gecko-dev/taskcluster/taskgraph/test/test_graph.py

158 строки
5.8 KiB
Python
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

# -*- coding: utf-8 -*-
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
from __future__ import absolute_import, print_function, unicode_literals
import unittest
from ..graph import Graph
from mozunit import main
class TestGraph(unittest.TestCase):
tree = Graph(set(['a', 'b', 'c', 'd', 'e', 'f', 'g']), {
('a', 'b', 'L'),
('a', 'c', 'L'),
('b', 'd', 'K'),
('b', 'e', 'K'),
('c', 'f', 'N'),
('c', 'g', 'N'),
})
linear = Graph(set(['1', '2', '3', '4']), {
('1', '2', 'L'),
('2', '3', 'L'),
('3', '4', 'L'),
})
diamonds = Graph(set(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']),
set(tuple(x) for x in
'AFL ADL BDL BEL CEL CHL DFL DGL EGL EHL FIL GIL GJL HJL'.split()
))
multi_edges = Graph(set(['1', '2', '3', '4']), {
('2', '1', 'red'),
('2', '1', 'blue'),
('3', '1', 'red'),
('3', '2', 'blue'),
('3', '2', 'green'),
('4', '3', 'green'),
})
disjoint = Graph(set(['1', '2', '3', '4', 'α', 'β', 'γ']), {
('2', '1', 'red'),
('3', '1', 'red'),
('3', '2', 'green'),
('4', '3', 'green'),
('α', 'β', 'πράσινο'),
('β', 'γ', 'κόκκινο'),
('α', 'γ', 'μπλε'),
})
def test_transitive_closure_empty(self):
"transitive closure of an empty set is an empty graph"
g = Graph(set(['a', 'b', 'c']), {('a', 'b', 'L'), ('a', 'c', 'L')})
self.assertEqual(g.transitive_closure(set()),
Graph(set(), set()))
def test_transitive_closure_disjoint(self):
"transitive closure of a disjoint set is a subset"
g = Graph(set(['a', 'b', 'c']), set())
self.assertEqual(g.transitive_closure(set(['a', 'c'])),
Graph(set(['a', 'c']), set()))
def test_transitive_closure_trees(self):
"transitive closure of a tree, at two non-root nodes, is the two subtrees"
self.assertEqual(self.tree.transitive_closure(set(['b', 'c'])),
Graph(set(['b', 'c', 'd', 'e', 'f', 'g']), {
('b', 'd', 'K'),
('b', 'e', 'K'),
('c', 'f', 'N'),
('c', 'g', 'N'),
}))
def test_transitive_closure_multi_edges(self):
"transitive closure of a tree with multiple edges between nodes keeps those edges"
self.assertEqual(self.multi_edges.transitive_closure(set(['3'])),
Graph(set(['1', '2', '3']), {
('2', '1', 'red'),
('2', '1', 'blue'),
('3', '1', 'red'),
('3', '2', 'blue'),
('3', '2', 'green'),
}))
def test_transitive_closure_disjoint_edges(self):
"transitive closure of a disjoint graph keeps those edges"
self.assertEqual(self.disjoint.transitive_closure(set(['3', 'β'])),
Graph(set(['1', '2', '3', 'β', 'γ']), {
('2', '1', 'red'),
('3', '1', 'red'),
('3', '2', 'green'),
('β', 'γ', 'κόκκινο'),
}))
def test_transitive_closure_linear(self):
"transitive closure of a linear graph includes all nodes in the line"
self.assertEqual(self.linear.transitive_closure(set(['1'])), self.linear)
def test_visit_postorder_empty(self):
"postorder visit of an empty graph is empty"
self.assertEqual(list(Graph(set(), set()).visit_postorder()), [])
def assert_postorder(self, seq, all_nodes):
seen = set()
for e in seq:
for l, r, n in self.tree.edges:
if l == e:
self.failUnless(r in seen)
seen.add(e)
self.assertEqual(seen, all_nodes)
def test_visit_postorder_tree(self):
"postorder visit of a tree satisfies invariant"
self.assert_postorder(self.tree.visit_postorder(), self.tree.nodes)
def test_visit_postorder_diamonds(self):
"postorder visit of a graph full of diamonds satisfies invariant"
self.assert_postorder(self.diamonds.visit_postorder(), self.diamonds.nodes)
def test_visit_postorder_multi_edges(self):
"postorder visit of a graph with duplicate edges satisfies invariant"
self.assert_postorder(self.multi_edges.visit_postorder(), self.multi_edges.nodes)
def test_visit_postorder_disjoint(self):
"postorder visit of a disjoint graph satisfies invariant"
self.assert_postorder(self.disjoint.visit_postorder(), self.disjoint.nodes)
def test_links_dict(self):
"link dict for a graph with multiple edges is correct"
self.assertEqual(self.multi_edges.links_dict(), {
'2': set(['1']),
'3': set(['1', '2']),
'4': set(['3']),
})
def test_named_links_dict(self):
"named link dict for a graph with multiple edges is correct"
self.assertEqual(self.multi_edges.named_links_dict(), {
'2': dict(red='1', blue='1'),
'3': dict(red='1', blue='2', green='2'),
'4': dict(green='3'),
})
def test_reverse_links_dict(self):
"reverse link dict for a graph with multiple edges is correct"
self.assertEqual(self.multi_edges.reverse_links_dict(), {
'1': set(['2', '3']),
'2': set(['3']),
'3': set(['4']),
})
if __name__ == '__main__':
main()