зеркало из https://github.com/mozilla/gecko-dev.git
1864 строки
53 KiB
C++
1864 строки
53 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <map>
|
|
#include <memory>
|
|
|
|
#include <dlfcn.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <setjmp.h>
|
|
#include <signal.h>
|
|
#include <poll.h>
|
|
#include <pthread.h>
|
|
#include <alloca.h>
|
|
#include <sys/epoll.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/syscall.h>
|
|
#include <vector>
|
|
|
|
#include "mozilla/LinkedList.h"
|
|
#include "Nuwa.h"
|
|
|
|
using namespace mozilla;
|
|
|
|
extern "C" MFBT_API int tgkill(pid_t tgid, pid_t tid, int signalno) {
|
|
return syscall(__NR_tgkill, tgid, tid, signalno);
|
|
}
|
|
|
|
/**
|
|
* Provides the wrappers to a selected set of pthread and system-level functions
|
|
* as the basis for implementing Zygote-like preforking mechanism.
|
|
*/
|
|
|
|
/**
|
|
* Real functions for the wrappers.
|
|
*/
|
|
extern "C" {
|
|
int __real_pthread_create(pthread_t *thread,
|
|
const pthread_attr_t *attr,
|
|
void *(*start_routine) (void *),
|
|
void *arg);
|
|
int __real_pthread_key_create(pthread_key_t *key, void (*destructor)(void*));
|
|
int __real_pthread_key_delete(pthread_key_t key);
|
|
pthread_t __real_pthread_self();
|
|
int __real_pthread_join(pthread_t thread, void **retval);
|
|
int __real_epoll_wait(int epfd,
|
|
struct epoll_event *events,
|
|
int maxevents,
|
|
int timeout);
|
|
int __real_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mtx);
|
|
int __real_pthread_cond_timedwait(pthread_cond_t *cond,
|
|
pthread_mutex_t *mtx,
|
|
const struct timespec *abstime);
|
|
int __real___pthread_cond_timedwait(pthread_cond_t *cond,
|
|
pthread_mutex_t *mtx,
|
|
const struct timespec *abstime,
|
|
clockid_t clock);
|
|
int __real_pthread_mutex_lock(pthread_mutex_t *mtx);
|
|
int __real_poll(struct pollfd *fds, nfds_t nfds, int timeout);
|
|
int __real_epoll_create(int size);
|
|
int __real_socketpair(int domain, int type, int protocol, int sv[2]);
|
|
int __real_pipe2(int __pipedes[2], int flags);
|
|
int __real_pipe(int __pipedes[2]);
|
|
int __real_epoll_ctl(int aEpollFd, int aOp, int aFd, struct epoll_event *aEvent);
|
|
int __real_close(int aFd);
|
|
}
|
|
|
|
#define REAL(s) __real_##s
|
|
|
|
/**
|
|
* A Nuwa process is started by preparing. After preparing, it waits
|
|
* for all threads becoming frozen. Then, it is ready while all
|
|
* threads are frozen.
|
|
*/
|
|
static bool sIsNuwaProcess = false; // This process is a Nuwa process.
|
|
static bool sIsFreezing = false; // Waiting for all threads getting frozen.
|
|
static bool sNuwaReady = false; // Nuwa process is ready.
|
|
static bool sNuwaPendingSpawn = false; // Are there any pending spawn requests?
|
|
static bool sNuwaForking = false;
|
|
|
|
// Fds of transports of top level protocols.
|
|
static NuwaProtoFdInfo sProtoFdInfos[NUWA_TOPLEVEL_MAX];
|
|
static int sProtoFdInfosSize = 0;
|
|
|
|
template <typename T>
|
|
struct LibcAllocator: public std::allocator<T>
|
|
{
|
|
LibcAllocator()
|
|
{
|
|
void* libcHandle = dlopen("libc.so", RTLD_LAZY);
|
|
mMallocImpl = reinterpret_cast<void*(*)(size_t)>(dlsym(libcHandle, "malloc"));
|
|
mFreeImpl = reinterpret_cast<void(*)(void*)>(dlsym(libcHandle, "free"));
|
|
|
|
if (!(mMallocImpl && mFreeImpl)) {
|
|
// libc should be available, or we'll deadlock in using TLSInfoList.
|
|
abort();
|
|
}
|
|
}
|
|
|
|
inline typename std::allocator<T>::pointer
|
|
allocate(typename std::allocator<T>::size_type n,
|
|
const void * = 0)
|
|
{
|
|
return reinterpret_cast<T *>(mMallocImpl(sizeof(T) * n));
|
|
}
|
|
|
|
inline void
|
|
deallocate(typename std::allocator<T>::pointer p,
|
|
typename std::allocator<T>::size_type n)
|
|
{
|
|
mFreeImpl(p);
|
|
}
|
|
|
|
template<typename U>
|
|
struct rebind
|
|
{
|
|
typedef LibcAllocator<U> other;
|
|
};
|
|
private:
|
|
void* (*mMallocImpl)(size_t);
|
|
void (*mFreeImpl)(void*);
|
|
};
|
|
|
|
/**
|
|
* TLSInfoList should use malloc() and free() in libc to avoid the deadlock that
|
|
* jemalloc calls into __wrap_pthread_mutex_lock() and then deadlocks while
|
|
* the same thread already acquired sThreadCountLock.
