зеркало из https://github.com/mozilla/gecko-dev.git
148 строки
3.9 KiB
C++
148 строки
3.9 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsSMILKeySpline.h"
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
|
|
#define NEWTON_ITERATIONS 4
|
|
#define NEWTON_MIN_SLOPE 0.02
|
|
#define SUBDIVISION_PRECISION 0.0000001
|
|
#define SUBDIVISION_MAX_ITERATIONS 10
|
|
|
|
const double nsSMILKeySpline::kSampleStepSize =
|
|
1.0 / double(kSplineTableSize - 1);
|
|
|
|
void
|
|
nsSMILKeySpline::Init(double aX1,
|
|
double aY1,
|
|
double aX2,
|
|
double aY2)
|
|
{
|
|
mX1 = aX1;
|
|
mY1 = aY1;
|
|
mX2 = aX2;
|
|
mY2 = aY2;
|
|
|
|
if (mX1 != mY1 || mX2 != mY2)
|
|
CalcSampleValues();
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::GetSplineValue(double aX) const
|
|
{
|
|
if (mX1 == mY1 && mX2 == mY2)
|
|
return aX;
|
|
|
|
return CalcBezier(GetTForX(aX), mY1, mY2);
|
|
}
|
|
|
|
void
|
|
nsSMILKeySpline::GetSplineDerivativeValues(double aX, double& aDX, double& aDY) const
|
|
{
|
|
double t = GetTForX(aX);
|
|
aDX = GetSlope(t, mX1, mX2);
|
|
aDY = GetSlope(t, mY1, mY2);
|
|
}
|
|
|
|
void
|
|
nsSMILKeySpline::CalcSampleValues()
|
|
{
|
|
for (uint32_t i = 0; i < kSplineTableSize; ++i) {
|
|
mSampleValues[i] = CalcBezier(double(i) * kSampleStepSize, mX1, mX2);
|
|
}
|
|
}
|
|
|
|
/*static*/ double
|
|
nsSMILKeySpline::CalcBezier(double aT,
|
|
double aA1,
|
|
double aA2)
|
|
{
|
|
// use Horner's scheme to evaluate the Bezier polynomial
|
|
return ((A(aA1, aA2)*aT + B(aA1, aA2))*aT + C(aA1))*aT;
|
|
}
|
|
|
|
/*static*/ double
|
|
nsSMILKeySpline::GetSlope(double aT,
|
|
double aA1,
|
|
double aA2)
|
|
{
|
|
return 3.0 * A(aA1, aA2)*aT*aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::GetTForX(double aX) const
|
|
{
|
|
// Find interval where t lies
|
|
double intervalStart = 0.0;
|
|
const double* currentSample = &mSampleValues[1];
|
|
const double* const lastSample = &mSampleValues[kSplineTableSize - 1];
|
|
for (; currentSample != lastSample && *currentSample <= aX;
|
|
++currentSample) {
|
|
intervalStart += kSampleStepSize;
|
|
}
|
|
--currentSample; // t now lies between *currentSample and *currentSample+1
|
|
|
|
// Interpolate to provide an initial guess for t
|
|
double dist = (aX - *currentSample) /
|
|
(*(currentSample+1) - *currentSample);
|
|
double guessForT = intervalStart + dist * kSampleStepSize;
|
|
|
|
// Check the slope to see what strategy to use. If the slope is too small
|
|
// Newton-Raphson iteration won't converge on a root so we use bisection
|
|
// instead.
|
|
double initialSlope = GetSlope(guessForT, mX1, mX2);
|
|
if (initialSlope >= NEWTON_MIN_SLOPE) {
|
|
return NewtonRaphsonIterate(aX, guessForT);
|
|
} else if (initialSlope == 0.0) {
|
|
return guessForT;
|
|
} else {
|
|
return BinarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize);
|
|
}
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::NewtonRaphsonIterate(double aX, double aGuessT) const
|
|
{
|
|
// Refine guess with Newton-Raphson iteration
|
|
for (uint32_t i = 0; i < NEWTON_ITERATIONS; ++i) {
|
|
// We're trying to find where f(t) = aX,
|
|
// so we're actually looking for a root for: CalcBezier(t) - aX
|
|
double currentX = CalcBezier(aGuessT, mX1, mX2) - aX;
|
|
double currentSlope = GetSlope(aGuessT, mX1, mX2);
|
|
|
|
if (currentSlope == 0.0)
|
|
return aGuessT;
|
|
|
|
aGuessT -= currentX / currentSlope;
|
|
}
|
|
|
|
return aGuessT;
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::BinarySubdivide(double aX, double aA, double aB) const
|
|
{
|
|
double currentX;
|
|
double currentT;
|
|
uint32_t i = 0;
|
|
|
|
do
|
|
{
|
|
currentT = aA + (aB - aA) / 2.0;
|
|
currentX = CalcBezier(currentT, mX1, mX2) - aX;
|
|
|
|
if (currentX > 0.0) {
|
|
aB = currentT;
|
|
} else {
|
|
aA = currentT;
|
|
}
|
|
} while (fabs(currentX) > SUBDIVISION_PRECISION
|
|
&& ++i < SUBDIVISION_MAX_ITERATIONS);
|
|
|
|
return currentT;
|
|
}
|