зеркало из https://github.com/mozilla/gecko-dev.git
562 строки
18 KiB
C++
562 строки
18 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* vim: set ts=8 sts=2 et sw=2 tw=80:
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* A type suitable for returning either a value or an error from a function. */
|
|
|
|
#ifndef mozilla_Result_h
|
|
#define mozilla_Result_h
|
|
|
|
#include <type_traits>
|
|
#include "mozilla/Alignment.h"
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Types.h"
|
|
#include "mozilla/TypeTraits.h"
|
|
#include "mozilla/Variant.h"
|
|
|
|
namespace mozilla {
|
|
|
|
/**
|
|
* Empty struct, indicating success for operations that have no return value.
|
|
* For example, if you declare another empty struct `struct OutOfMemory {};`,
|
|
* then `Result<Ok, OutOfMemory>` represents either success or OOM.
|
|
*/
|
|
struct Ok {};
|
|
|
|
template <typename E>
|
|
class GenericErrorResult;
|
|
template <typename V, typename E>
|
|
class Result;
|
|
|
|
namespace detail {
|
|
|
|
enum class PackingStrategy {
|
|
Variant,
|
|
NullIsOk,
|
|
LowBitTagIsError,
|
|
PackedVariant,
|
|
};
|
|
|
|
template <typename V, typename E, PackingStrategy Strategy>
|
|
class ResultImplementation;
|
|
|
|
template <typename V, typename E>
|
|
class ResultImplementation<V, E, PackingStrategy::Variant> {
|
|
mozilla::Variant<V, E> mStorage;
|
|
|
|
public:
|
|
ResultImplementation(ResultImplementation&&) = default;
|
|
ResultImplementation(const ResultImplementation&) = default;
|
|
ResultImplementation& operator=(const ResultImplementation&) = default;
|
|
ResultImplementation& operator=(ResultImplementation&&) = default;
|
|
|
|
explicit ResultImplementation(V&& aValue)
|
|
: mStorage(std::forward<V>(aValue)) {}
|
|
explicit ResultImplementation(const V& aValue) : mStorage(aValue) {}
|
|
explicit ResultImplementation(E aErrorValue)
|
|
: mStorage(std::forward<E>(aErrorValue)) {}
|
|
|
|
bool isOk() const { return mStorage.template is<V>(); }
|
|
|
|
// The callers of these functions will assert isOk() has the proper value, so
|
|
// these functions (in all ResultImplementation specializations) don't need
|
|
// to do so.
|
|
V unwrap() { return std::move(mStorage.template as<V>()); }
|
|
const V& inspect() const { return mStorage.template as<V>(); }
|
|
|
|
E unwrapErr() { return std::move(mStorage.template as<E>()); }
|
|
const E& inspectErr() const { return mStorage.template as<E>(); }
|
|
};
|
|
|
|
/**
|
|
* mozilla::Variant doesn't like storing a reference. This is a specialization
|
|
* to store E as pointer if it's a reference.
|
|
*/
|
|
template <typename V, typename E>
|
|
class ResultImplementation<V, E&, PackingStrategy::Variant> {
|
|
mozilla::Variant<V, E*> mStorage;
|
|
|
|
public:
|
|
explicit ResultImplementation(V&& aValue)
|
|
: mStorage(std::forward<V>(aValue)) {}
|
|
explicit ResultImplementation(const V& aValue) : mStorage(aValue) {}
|
|
explicit ResultImplementation(E& aErrorValue) : mStorage(&aErrorValue) {}
|
|
|
|
bool isOk() const { return mStorage.template is<V>(); }
|
|
|
|
const V& inspect() const { return mStorage.template as<V>(); }
|
|
V unwrap() { return std::move(mStorage.template as<V>()); }
|
|
|
|
E& unwrapErr() { return *mStorage.template as<E*>(); }
|
|
const E& inspectErr() const { return *mStorage.template as<E*>(); }
|
|
};
|
|
|
|
/**
|
|
* Specialization for when the success type is Ok (or another empty class) and
|
|
* the error type is a reference.