|
|
*/
|
|
typedef std::vector<std::pair<pthread_key_t, void *>,
|
|
LibcAllocator<std::pair<pthread_key_t, void *> > >
|
|
TLSInfoList;
|
|
|
|
/**
|
|
* Return the system's page size
|
|
*/
|
|
static size_t getPageSize(void) {
|
|
#ifdef HAVE_GETPAGESIZE
|
|
return getpagesize();
|
|
#elif defined(_SC_PAGESIZE)
|
|
return sysconf(_SC_PAGESIZE);
|
|
#elif defined(PAGE_SIZE)
|
|
return PAGE_SIZE;
|
|
#else
|
|
#warning "Hard-coding page size to 4096 bytes"
|
|
return 4096
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Align the pointer to the next page boundary unless it's already aligned
|
|
*/
|
|
static uintptr_t ceilToPage(uintptr_t aPtr) {
|
|
size_t pageSize = getPageSize();
|
|
|
|
return ((aPtr + pageSize - 1) / pageSize) * pageSize;
|
|
}
|
|
|
|
/**
|
|
* The stack size is chosen carefully so the frozen threads doesn't consume too
|
|
* much memory in the Nuwa process. The threads shouldn't run deep recursive
|
|
* methods or do large allocations on the stack to avoid stack overflow.
|
|
*/
|
|
#ifndef NUWA_STACK_SIZE
|
|
#define NUWA_STACK_SIZE (1024 * 128)
|
|
#endif
|
|
|
|
#define NATIVE_THREAD_NAME_LENGTH 16
|
|
|
|
struct thread_info : public mozilla::LinkedListElement<thread_info> {
|
|
pthread_t origThreadID;
|
|
pthread_t recreatedThreadID;
|
|
pthread_attr_t threadAttr;
|
|
jmp_buf jmpEnv;
|
|
jmp_buf retEnv;
|
|
|
|
int flags;
|
|
|
|
void *(*startupFunc)(void *arg);
|
|
void *startupArg;
|
|
|
|
// The thread specific function to recreate the new thread. It's executed
|
|
// after the thread is recreated.
|
|
void (*recrFunc)(void *arg);
|
|
void *recrArg;
|
|
|
|
TLSInfoList tlsInfo;
|
|
|
|
pthread_mutex_t *reacquireMutex;
|
|
void *stk;
|
|
|
|
pid_t origNativeThreadID;
|
|
pid_t recreatedNativeThreadID;
|
|
char nativeThreadName[NATIVE_THREAD_NAME_LENGTH];
|
|
};
|
|
|
|
typedef struct thread_info thread_info_t;
|
|
|
|
static thread_info_t *sCurrentRecreatingThread = nullptr;
|
|
|
|
/**
|
|
* This function runs the custom recreation function registered when calling
|
|
* NuwaMarkCurrentThread() after thread stack is restored.
|
|
*/
|
|
static void
|
|
RunCustomRecreation() {
|
|
thread_info_t *tinfo = sCurrentRecreatingThread;
|
|
if (tinfo->recrFunc != nullptr) {
|
|
tinfo->recrFunc(tinfo->recrArg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Every thread should be marked as either TINFO_FLAG_NUWA_SUPPORT or
|
|
* TINFO_FLAG_NUWA_SKIP, or it means a potential error. We force
|
|
* Gecko code to mark every single thread to make sure there are no accidents
|
|
* when recreating threads with Nuwa.
|
|
*
|
|
* Threads marked as TINFO_FLAG_NUWA_SUPPORT can be checkpointed explicitly, by
|
|
* calling NuwaCheckpointCurrentThread(), or implicitly when they call into wrapped
|
|
* functions like pthread_mutex_lock(), epoll_wait(), etc.
|
|
* TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT denotes the explicitly checkpointed thread.
|
|
*/
|
|
#define TINFO_FLAG_NUWA_SUPPORT 0x1
|
|
#define TINFO_FLAG_NUWA_SKIP 0x2
|
|
#define TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT 0x4
|
|
|
|
typedef struct nuwa_construct {
|
|
void (*construct)(void *);
|
|
void *arg;
|
|
} nuwa_construct_t;
|
|
|
|
static std::vector<nuwa_construct_t> sConstructors;
|
|
static std::vector<nuwa_construct_t> sFinalConstructors;
|
|
|
|
typedef std::map<pthread_key_t, void (*)(void *)> TLSKeySet;
|
|
static TLSKeySet sTLSKeys;
|
|
|
|
/**
|
|
* This mutex is used to block the running threads and freeze their contexts.
|
|
* PrepareNuwaProcess() is the first one to acquire the lock. Further attempts
|
|
* to acquire this mutex (in the freeze point macros) will block and freeze the
|
|
* calling thread.
|
|
*/
|
|
static pthread_mutex_t sThreadFreezeLock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static thread_info_t sMainThread;
|
|
static LinkedList<thread_info_t> sAllThreads;
|
|
static int sThreadCount = 0;
|
|
static int sThreadFreezeCount = 0;
|
|
/**
|
|
* This mutex protects the access to thread info:
|
|
* sAllThreads, sThreadCount, sThreadFreezeCount, sRecreateVIPCount.
