зеркало из https://github.com/mozilla/gecko-dev.git
219 строки
7.8 KiB
Python
219 строки
7.8 KiB
Python
# This Source Code Form is subject to the terms of the Mozilla Public
|
|
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
from __future__ import absolute_import, print_function, unicode_literals
|
|
import logging
|
|
import os
|
|
import yaml
|
|
|
|
from .graph import Graph
|
|
from .taskgraph import TaskGraph
|
|
from .optimize import optimize_task_graph
|
|
from .util.python_path import find_object
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Kind(object):
|
|
|
|
def __init__(self, name, path, config):
|
|
self.name = name
|
|
self.path = path
|
|
self.config = config
|
|
|
|
def _get_impl_class(self):
|
|
# load the class defined by implementation
|
|
try:
|
|
impl = self.config['implementation']
|
|
except KeyError:
|
|
raise KeyError("{!r} does not define implementation".format(self.path))
|
|
return find_object(impl)
|
|
|
|
def load_tasks(self, parameters, loaded_tasks):
|
|
impl_class = self._get_impl_class()
|
|
return impl_class.load_tasks(self.name, self.path, self.config,
|
|
parameters, loaded_tasks)
|
|
|
|
|
|
class TaskGraphGenerator(object):
|
|
"""
|
|
The central controller for taskgraph. This handles all phases of graph
|
|
generation. The task is generated from all of the kinds defined in
|
|
subdirectories of the generator's root directory.
|
|
|
|
Access to the results of this generation, as well as intermediate values at
|
|
various phases of generation, is available via properties. This encourages
|
|
the provision of all generation inputs at instance construction time.
|
|
"""
|
|
|
|
# Task-graph generation is implemented as a Python generator that yields
|
|
# each "phase" of generation. This allows some mach subcommands to short-
|
|
# circuit generation of the entire graph by never completing the generator.
|
|
|
|
def __init__(self, root_dir, parameters,
|
|
target_tasks_method):
|
|
"""
|
|
@param root_dir: root directory, with subdirectories for each kind
|
|
@param parameters: parameters for this task-graph generation
|
|
@type parameters: dict
|
|
@param target_tasks_method: function to determine the target_task_set;
|
|
see `./target_tasks.py`.
|
|
@type target_tasks_method: function
|
|
"""
|
|
|
|
self.root_dir = root_dir
|
|
self.parameters = parameters
|
|
self.target_tasks_method = target_tasks_method
|
|
|
|
# this can be set up until the time the target task set is generated;
|
|
# it defaults to parameters['target_tasks']
|
|
self._target_tasks = parameters.get('target_tasks')
|
|
|
|
# start the generator
|
|
self._run = self._run()
|
|
self._run_results = {}
|
|
|
|
@property
|
|
def full_task_set(self):
|
|
"""
|
|
The full task set: all tasks defined by any kind (a graph without edges)
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('full_task_set')
|
|
|
|
@property
|
|
def full_task_graph(self):
|
|
"""
|
|
The full task graph: the full task set, with edges representing
|
|
dependencies.
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('full_task_graph')
|
|
|
|
@property
|
|
def target_task_set(self):
|
|
"""
|
|
The set of targetted tasks (a graph without edges)
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('target_task_set')
|
|
|
|
@property
|
|
def target_task_graph(self):
|
|
"""
|
|
The set of targetted tasks and all of their dependencies
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('target_task_graph')
|
|
|
|
@property
|
|
def optimized_task_graph(self):
|
|
"""
|
|
The set of targetted tasks and all of their dependencies; tasks that
|
|
have been optimized out are either omitted or replaced with a Task
|
|
instance containing only a task_id.