|
|
*/
|
|
template <typename V, typename E>
|
|
class ResultImplementation<V, E&, PackingStrategy::NullIsOk> {
|
|
E* mErrorValue;
|
|
|
|
public:
|
|
explicit ResultImplementation(V) : mErrorValue(nullptr) {}
|
|
explicit ResultImplementation(E& aErrorValue) : mErrorValue(&aErrorValue) {}
|
|
|
|
bool isOk() const { return mErrorValue == nullptr; }
|
|
|
|
const V& inspect() const = delete;
|
|
V unwrap() { return V(); }
|
|
|
|
const E& inspectErr() const { return *mErrorValue; }
|
|
E& unwrapErr() { return *mErrorValue; }
|
|
};
|
|
|
|
/**
|
|
* Specialization for when the success type is Ok (or another empty class) and
|
|
* the error type is a value type which can never have the value 0 (as
|
|
* determined by UnusedZero<>).
|
|
*/
|
|
template <typename V, typename E>
|
|
class ResultImplementation<V, E, PackingStrategy::NullIsOk> {
|
|
static constexpr E NullValue = E(0);
|
|
|
|
E mErrorValue;
|
|
|
|
public:
|
|
explicit ResultImplementation(V) : mErrorValue(NullValue) {}
|
|
explicit ResultImplementation(E aErrorValue) : mErrorValue(aErrorValue) {
|
|
MOZ_ASSERT(aErrorValue != NullValue);
|
|
}
|
|
|
|
bool isOk() const { return mErrorValue == NullValue; }
|
|
|
|
const V& inspect() const = delete;
|
|
V unwrap() { return V(); }
|
|
|
|
const E& inspectErr() const { return mErrorValue; }
|
|
E unwrapErr() { return std::move(mErrorValue); }
|
|
};
|
|
|
|
/**
|
|
* Specialization for when alignment permits using the least significant bit as
|
|
* a tag bit.
|
|
*/
|
|
template <typename V, typename E>
|
|
class ResultImplementation<V*, E&, PackingStrategy::LowBitTagIsError> {
|
|
uintptr_t mBits;
|
|
|
|
public:
|
|
explicit ResultImplementation(V* aValue)
|
|
: mBits(reinterpret_cast<uintptr_t>(aValue)) {
|
|
MOZ_ASSERT((uintptr_t(aValue) % MOZ_ALIGNOF(V)) == 0,
|
|
"Result value pointers must not be misaligned");
|
|
}
|
|
explicit ResultImplementation(E& aErrorValue)
|
|
: mBits(reinterpret_cast<uintptr_t>(&aErrorValue) | 1) {
|
|
MOZ_ASSERT((uintptr_t(&aErrorValue) % MOZ_ALIGNOF(E)) == 0,
|
|
"Result errors must not be misaligned");
|
|
}
|
|
|
|
bool isOk() const { return (mBits & 1) == 0; }
|
|
|
|
V* inspect() const { return reinterpret_cast<V*>(mBits); }
|
|
V* unwrap() { return inspect(); }
|
|
|
|
E& inspectErr() const { return *reinterpret_cast<E*>(mBits ^ 1); }
|
|
E& unwrapErr() { return inspectErr(); }
|
|
};
|
|
|
|
// Return true if any of the struct can fit in a word.
|
|
template <typename V, typename E>
|
|
struct IsPackableVariant {
|
|
struct VEbool {
|
|
V v;
|
|
E e;
|
|
bool ok;
|
|
};
|
|
struct EVbool {
|
|
E e;
|
|
V v;
|
|
bool ok;
|
|
};
|
|
|
|
using Impl = typename Conditional<sizeof(VEbool) <= sizeof(EVbool), VEbool,
|
|
EVbool>::Type;
|
|
|
|
static const bool value = sizeof(Impl) <= sizeof(uintptr_t);
|
|
};
|
|
|
|
/**
|
|
* Specialization for when both type are not using all the bytes, in order to
|
|
* use one byte as a tag.