|
|
*/
|
|
static pthread_mutex_t sThreadCountLock = PTHREAD_MUTEX_INITIALIZER;
|
|
/**
|
|
* This condition variable lets MakeNuwaProcess() wait until all recreated
|
|
* threads are frozen.
|
|
*/
|
|
static pthread_cond_t sThreadChangeCond = PTHREAD_COND_INITIALIZER;
|
|
|
|
/**
|
|
* This mutex and condition variable is used to serialize the fork requests
|
|
* from the parent process.
|
|
*/
|
|
static pthread_mutex_t sForkLock = PTHREAD_MUTEX_INITIALIZER;
|
|
static pthread_cond_t sForkWaitCond = PTHREAD_COND_INITIALIZER;
|
|
|
|
/**
|
|
* sForkWaitCondChanged will be reset to false on the IPC thread before
|
|
* and will be changed to true on the main thread to indicate that the condition
|
|
* that the IPC thread is waiting for has already changed.
|
|
*/
|
|
static bool sForkWaitCondChanged = false;
|
|
|
|
/**
|
|
* This mutex protects the access to sTLSKeys, which keeps track of existing
|
|
* TLS Keys.
|
|
*/
|
|
static pthread_mutex_t sTLSKeyLock = PTHREAD_MUTEX_INITIALIZER;
|
|
static int sThreadSkipCount = 0;
|
|
|
|
static thread_info_t *
|
|
GetThreadInfoInner(pthread_t threadID) {
|
|
for (thread_info_t *tinfo = sAllThreads.getFirst();
|
|
tinfo;
|
|
tinfo = tinfo->getNext()) {
|
|
if (pthread_equal(tinfo->origThreadID, threadID)) {
|
|
return tinfo;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/**
|
|
* Get thread info using the specified thread ID.
|
|
*
|
|
* @return thread_info_t which has threadID == specified threadID
|
|
*/
|
|
static thread_info_t *
|
|
GetThreadInfo(pthread_t threadID) {
|
|
if (sIsNuwaProcess) {
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
}
|
|
thread_info_t *tinfo = GetThreadInfoInner(threadID);
|
|
if (sIsNuwaProcess) {
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
}
|
|
return tinfo;
|
|
}
|
|
|
|
/**
|
|
* Get thread info using the specified native thread ID.
|
|
*
|
|
* @return thread_info_t with nativeThreadID == specified threadID
|
|
*/
|
|
static thread_info_t*
|
|
GetThreadInfo(pid_t threadID) {
|
|
if (sIsNuwaProcess) {
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
}
|
|
thread_info_t *thrinfo = nullptr;
|
|
for (thread_info_t *tinfo = sAllThreads.getFirst();
|
|
tinfo;
|
|
tinfo = tinfo->getNext()) {
|
|
if (tinfo->origNativeThreadID == threadID) {
|
|
thrinfo = tinfo;
|
|
break;
|
|
}
|
|
}
|
|
if (sIsNuwaProcess) {
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
}
|
|
|
|
return thrinfo;
|
|
}
|
|
|
|
#if !defined(HAVE_THREAD_TLS_KEYWORD)
|
|
/**
|
|
* Get thread info of the current thread.
|
|
*
|
|
* @return thread_info_t for the current thread.
|
|
*/
|
|
static thread_info_t *
|
|
GetCurThreadInfo() {
|
|
pthread_t threadID = REAL(pthread_self)();
|
|
pthread_t thread_info_t::*threadIDptr =
|
|
(sIsNuwaProcess ?
|
|
&thread_info_t::origThreadID :
|
|
&thread_info_t::recreatedThreadID);
|
|
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
thread_info_t *tinfo;
|
|
for (tinfo = sAllThreads.getFirst();
|
|
tinfo;
|
|
tinfo = tinfo->getNext()) {
|
|
if (pthread_equal(tinfo->*threadIDptr, threadID)) {
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
return tinfo;
|
|
}
|
|
#define CUR_THREAD_INFO GetCurThreadInfo()
|
|
#define SET_THREAD_INFO(x) /* Nothing to do. */
|
|
#else
|
|
// Is not nullptr only for threads created by pthread_create() in an Nuwa process.
|
|
// It is always nullptr for the main thread.
|
|
static __thread thread_info_t *sCurThreadInfo = nullptr;
|
|
#define CUR_THREAD_INFO sCurThreadInfo
|
|
#define SET_THREAD_INFO(x) do { sCurThreadInfo = (x); } while(0)
|
|
#endif // HAVE_THREAD_TLS_KEYWORD
|
|
|
|
/*
|
|
* Track all epoll fds and handling events.
