зеркало из https://github.com/mozilla/gecko-dev.git
158 строки
5.8 KiB
Python
158 строки
5.8 KiB
Python
# -*- coding: utf-8 -*-
|
||
|
||
# This Source Code Form is subject to the terms of the Mozilla Public
|
||
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
||
from __future__ import absolute_import, print_function, unicode_literals
|
||
|
||
import unittest
|
||
|
||
from ..graph import Graph
|
||
from mozunit import main
|
||
|
||
|
||
class TestGraph(unittest.TestCase):
|
||
|
||
tree = Graph(set(['a', 'b', 'c', 'd', 'e', 'f', 'g']), {
|
||
('a', 'b', 'L'),
|
||
('a', 'c', 'L'),
|
||
('b', 'd', 'K'),
|
||
('b', 'e', 'K'),
|
||
('c', 'f', 'N'),
|
||
('c', 'g', 'N'),
|
||
})
|
||
|
||
linear = Graph(set(['1', '2', '3', '4']), {
|
||
('1', '2', 'L'),
|
||
('2', '3', 'L'),
|
||
('3', '4', 'L'),
|
||
})
|
||
|
||
diamonds = Graph(set(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']),
|
||
set(tuple(x) for x in
|
||
'AFL ADL BDL BEL CEL CHL DFL DGL EGL EHL FIL GIL GJL HJL'.split()
|
||
))
|
||
|
||
multi_edges = Graph(set(['1', '2', '3', '4']), {
|
||
('2', '1', 'red'),
|
||
('2', '1', 'blue'),
|
||
('3', '1', 'red'),
|
||
('3', '2', 'blue'),
|
||
('3', '2', 'green'),
|
||
('4', '3', 'green'),
|
||
})
|
||
|
||
disjoint = Graph(set(['1', '2', '3', '4', 'α', 'β', 'γ']), {
|
||
('2', '1', 'red'),
|
||
('3', '1', 'red'),
|
||
('3', '2', 'green'),
|
||
('4', '3', 'green'),
|
||
('α', 'β', 'πράσινο'),
|
||
('β', 'γ', 'κόκκινο'),
|
||
('α', 'γ', 'μπλε'),
|
||
})
|
||
|
||
def test_transitive_closure_empty(self):
|
||
"transitive closure of an empty set is an empty graph"
|
||
g = Graph(set(['a', 'b', 'c']), {('a', 'b', 'L'), ('a', 'c', 'L')})
|
||
self.assertEqual(g.transitive_closure(set()),
|
||
Graph(set(), set()))
|
||
|
||
def test_transitive_closure_disjoint(self):
|
||
"transitive closure of a disjoint set is a subset"
|
||
g = Graph(set(['a', 'b', 'c']), set())
|
||
self.assertEqual(g.transitive_closure(set(['a', 'c'])),
|
||
Graph(set(['a', 'c']), set()))
|
||
|
||
def test_transitive_closure_trees(self):
|
||
"transitive closure of a tree, at two non-root nodes, is the two subtrees"
|
||
self.assertEqual(self.tree.transitive_closure(set(['b', 'c'])),
|
||
Graph(set(['b', 'c', 'd', 'e', 'f', 'g']), {
|
||
('b', 'd', 'K'),
|
||
('b', 'e', 'K'),
|
||
('c', 'f', 'N'),
|
||
('c', 'g', 'N'),
|
||
}))
|
||
|
||
def test_transitive_closure_multi_edges(self):
|
||
"transitive closure of a tree with multiple edges between nodes keeps those edges"
|
||
self.assertEqual(self.multi_edges.transitive_closure(set(['3'])),
|
||
Graph(set(['1', '2', '3']), {
|
||
('2', '1', 'red'),
|
||
('2', '1', 'blue'),
|
||
('3', '1', 'red'),
|
||
('3', '2', 'blue'),
|
||
('3', '2', 'green'),
|
||
}))
|
||
|
||
def test_transitive_closure_disjoint_edges(self):
|
||
"transitive closure of a disjoint graph keeps those edges"
|
||
self.assertEqual(self.disjoint.transitive_closure(set(['3', 'β'])),
|
||
Graph(set(['1', '2', '3', 'β', 'γ']), {
|
||
('2', '1', 'red'),
|
||
('3', '1', 'red'),
|
||
('3', '2', 'green'),
|
||
('β', 'γ', 'κόκκινο'),
|
||
}))
|
||
|
||
def test_transitive_closure_linear(self):
|
||
"transitive closure of a linear graph includes all nodes in the line"
|
||
self.assertEqual(self.linear.transitive_closure(set(['1'])), self.linear)
|
||
|
||
def test_visit_postorder_empty(self):
|
||
"postorder visit of an empty graph is empty"
|
||
self.assertEqual(list(Graph(set(), set()).visit_postorder()), [])
|
||
|
||
def assert_postorder(self, seq, all_nodes):
|
||
seen = set()
|
||
for e in seq:
|
||
for l, r, n in self.tree.edges:
|
||
if l == e:
|
||
self.failUnless(r in seen)
|
||
seen.add(e)
|
||
self.assertEqual(seen, all_nodes)
|
||
|
||
def test_visit_postorder_tree(self):
|
||
"postorder visit of a tree satisfies invariant"
|
||
self.assert_postorder(self.tree.visit_postorder(), self.tree.nodes)
|
||
|
||
def test_visit_postorder_diamonds(self):
|
||
"postorder visit of a graph full of diamonds satisfies invariant"
|
||
self.assert_postorder(self.diamonds.visit_postorder(), self.diamonds.nodes)
|
||
|
||
def test_visit_postorder_multi_edges(self):
|
||
"postorder visit of a graph with duplicate edges satisfies invariant"
|
||
self.assert_postorder(self.multi_edges.visit_postorder(), self.multi_edges.nodes)
|
||
|
||
def test_visit_postorder_disjoint(self):
|
||
"postorder visit of a disjoint graph satisfies invariant"
|
||
self.assert_postorder(self.disjoint.visit_postorder(), self.disjoint.nodes)
|
||
|
||
def test_links_dict(self):
|
||
"link dict for a graph with multiple edges is correct"
|
||
self.assertEqual(self.multi_edges.links_dict(), {
|
||
'2': set(['1']),
|
||
'3': set(['1', '2']),
|
||
'4': set(['3']),
|
||
})
|
||
|
||
def test_named_links_dict(self):
|
||
"named link dict for a graph with multiple edges is correct"
|
||
self.assertEqual(self.multi_edges.named_links_dict(), {
|
||
'2': dict(red='1', blue='1'),
|
||
'3': dict(red='1', blue='2', green='2'),
|
||
'4': dict(green='3'),
|
||
})
|
||
|
||
def test_reverse_links_dict(self):
|
||
"reverse link dict for a graph with multiple edges is correct"
|
||
self.assertEqual(self.multi_edges.reverse_links_dict(), {
|
||
'1': set(['2', '3']),
|
||
'2': set(['3']),
|
||
'3': set(['4']),
|
||
})
|
||
|
||
if __name__ == '__main__':
|
||
main()
|