|
|
*/
|
|
template <typename V, typename E>
|
|
class ResultImplementation<V, E, PackingStrategy::PackedVariant> {
|
|
using Impl = typename IsPackableVariant<V, E>::Impl;
|
|
Impl data;
|
|
|
|
public:
|
|
explicit ResultImplementation(V aValue) {
|
|
data.v = std::move(aValue);
|
|
data.ok = true;
|
|
}
|
|
explicit ResultImplementation(E aErrorValue) {
|
|
data.e = std::move(aErrorValue);
|
|
data.ok = false;
|
|
}
|
|
|
|
bool isOk() const { return data.ok; }
|
|
|
|
const V& inspect() const { return data.v; }
|
|
V unwrap() { return std::move(data.v); }
|
|
|
|
const E& inspectErr() const { return data.e; }
|
|
E unwrapErr() { return std::move(data.e); }
|
|
};
|
|
|
|
// To use nullptr as a special value, we need the counter part to exclude zero
|
|
// from its range of valid representations.
|
|
//
|
|
// By default assume that zero can be represented.
|
|
template <typename T>
|
|
struct UnusedZero {
|
|
static const bool value = false;
|
|
};
|
|
|
|
// References can't be null.
|
|
template <typename T>
|
|
struct UnusedZero<T&> {
|
|
static const bool value = true;
|
|
};
|
|
|
|
// A bit of help figuring out which of the above specializations to use.
|
|
//
|
|
// We begin by safely assuming types don't have a spare bit.
|
|
template <typename T>
|
|
struct HasFreeLSB {
|
|
static const bool value = false;
|
|
};
|
|
|
|
// As an incomplete type, void* does not have a spare bit.
|
|
template <>
|
|
struct HasFreeLSB<void*> {
|
|
static const bool value = false;
|
|
};
|
|
|
|
// The lowest bit of a properly-aligned pointer is always zero if the pointee
|
|
// type is greater than byte-aligned. That bit is free to use if it's masked
|
|
// out of such pointers before they're dereferenced.
|
|
template <typename T>
|
|
struct HasFreeLSB<T*> {
|
|
static const bool value = (alignof(T) & 1) == 0;
|
|
};
|
|
|
|
// We store references as pointers, so they have a free bit if a pointer would
|
|
// have one.
|
|
template <typename T>
|
|
struct HasFreeLSB<T&> {
|
|
static const bool value = HasFreeLSB<T*>::value;
|
|
};
|
|
|
|
// Select one of the previous result implementation based on the properties of
|
|
// the V and E types.
|
|
template <typename V, typename E>
|
|
struct SelectResultImpl {
|
|
static const PackingStrategy value =
|
|
(IsEmpty<V>::value && UnusedZero<E>::value)
|
|
? PackingStrategy::NullIsOk
|
|
: (detail::HasFreeLSB<V>::value && detail::HasFreeLSB<E>::value)
|
|
? PackingStrategy::LowBitTagIsError
|
|
: (IsDefaultConstructible<V>::value &&
|
|
IsDefaultConstructible<E>::value &&
|
|
IsPackableVariant<V, E>::value)
|
|
? PackingStrategy::PackedVariant
|
|
: PackingStrategy::Variant;
|
|
|
|
using Type = detail::ResultImplementation<V, E, value>;
|
|
};
|
|
|
|
template <typename T>
|
|
struct IsResult : FalseType {};
|
|
|
|
template <typename V, typename E>
|
|
struct IsResult<Result<V, E>> : TrueType {};
|
|
|
|
} // namespace detail
|
|
|
|
template <typename V, typename E>
|
|
auto ToResult(Result<V, E>&& aValue)
|
|
-> decltype(std::forward<Result<V, E>>(aValue)) {
|
|
return std::forward<Result<V, E>>(aValue);
|
|
}
|
|
|
|
/**
|
|
* Result<V, E> represents the outcome of an operation that can either succeed
|
|
* or fail. It contains either a success value of type V or an error value of
|
|
* type E.
|
|
*
|
|
* All Result methods are const, so results are basically immutable.