|
|
*/
|
|
class EpollManager {
|
|
public:
|
|
class EpollInfo {
|
|
public:
|
|
typedef struct epoll_event Events;
|
|
typedef std::map<int, Events> EpollEventsMap;
|
|
typedef EpollEventsMap::iterator iterator;
|
|
typedef EpollEventsMap::const_iterator const_iterator;
|
|
|
|
EpollInfo(): mBackSize(0) {}
|
|
EpollInfo(int aBackSize): mBackSize(aBackSize) {}
|
|
EpollInfo(const EpollInfo &aOther): mEvents(aOther.mEvents)
|
|
, mBackSize(aOther.mBackSize) {
|
|
}
|
|
~EpollInfo() {
|
|
mEvents.clear();
|
|
}
|
|
|
|
void AddEvents(int aFd, Events &aEvents) {
|
|
std::pair<iterator, bool> pair =
|
|
mEvents.insert(std::make_pair(aFd, aEvents));
|
|
if (!pair.second) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void RemoveEvents(int aFd) {
|
|
if (!mEvents.erase(aFd)) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void ModifyEvents(int aFd, Events &aEvents) {
|
|
iterator it = mEvents.find(aFd);
|
|
if (it == mEvents.end()) {
|
|
abort();
|
|
}
|
|
it->second = aEvents;
|
|
}
|
|
|
|
const Events &FindEvents(int aFd) const {
|
|
const_iterator it = mEvents.find(aFd);
|
|
if (it == mEvents.end()) {
|
|
abort();
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
int Size() const { return mEvents.size(); }
|
|
|
|
// Iterator with values of <fd, Events> pairs.
|
|
const_iterator begin() const { return mEvents.begin(); }
|
|
const_iterator end() const { return mEvents.end(); }
|
|
|
|
int BackSize() const { return mBackSize; }
|
|
|
|
private:
|
|
EpollEventsMap mEvents;
|
|
int mBackSize;
|
|
|
|
friend class EpollManager;
|
|
};
|
|
|
|
typedef std::map<int, EpollInfo> EpollInfoMap;
|
|
typedef EpollInfoMap::iterator iterator;
|
|
typedef EpollInfoMap::const_iterator const_iterator;
|
|
|
|
public:
|
|
void AddEpollInfo(int aEpollFd, int aBackSize) {
|
|
EpollInfo *oldinfo = FindEpollInfo(aEpollFd);
|
|
if (oldinfo != nullptr) {
|
|
abort();
|
|
}
|
|
mEpollFdsInfo[aEpollFd] = EpollInfo(aBackSize);
|
|
}
|
|
|
|
EpollInfo *FindEpollInfo(int aEpollFd) {
|
|
iterator it = mEpollFdsInfo.find(aEpollFd);
|
|
if (it == mEpollFdsInfo.end()) {
|
|
return nullptr;
|
|
}
|
|
return &it->second;
|
|
}
|
|
|
|
void RemoveEpollInfo(int aEpollFd) {
|
|
if (!mEpollFdsInfo.erase(aEpollFd)) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
int Size() const { return mEpollFdsInfo.size(); }
|
|
|
|
// Iterator of <epollfd, EpollInfo> pairs.
|
|
const_iterator begin() const { return mEpollFdsInfo.begin(); }
|
|
const_iterator end() const { return mEpollFdsInfo.end(); }
|
|
|
|
static EpollManager *Singleton() {
|
|
if (!sInstance) {
|
|
sInstance = new EpollManager();
|
|
}
|
|
return sInstance;
|
|
}
|
|
|
|
static void Shutdown() {
|
|
if (!sInstance) {
|
|
abort();
|
|
}
|
|
|
|
delete sInstance;
|
|
sInstance = nullptr;
|
|
}
|
|
|
|
private:
|
|
static EpollManager *sInstance;
|
|
~EpollManager() {
|
|
mEpollFdsInfo.clear();
|
|
}
|
|
|
|
EpollInfoMap mEpollFdsInfo;
|
|
|
|
EpollManager() {}
|
|
};
|
|
|
|
EpollManager* EpollManager::sInstance;
|
|
|
|
static thread_info_t *
|
|
thread_info_new(void) {
|
|
/* link tinfo to sAllThreads */
|
|
thread_info_t *tinfo = new thread_info_t();
|
|
tinfo->flags = 0;
|
|
tinfo->recrFunc = nullptr;
|
|
tinfo->recrArg = nullptr;
|
|
tinfo->recreatedThreadID = 0;
|
|
tinfo->recreatedNativeThreadID = 0;
|
|
tinfo->reacquireMutex = nullptr;
|
|
tinfo->stk = malloc(NUWA_STACK_SIZE + getPageSize());
|
|
|
|
// We use a smaller stack size. Add protection to stack overflow: mprotect()
|
|
// stack top (the page at the lowest address) so we crash instead of corrupt
|
|
// other content that is malloc()'d.
|
|
uintptr_t pageGuard = ceilToPage((uintptr_t)tinfo->stk);
|
|
mprotect((void*)pageGuard, getPageSize(), PROT_READ);
|
|
|
|
pthread_attr_init(&tinfo->threadAttr);
|
|
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
// Insert to the tail.
|
|
sAllThreads.insertBack(tinfo);
|
|
|
|
sThreadCount++;
|
|
pthread_cond_signal(&sThreadChangeCond);
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
|
|
return tinfo;
|
|
}
|
|
|
|
static void
|
|
thread_info_cleanup(void *arg) {
|
|
if (sNuwaForking) {
|
|
// We shouldn't have any thread exiting when we are forking a new process.
