLength, reinterpret_cast<char **>(_rval));
}
NS_IMETHODIMP
nsBinaryInputStream::ReadObject(PRBool aIsStrongRef, nsISupports* *aObject)
{
nsCID cid;
nsIID iid;
nsresult rv = ReadID(&cid);
NS_ENSURE_SUCCESS(rv, rv);
rv = ReadID(&iid);
NS_ENSURE_SUCCESS(rv, rv);
// HACK: Intercept old (pre-gecko6) nsIURI IID, and replace with
// the updated IID, so that we're QI'ing to an actual interface.
// (As soon as we drop support for upgrading from pre-gecko6, we can
// remove this chunk.)
static const nsIID oldURIiid =
{ 0x7a22cc0, 0xce5, 0x11d3,
{ 0x93, 0x31, 0x0, 0x10, 0x4b, 0xa0, 0xfd, 0x40 }};
// hackaround for bug 670542
static const nsIID oldURIiid2 =
{ 0xd6d04c36, 0x0fa4, 0x4db3,
{ 0xbe, 0x05, 0x4a, 0x18, 0x39, 0x71, 0x03, 0xe2 }};
if (iid.Equals(oldURIiid) ||
iid.Equals(oldURIiid2)) {
const nsIID newURIiid = NS_IURI_IID;
iid = newURIiid;
}
// END HACK
nsCOMPtr<nsISupports> object = do_CreateInstance(cid, &rv);
NS_ENSURE_SUCCESS(rv, rv);
nsCOMPtr<nsISerializable> serializable = do_QueryInterface(object);
NS_ENSURE_TRUE(serializable, NS_ERROR_UNEXPECTED);
rv = serializable->Read(this);
NS_ENSURE_SUCCESS(rv, rv);
return object->QueryInterface(iid, reinterpret_cast<void**>(aObject));
}
NS_IMETHODIMP
nsBinaryInputStream::ReadID(nsID *aResult)
{
nsresult rv = Read32(&aResult->m0);
NS_ENSURE_SUCCESS(rv, rv);
rv = Read16(&aResult->m1);
NS_ENSURE_SUCCESS(rv, rv);
rv = Read16(&aResult->m2);
NS_ENSURE_SUCCESS(rv, rv);
for (int i = 0; i < 8; ++i) {
rv = Read8(&aResult->m3[i]);
NS_ENSURE_SUCCESS(rv, rv);
}
return NS_OK;
}
NS_IMETHODIMP_(char*)
nsBinaryInputStream::GetBuffer(PRUint32 aLength, PRUint32 aAlignMask)
{
if (mBufferAccess)
return mBufferAccess->GetBuffer(aLength, aAlignMask);
return nsnull;
}
NS_IMETHODIMP_(void)
nsBinaryInputStream::PutBuffer(char* aBuffer, PRUint32 aLength)
{
if (mBufferAccess)
mBufferAccess->PutBuffer(aBuffer, aLength);
}