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('optimized_task_graph')
|
|
|
|
@property
|
|
def label_to_taskid(self):
|
|
"""
|
|
A dictionary mapping task label to assigned taskId. This property helps
|
|
in interpreting `optimized_task_graph`.
|
|
|
|
@type: dictionary
|
|
"""
|
|
return self._run_until('label_to_taskid')
|
|
|
|
def _load_kinds(self):
|
|
for path in os.listdir(self.root_dir):
|
|
path = os.path.join(self.root_dir, path)
|
|
if not os.path.isdir(path):
|
|
continue
|
|
kind_name = os.path.basename(path)
|
|
|
|
kind_yml = os.path.join(path, 'kind.yml')
|
|
if not os.path.exists(kind_yml):
|
|
continue
|
|
|
|
logger.debug("loading kind `{}` from `{}`".format(kind_name, path))
|
|
with open(kind_yml) as f:
|
|
config = yaml.load(f)
|
|
|
|
yield Kind(kind_name, path, config)
|
|
|
|
def _run(self):
|
|
logger.info("Loading kinds")
|
|
# put the kinds into a graph and sort topologically so that kinds are loaded
|
|
# in post-order
|
|
kinds = {kind.name: kind for kind in self._load_kinds()}
|
|
edges = set()
|
|
for kind in kinds.itervalues():
|
|
for dep in kind.config.get('kind-dependencies', []):
|
|
edges.add((kind.name, dep, 'kind-dependency'))
|
|
kind_graph = Graph(set(kinds), edges)
|
|
|
|
logger.info("Generating full task set")
|
|
all_tasks = {}
|
|
for kind_name in kind_graph.visit_postorder():
|
|
logger.debug("Loading tasks for kind {}".format(kind_name))
|
|
kind = kinds[kind_name]
|
|
new_tasks = kind.load_tasks(self.parameters, list(all_tasks.values()))
|
|
for task in new_tasks:
|
|
if task.label in all_tasks:
|
|
raise Exception("duplicate tasks with label " + task.label)
|
|
all_tasks[task.label] = task
|
|
logger.info("Generated {} tasks for kind {}".format(len(new_tasks), kind_name))
|
|
full_task_set = TaskGraph(all_tasks, Graph(set(all_tasks), set()))
|
|
yield 'full_task_set', full_task_set
|
|
|
|
logger.info("Generating full task graph")
|
|
edges = set()
|
|
for t in full_task_set:
|
|
for dep, depname in t.get_dependencies(full_task_set):
|
|
edges.add((t.label, dep, depname))
|
|
|
|
full_task_graph = TaskGraph(all_tasks,
|
|
Graph(full_task_set.graph.nodes, edges))
|
|
yield 'full_task_graph', full_task_graph
|
|
|
|
logger.info("Generating target task set")
|
|
target_tasks = set(self.target_tasks_method(full_task_graph, self.parameters))
|
|
target_task_set = TaskGraph(
|
|
{l: all_tasks[l] for l in target_tasks},
|
|
Graph(target_tasks, set()))
|
|
yield 'target_task_set', target_task_set
|
|
|
|
logger.info("Generating target task graph")
|
|
target_graph = full_task_graph.graph.transitive_closure(target_tasks)
|
|
target_task_graph = TaskGraph(
|
|
{l: all_tasks[l] for l in target_graph.nodes},
|
|
target_graph)
|
|
yield 'target_task_graph', target_task_graph
|
|
|
|
logger.info("Generating optimized task graph")
|
|
do_not_optimize = set()
|
|
if not self.parameters.get('optimize_target_tasks', True):
|
|
do_not_optimize = target_task_set.graph.nodes
|
|
optimized_task_graph, label_to_taskid = optimize_task_graph(target_task_graph,
|
|
self.parameters,
|
|
do_not_optimize)
|
|
yield 'label_to_taskid', label_to_taskid
|
|
yield 'optimized_task_graph', optimized_task_graph
|
|
|
|
def _run_until(self, name):
|
|
while name not in self._run_results:
|
|
try:
|
|
k, v = self._run.next()
|
|
except StopIteration:
|
|
raise AttributeError("No such run result {}".format(name))
|
|
self._run_results[k] = v
|
|
return self._run_results[name]
|