|
|
abort();
|
|
}
|
|
|
|
thread_info_t *tinfo = (thread_info_t *)arg;
|
|
pthread_attr_destroy(&tinfo->threadAttr);
|
|
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
/* unlink tinfo from sAllThreads */
|
|
tinfo->remove();
|
|
|
|
sThreadCount--;
|
|
pthread_cond_signal(&sThreadChangeCond);
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
|
|
free(tinfo->stk);
|
|
delete tinfo;
|
|
}
|
|
|
|
static void *
|
|
_thread_create_startup(void *arg) {
|
|
thread_info_t *tinfo = (thread_info_t *)arg;
|
|
void *r;
|
|
|
|
// Save thread info; especially, stackaddr & stacksize.
|
|
// Reuse the stack in the new thread.
|
|
pthread_getattr_np(REAL(pthread_self)(), &tinfo->threadAttr);
|
|
|
|
SET_THREAD_INFO(tinfo);
|
|
tinfo->origThreadID = REAL(pthread_self)();
|
|
tinfo->origNativeThreadID = gettid();
|
|
|
|
pthread_cleanup_push(thread_info_cleanup, tinfo);
|
|
|
|
r = tinfo->startupFunc(tinfo->startupArg);
|
|
|
|
if (!sIsNuwaProcess) {
|
|
return r;
|
|
}
|
|
|
|
pthread_cleanup_pop(1);
|
|
|
|
return r;
|
|
}
|
|
|
|
// reserve STACK_RESERVED_SZ * 4 bytes for thread_recreate_startup().
|
|
#define STACK_RESERVED_SZ 64
|
|
#define STACK_SENTINEL(v) ((v)[0])
|
|
#define STACK_SENTINEL_VALUE(v) ((uint32_t)(v) ^ 0xdeadbeef)
|
|
|
|
static void *
|
|
thread_create_startup(void *arg) {
|
|
/*
|
|
* Dark Art!! Never try to do the same unless you are ABSOLUTELY sure of
|
|
* what you are doing!
|
|
*
|
|
* This function is here for reserving stack space before calling
|
|
* _thread_create_startup(). see also thread_create_startup();
|
|
*/
|
|
void *r;
|
|
volatile uint32_t reserved[STACK_RESERVED_SZ];
|
|
|
|
// Reserve stack space.
|
|
STACK_SENTINEL(reserved) = STACK_SENTINEL_VALUE(reserved);
|
|
|
|
r = _thread_create_startup(arg);
|
|
|
|
// Check if the reservation is enough.
|
|
if (STACK_SENTINEL(reserved) != STACK_SENTINEL_VALUE(reserved)) {
|
|
abort(); // Did not reserve enough stack space.
|
|
}
|
|
|
|
thread_info_t *tinfo = CUR_THREAD_INFO;
|
|
if (!sIsNuwaProcess) {
|
|
longjmp(tinfo->retEnv, 1);
|
|
|
|
// Never go here!
|
|
abort();
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pthread_create(pthread_t *thread,
|
|
const pthread_attr_t *attr,
|
|
void *(*start_routine) (void *),
|
|
void *arg) {
|
|
if (!sIsNuwaProcess) {
|
|
return REAL(pthread_create)(thread, attr, start_routine, arg);
|
|
}
|
|
|
|
thread_info_t *tinfo = thread_info_new();
|
|
tinfo->startupFunc = start_routine;
|
|
tinfo->startupArg = arg;
|
|
pthread_attr_setstack(&tinfo->threadAttr, tinfo->stk, NUWA_STACK_SIZE);
|
|
|
|
int rv = REAL(pthread_create)(thread,
|
|
&tinfo->threadAttr,
|
|
thread_create_startup,
|
|
tinfo);
|
|
if (rv) {
|
|
thread_info_cleanup(tinfo);
|
|
} else {
|
|
tinfo->origThreadID = *thread;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
// TLS related
|
|
|
|
/**
|
|
* Iterates over the existing TLS keys and store the TLS data for the current
|
|
* thread in tinfo.
|
|
*/
|
|
static void
|
|
SaveTLSInfo(thread_info_t *tinfo) {
|
|
REAL(pthread_mutex_lock)(&sTLSKeyLock);
|
|
tinfo->tlsInfo.clear();
|
|
for (TLSKeySet::const_iterator it = sTLSKeys.begin();
|
|
it != sTLSKeys.end();
|
|
it++) {
|
|
void *value = pthread_getspecific(it->first);
|
|
if (value == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
pthread_key_t key = it->first;
|
|
tinfo->tlsInfo.push_back(TLSInfoList::value_type(key, value));
|
|
}
|
|
pthread_mutex_unlock(&sTLSKeyLock);
|
|
}
|
|
|
|
/**
|
|
* Restores the TLS data for the current thread from tinfo.