|
|
* This is just like Variant<V, E> but with a slightly different API, and the
|
|
* following cases are optimized so Result can be stored more efficiently:
|
|
*
|
|
* - If the success type is Ok (or another empty class) and the error type is a
|
|
* reference, Result<V, E&> is guaranteed to be pointer-sized and all zero
|
|
* bits on success. Do not change this representation! There is JIT code that
|
|
* depends on it.
|
|
*
|
|
* - If the success type is a pointer type and the error type is a reference
|
|
* type, and the least significant bit is unused for both types when stored
|
|
* as a pointer (due to alignment rules), Result<V*, E&> is guaranteed to be
|
|
* pointer-sized. In this case, we use the lowest bit as tag bit: 0 to
|
|
* indicate the Result's bits are a V, 1 to indicate the Result's bits (with
|
|
* the 1 masked out) encode an E*.
|
|
*
|
|
* The purpose of Result is to reduce the screwups caused by using `false` or
|
|
* `nullptr` to indicate errors.
|
|
* What screwups? See <https://bugzilla.mozilla.org/show_bug.cgi?id=912928> for
|
|
* a partial list.
|
|
*/
|
|
template <typename V, typename E>
|
|
class MOZ_MUST_USE_TYPE Result final {
|
|
using Impl = typename detail::SelectResultImpl<V, E>::Type;
|
|
|
|
Impl mImpl;
|
|
|
|
public:
|
|
/** Create a success result. */
|
|
MOZ_IMPLICIT Result(V&& aValue) : mImpl(std::forward<V>(aValue)) {
|
|
MOZ_ASSERT(isOk());
|
|
}
|
|
|
|
/** Create a success result. */
|
|
MOZ_IMPLICIT Result(const V& aValue) : mImpl(aValue) { MOZ_ASSERT(isOk()); }
|
|
|
|
/** Create an error result. */
|
|
explicit Result(E aErrorValue) : mImpl(std::forward<E>(aErrorValue)) {
|
|
MOZ_ASSERT(isErr());
|
|
}
|
|
|
|
/**
|
|
* Implementation detail of MOZ_TRY().
|
|
* Create an error result from another error result.
|
|
*/
|
|
template <typename E2>
|
|
MOZ_IMPLICIT Result(GenericErrorResult<E2>&& aErrorResult)
|
|
: mImpl(std::forward<E2>(aErrorResult.mErrorValue)) {
|
|
static_assert(mozilla::IsConvertible<E2, E>::value,
|
|
"E2 must be convertible to E");
|
|
MOZ_ASSERT(isErr());
|
|
}
|
|
|
|
/**
|
|
* Implementation detail of MOZ_TRY().
|
|
* Create an error result from another error result.
|
|
*/
|
|
template <typename E2>
|
|
MOZ_IMPLICIT Result(const GenericErrorResult<E2>& aErrorResult)
|
|
: mImpl(aErrorResult.mErrorValue) {
|
|
static_assert(mozilla::IsConvertible<E2, E>::value,
|
|
"E2 must be convertible to E");
|
|
MOZ_ASSERT(isErr());
|
|
}
|
|
|
|
Result(const Result&) = default;
|
|
Result(Result&&) = default;
|
|
Result& operator=(const Result&) = default;
|
|
Result& operator=(Result&&) = default;
|
|
|
|
/** True if this Result is a success result. */
|
|
bool isOk() const { return mImpl.isOk(); }
|
|
|
|
/** True if this Result is an error result. */
|
|
bool isErr() const { return !mImpl.isOk(); }
|
|
|
|
/** Take the success value from this Result, which must be a success result.
|
|
*/
|
|
V unwrap() {
|
|
MOZ_ASSERT(isOk());
|
|
return mImpl.unwrap();
|
|
}
|
|
|
|
/**
|
|
* Take the success value from this Result, which must be a success result.
|
|
* If it is an error result, then return the aValue.