|
|
*/
|
|
static void
|
|
RestoreTLSInfo(thread_info_t *tinfo) {
|
|
for (TLSInfoList::const_iterator it = tinfo->tlsInfo.begin();
|
|
it != tinfo->tlsInfo.end();
|
|
it++) {
|
|
pthread_key_t key = it->first;
|
|
const void *value = it->second;
|
|
if (pthread_setspecific(key, value)) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
SET_THREAD_INFO(tinfo);
|
|
tinfo->recreatedThreadID = REAL(pthread_self)();
|
|
tinfo->recreatedNativeThreadID = gettid();
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pthread_key_create(pthread_key_t *key, void (*destructor)(void*)) {
|
|
int rv = REAL(pthread_key_create)(key, destructor);
|
|
if (rv != 0) {
|
|
return rv;
|
|
}
|
|
REAL(pthread_mutex_lock)(&sTLSKeyLock);
|
|
sTLSKeys.insert(TLSKeySet::value_type(*key, destructor));
|
|
pthread_mutex_unlock(&sTLSKeyLock);
|
|
return 0;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pthread_key_delete(pthread_key_t key) {
|
|
if (!sIsNuwaProcess) {
|
|
return REAL(pthread_key_delete)(key);
|
|
}
|
|
int rv = REAL(pthread_key_delete)(key);
|
|
if (rv != 0) {
|
|
return rv;
|
|
}
|
|
REAL(pthread_mutex_lock)(&sTLSKeyLock);
|
|
sTLSKeys.erase(key);
|
|
pthread_mutex_unlock(&sTLSKeyLock);
|
|
return 0;
|
|
}
|
|
|
|
extern "C" MFBT_API pthread_t
|
|
__wrap_pthread_self() {
|
|
thread_info_t *tinfo = CUR_THREAD_INFO;
|
|
if (tinfo) {
|
|
// For recreated thread, masquerade as the original thread in the Nuwa
|
|
// process.
|
|
return tinfo->origThreadID;
|
|
}
|
|
return REAL(pthread_self)();
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pthread_join(pthread_t thread, void **retval) {
|
|
thread_info_t *tinfo = GetThreadInfo(thread);
|
|
if (tinfo == nullptr) {
|
|
return REAL(pthread_join)(thread, retval);
|
|
}
|
|
// pthread_join() need to use the real thread ID in the spawned process.
|
|
return REAL(pthread_join)(tinfo->recreatedThreadID, retval);
|
|
}
|
|
|
|
/**
|
|
* The following are used to synchronize between the main thread and the
|
|
* thread being recreated. The main thread will wait until the thread is woken
|
|
* up from the freeze points or the blocking intercepted functions and then
|
|
* proceed to recreate the next frozen thread.
|
|
*
|
|
* In thread recreation, the main thread recreates the frozen threads one by
|
|
* one. The recreated threads will be "gated" until the main thread "opens the
|
|
* gate" to let them run freely as if they were created from scratch. The VIP
|
|
* threads gets the chance to run first after their thread stacks are recreated
|
|
* (using longjmp()) so they can adjust their contexts to a valid, consistent
|
|
* state. The threads frozen waiting for pthread condition variables are VIP
|
|
* threads. After woken up they need to run first to make the associated mutex
|
|
* in a valid state to maintain the semantics of the intercepted function calls
|
|
* (like pthread_cond_wait()).
|
|
*/
|
|
|
|
// Used to synchronize the main thread and the thread being recreated so that
|
|
// only one thread is allowed to be recreated at a time.
|
|
static pthread_mutex_t sRecreateWaitLock = PTHREAD_MUTEX_INITIALIZER;
|
|
// Used to block recreated threads until the main thread "opens the gate".
|
|
static pthread_mutex_t sRecreateGateLock = PTHREAD_MUTEX_INITIALIZER;
|
|
// Used to block the main thread from "opening the gate" until all VIP threads
|
|
// have been recreated.
|
|
static pthread_mutex_t sRecreateVIPGateLock = PTHREAD_MUTEX_INITIALIZER;
|
|
static pthread_cond_t sRecreateVIPCond = PTHREAD_COND_INITIALIZER;
|
|
static int sRecreateVIPCount = 0;
|
|
static int sRecreateGatePassed = 0;
|
|
|
|
/**
|
|
* Thread recreation macros.
|
|
*
|
|
* The following macros are used in the forked process to synchronize and
|
|
* control the progress of thread recreation.
|
|
*
|
|
* 1. RECREATE_START() is first called in the beginning of thread
|
|
* recreation to set sRecreateWaitLock and sRecreateGateLock in locked
|
|
* state.
|
|
* 2. For each frozen thread:
|
|
* 2.1. RECREATE_BEFORE() to set the thread being recreated.
|
|
* 2.2. thread_recreate() to recreate the frozen thread.
|
|
* 2.3. Main thread calls RECREATE_WAIT() to wait on sRecreateWaitLock until
|
|
* the thread is recreated from the freeze point and calls
|
|
* RECREATE_CONTINUE() to release sRecreateWaitLock.
|
|
* 2.3. Non-VIP threads are blocked on RECREATE_GATE(). VIP threads calls
|
|
* RECREATE_PASS_VIP() to mark that a VIP thread is successfully
|
|
* recreated and then is blocked by calling RECREATE_GATE_VIP().
|
|
* 3. RECREATE_WAIT_ALL_VIP() to wait until all VIP threads passed, that is,
|
|
* VIP threads already has their contexts (mainly pthread mutex) in a valid
|
|
* state.
|
|
* 4. RECREATE_OPEN_GATE() to unblock threads blocked by sRecreateGateLock.
|
|
* 5. RECREATE_FINISH() to complete thread recreation.