|
|
*/
|
|
V unwrapOr(V aValue) {
|
|
return MOZ_LIKELY(isOk()) ? mImpl.unwrap() : std::move(aValue);
|
|
}
|
|
|
|
/** Take the error value from this Result, which must be an error result. */
|
|
E unwrapErr() {
|
|
MOZ_ASSERT(isErr());
|
|
return mImpl.unwrapErr();
|
|
}
|
|
|
|
/** See the success value from this Result, which must be a success result. */
|
|
const V& inspect() const { return mImpl.inspect(); }
|
|
|
|
/** See the error value from this Result, which must be an error result. */
|
|
const E& inspectErr() const {
|
|
MOZ_ASSERT(isErr());
|
|
return mImpl.inspectErr();
|
|
}
|
|
|
|
/**
|
|
* Map a function V -> W over this result's success variant. If this result is
|
|
* an error, do not invoke the function and return a copy of the error.
|
|
*
|
|
* Mapping over success values invokes the function to produce a new success
|
|
* value:
|
|
*
|
|
* // Map Result<int, E> to another Result<int, E>
|
|
* Result<int, E> res(5);
|
|
* Result<int, E> res2 = res.map([](int x) { return x * x; });
|
|
* MOZ_ASSERT(res2.unwrap() == 25);
|
|
*
|
|
* // Map Result<const char*, E> to Result<size_t, E>
|
|
* Result<const char*, E> res("hello, map!");
|
|
* Result<size_t, E> res2 = res.map(strlen);
|
|
* MOZ_ASSERT(res2.unwrap() == 11);
|
|
*
|
|
* Mapping over an error does not invoke the function and copies the error:
|
|
*
|
|
* Result<V, int> res(5);
|
|
* MOZ_ASSERT(res.isErr());
|
|
* Result<W, int> res2 = res.map([](V v) { ... });
|
|
* MOZ_ASSERT(res2.isErr());
|
|
* MOZ_ASSERT(res2.unwrapErr() == 5);
|
|
*/
|
|
template <typename F>
|
|
auto map(F f) -> Result<decltype(f(*((V*)nullptr))), E> {
|
|
using RetResult = Result<decltype(f(*((V*)nullptr))), E>;
|
|
return MOZ_LIKELY(isOk()) ? RetResult(f(unwrap())) : RetResult(unwrapErr());
|
|
}
|
|
|
|
/**
|
|
* Map a function V -> W over this result's error variant. If this result is
|
|
* a success, do not invoke the function and move the success over.
|
|
*
|
|
* Mapping over error values invokes the function to produce a new error
|
|
* value:
|
|
*
|
|
* // Map Result<V, int> to another Result<V, int>
|
|
* Result<V, int> res(5);
|
|
* Result<V, int> res2 = res.mapErr([](int x) { return x * x; });
|
|
* MOZ_ASSERT(res2.unwrapErr() == 25);
|
|
*
|
|
* // Map Result<V, const char*> to Result<V, size_t>
|
|
* Result<V, const char*> res("hello, map!");
|
|
* Result<size_t, E> res2 = res.mapErr(strlen);
|
|
* MOZ_ASSERT(res2.unwrapErr() == 11);
|
|
*
|
|
* Mapping over a success does not invoke the function and copies the error:
|
|
*
|
|
* Result<int, V> res(5);
|
|
* MOZ_ASSERT(res.isOk());
|
|
* Result<int, W> res2 = res.mapErr([](V v) { ... });
|
|
* MOZ_ASSERT(res2.isOk());
|
|
* MOZ_ASSERT(res2.unwrap() == 5);
|
|
*/
|
|
template <typename F>
|
|
auto mapErr(F f) -> Result<V, std::result_of_t<F(E)>> {
|
|
using RetResult = Result<V, std::result_of_t<F(E)>>;
|
|
return isOk() ? RetResult(unwrap()) : RetResult(f(unwrapErr()));
|
|
}
|
|
|
|
/**
|
|
* Given a function V -> Result<W, E>, apply it to this result's success value
|
|
* and return its result. If this result is an error value, then return a
|
|
* copy.
|
|
*
|
|
* This is sometimes called "flatMap" or ">>=" in other contexts.
|
|
*
|
|
* `andThen`ing over success values invokes the function to produce a new
|
|
* result:
|
|
*
|
|
* Result<const char*, Error> res("hello, andThen!");
|
|
* Result<HtmlFreeString, Error> res2 = res.andThen([](const char* s) {
|
|
* return containsHtmlTag(s)
|
|
* ? Result<HtmlFreeString, Error>(Error("Invalid: contains HTML"))
|
|
* : Result<HtmlFreeString, Error>(HtmlFreeString(s));
|
|
* }
|
|
* });
|
|
* MOZ_ASSERT(res2.isOk());
|
|
* MOZ_ASSERT(res2.unwrap() == HtmlFreeString("hello, andThen!");
|
|
*
|
|
* `andThen`ing over error results does not invoke the function, and just
|
|
* produces a new copy of the error result:
|
|
*
|
|
* Result<int, const char*> res("some error");
|
|
* auto res2 = res.andThen([](int x) { ... });
|
|
* MOZ_ASSERT(res2.isErr());
|
|
* MOZ_ASSERT(res.unwrapErr() == res2.unwrapErr());
|
|
*/
|
|
template <typename F, typename = typename EnableIf<detail::IsResult<decltype(
|
|
(*((F*)nullptr))(*((V*)nullptr)))>::value>::Type>
|
|
auto andThen(F f) -> decltype(f(*((V*)nullptr))) {
|
|
return MOZ_LIKELY(isOk()) ? f(unwrap())
|
|
: GenericErrorResult<E>(unwrapErr());
|
|
}
|
|
};
|
|
|
|
/**
|
|
* A type that auto-converts to an error Result. This is like a Result without
|
|
* a success type. It's the best return type for functions that always return
|
|
* an error--functions designed to build and populate error objects. It's also
|
|
* useful in error-handling macros; see MOZ_TRY for an example.
|
|
*/
|
|
template <typename E>
|
|
class MOZ_MUST_USE_TYPE GenericErrorResult {
|
|
E mErrorValue;
|
|
|
|
template <typename V, typename E2>
|
|
friend class Result;
|
|
|
|
public:
|
|
explicit GenericErrorResult(E aErrorValue)
|
|
: mErrorValue(std::forward<E>(aErrorValue)) {}
|
|
};
|
|
|
|
template <typename E>
|
|
inline GenericErrorResult<E> Err(E&& aErrorValue) {
|
|
return GenericErrorResult<E>(std::forward<E>(aErrorValue));
|
|
}
|
|
|
|
} // namespace mozilla
|
|
|
|
/**
|
|
* MOZ_TRY(expr) is the C++ equivalent of Rust's `try!(expr);`. First, it
|
|
* evaluates expr, which must produce a Result value. On success, it
|
|
* discards the result altogether. On error, it immediately returns an error
|
|
* Result from the enclosing function.
|
|
*/
|
|
#define MOZ_TRY(expr) \
|
|
do { \
|
|
auto mozTryTempResult_ = ::mozilla::ToResult(expr); \
|
|
if (MOZ_UNLIKELY(mozTryTempResult_.isErr())) { \
|
|
return ::mozilla::Err(mozTryTempResult_.unwrapErr()); \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* MOZ_TRY_VAR(target, expr) is the C++ equivalent of Rust's `target =
|
|
* try!(expr);`. First, it evaluates expr, which must produce a Result value. On
|
|
* success, the result's success value is assigned to target. On error,
|
|
* immediately returns the error result. |target| must evaluate to a reference
|
|
* without any side effects.
|
|
*/
|
|
#define MOZ_TRY_VAR(target, expr) \
|
|
do { \
|
|
auto mozTryVarTempResult_ = (expr); \
|
|
if (MOZ_UNLIKELY(mozTryVarTempResult_.isErr())) { \
|
|
return ::mozilla::Err(mozTryVarTempResult_.unwrapErr()); \
|
|
} \
|
|
(target) = mozTryVarTempResult_.unwrap(); \
|
|
} while (0)
|
|
|
|
#endif // mozilla_Result_h
|