|
|
*/
|
|
#define RECREATE_START() \
|
|
do { \
|
|
REAL(pthread_mutex_lock)(&sRecreateWaitLock); \
|
|
REAL(pthread_mutex_lock)(&sRecreateGateLock); \
|
|
} while(0)
|
|
#define RECREATE_BEFORE(info) do { sCurrentRecreatingThread = info; } while(0)
|
|
#define RECREATE_WAIT() REAL(pthread_mutex_lock)(&sRecreateWaitLock)
|
|
#define RECREATE_CONTINUE() do { \
|
|
RunCustomRecreation(); \
|
|
pthread_mutex_unlock(&sRecreateWaitLock); \
|
|
} while(0)
|
|
#define RECREATE_FINISH() pthread_mutex_unlock(&sRecreateWaitLock)
|
|
#define RECREATE_GATE() \
|
|
do { \
|
|
REAL(pthread_mutex_lock)(&sRecreateGateLock); \
|
|
sRecreateGatePassed++; \
|
|
pthread_mutex_unlock(&sRecreateGateLock); \
|
|
} while(0)
|
|
#define RECREATE_OPEN_GATE() pthread_mutex_unlock(&sRecreateGateLock)
|
|
#define RECREATE_GATE_VIP() \
|
|
do { \
|
|
REAL(pthread_mutex_lock)(&sRecreateGateLock); \
|
|
pthread_mutex_unlock(&sRecreateGateLock); \
|
|
} while(0)
|
|
#define RECREATE_PASS_VIP() \
|
|
do { \
|
|
REAL(pthread_mutex_lock)(&sRecreateVIPGateLock); \
|
|
sRecreateGatePassed++; \
|
|
pthread_cond_signal(&sRecreateVIPCond); \
|
|
pthread_mutex_unlock(&sRecreateVIPGateLock); \
|
|
} while(0)
|
|
#define RECREATE_WAIT_ALL_VIP() \
|
|
do { \
|
|
REAL(pthread_mutex_lock)(&sRecreateVIPGateLock); \
|
|
while(sRecreateGatePassed < sRecreateVIPCount) { \
|
|
REAL(pthread_cond_wait)(&sRecreateVIPCond, \
|
|
&sRecreateVIPGateLock); \
|
|
} \
|
|
pthread_mutex_unlock(&sRecreateVIPGateLock); \
|
|
} while(0)
|
|
|
|
/**
|
|
* Thread freeze points. Note that the freeze points are implemented as macros
|
|
* so as not to garble the content of the stack after setjmp().
|
|
*
|
|
* In the nuwa process, when a thread supporting nuwa calls a wrapper
|
|
* function, freeze point 1 setjmp()s to save the state. We only allow the
|
|
* thread to be frozen in the wrapper functions. If thread freezing is not
|
|
* enabled yet, the wrapper functions act like their wrapped counterparts,
|
|
* except for the extra actions in the freeze points. If thread freezing is
|
|
* enabled, the thread will be frozen by calling one of the wrapper functions.
|
|
* The threads can be frozen in any of the following points:
|
|
*
|
|
* 1) Freeze point 1: this is the point where we setjmp() in the nuwa process
|
|
* and longjmp() in the spawned process. If freezing is enabled, then the
|
|
* current thread blocks by acquiring an already locked mutex,
|
|
* sThreadFreezeLock.
|
|
* 2) The wrapped function: the function that might block waiting for some
|
|
* resource or condition.
|
|
* 3) Freeze point 2: blocks the current thread by acquiring sThreadFreezeLock.
|
|
* If freezing is not enabled then revert the counter change in freeze
|
|
* point 1.
|
|
*/
|
|
#define THREAD_FREEZE_POINT1() \
|
|
bool freezeCountChg = false; \
|
|
bool recreated = false; \
|
|
volatile bool freezePoint2 = false; \
|
|
thread_info_t *tinfo; \
|
|
if (sIsNuwaProcess && \
|
|
(tinfo = CUR_THREAD_INFO) && \
|
|
(tinfo->flags & TINFO_FLAG_NUWA_SUPPORT) && \
|
|
!(tinfo->flags & TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT)) { \
|
|
if (!setjmp(tinfo->jmpEnv)) { \
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock); \
|
|
SaveTLSInfo(tinfo); \
|
|
sThreadFreezeCount++; \
|
|
freezeCountChg = true; \
|
|
pthread_cond_signal(&sThreadChangeCond); \
|
|
pthread_mutex_unlock(&sThreadCountLock); \
|
|
\
|
|
if (sIsFreezing) { \
|
|
REAL(pthread_mutex_lock)(&sThreadFreezeLock); \
|
|
/* Never return from the pthread_mutex_lock() call. */ \
|
|
abort(); \
|
|
} \
|
|
} else { \
|
|
RECREATE_CONTINUE(); \
|
|
RECREATE_GATE(); \
|
|
freezeCountChg = false; \
|
|
recreated = true; \
|
|
} \
|
|
}
|
|
|
|
#define THREAD_FREEZE_POINT1_VIP() \
|
|
bool freezeCountChg = false; \
|
|
bool recreated = false; \
|
|
volatile bool freezePoint1 = false; \
|
|
volatile bool freezePoint2 = false; \
|
|
thread_info_t *tinfo; \
|
|
if (sIsNuwaProcess && \
|
|
(tinfo = CUR_THREAD_INFO) && \
|
|
(tinfo->flags & TINFO_FLAG_NUWA_SUPPORT) && \
|
|
!(tinfo->flags & TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT)) { \
|
|
if (!setjmp(tinfo->jmpEnv)) { \
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock); \
|
|
SaveTLSInfo(tinfo); \
|
|
sThreadFreezeCount++; \
|
|
sRecreateVIPCount++; \
|
|
freezeCountChg = true; \
|
|
pthread_cond_signal(&sThreadChangeCond); \
|
|
pthread_mutex_unlock(&sThreadCountLock); \
|
|
\
|
|
if (sIsFreezing) { \
|
|
freezePoint1 = true; \
|
|
REAL(pthread_mutex_lock)(&sThreadFreezeLock); \
|
|
/* Never return from the pthread_mutex_lock() call. */ \
|
|
abort(); \
|
|
} \
|
|
} else { \
|
|
freezeCountChg = false; \
|
|
recreated = true; \
|
|
} \
|
|
}
|
|
|
|
#define THREAD_FREEZE_POINT2() \
|
|
if (freezeCountChg) { \
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock); \
|
|
if (sNuwaReady && sIsNuwaProcess) { \
|
|
pthread_mutex_unlock(&sThreadCountLock); \
|
|
freezePoint2 = true; \
|
|
REAL(pthread_mutex_lock)(&sThreadFreezeLock); \
|
|
/* Never return from the pthread_mutex_lock() call. */ \
|
|
abort(); \
|
|
} \
|
|
sThreadFreezeCount--; \
|
|
pthread_cond_signal(&sThreadChangeCond); \
|
|
pthread_mutex_unlock(&sThreadCountLock); \
|
|
}
|
|
|
|
#define THREAD_FREEZE_POINT2_VIP() \
|
|
if (freezeCountChg) { \
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock); \
|
|
if (sNuwaReady && sIsNuwaProcess) { \
|
|
pthread_mutex_unlock(&sThreadCountLock); \
|
|
freezePoint2 = true; \
|
|
REAL(pthread_mutex_lock)(&sThreadFreezeLock); \
|
|
/* Never return from the pthread_mutex_lock() call. */ \
|
|
abort(); \
|
|
} \
|
|
sThreadFreezeCount--; \
|
|
sRecreateVIPCount--; \
|
|
pthread_cond_signal(&sThreadChangeCond); \
|
|
pthread_mutex_unlock(&sThreadCountLock); \
|
|
}
|
|
|
|
/**
|
|
* Wrapping the blocking functions: epoll_wait(), poll(), pthread_mutex_lock(),
|
|
* pthread_cond_wait() and pthread_cond_timedwait():
|
|
*
|
|
* These functions are wrapped by the above freeze point macros. Once a new
|
|
* process is forked, the recreated thread will be blocked in one of the wrapper
|
|
* functions. When recreating the thread, we longjmp() to
|
|
* THREAD_FREEZE_POINT1() to recover the thread stack. Care must be taken to
|
|
* maintain the semantics of the wrapped function:
|
|
*
|
|
* - epoll_wait() and poll(): just retry the function.
|
|
* - pthread_mutex_lock(): don't lock if frozen at freeze point 2 (lock is
|
|
* already acquired).
|
|
* - pthread_cond_wait() and pthread_cond_timedwait(): if the thread is frozen
|
|
* waiting the condition variable, the mutex is already released, we need to
|
|
* reacquire the mutex before calling the wrapped function again so the mutex
|
|
* will be in a valid state.
|
|
*/
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_epoll_wait(int epfd,
|
|
struct epoll_event *events,
|
|
int maxevents,
|
|
int timeout) {
|
|
int rv;
|
|
|
|
THREAD_FREEZE_POINT1();
|
|
rv = REAL(epoll_wait)(epfd, events, maxevents, timeout);
|
|
THREAD_FREEZE_POINT2();
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pthread_cond_wait(pthread_cond_t *cond,
|
|
pthread_mutex_t *mtx) {
|
|
int rv = 0;
|
|
|
|
THREAD_FREEZE_POINT1_VIP();
|
|
if (freezePoint2) {
|
|
RECREATE_CONTINUE();
|
|
RECREATE_PASS_VIP();
|
|
RECREATE_GATE_VIP();
|
|
return rv;
|
|
}
|
|
if (recreated && mtx) {
|
|
if (!freezePoint1 && pthread_mutex_trylock(mtx)) {
|
|
// The thread was frozen in pthread_cond_wait() after releasing mtx in the
|
|
// Nuwa process. In recreating this thread, We failed to reacquire mtx
|
|
// with the pthread_mutex_trylock() call, that is, mtx was acquired by
|
|
// another thread. Because of this, we need the main thread's help to
|
|
// reacquire mtx so that it will be in a valid state.
|
|
tinfo->reacquireMutex = mtx;
|
|
}
|
|
RECREATE_CONTINUE();
|
|
RECREATE_PASS_VIP();
|
|
}
|
|
rv = REAL(pthread_cond_wait)(cond, mtx);
|
|
if (recreated && mtx) {
|
|
// We still need to be gated as not to acquire another mutex associated with
|
|
// another VIP thread and interfere with it.
|
|
RECREATE_GATE_VIP();
|
|
}
|
|
THREAD_FREEZE_POINT2_VIP();
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pthread_cond_timedwait(pthread_cond_t *cond,
|
|
pthread_mutex_t *mtx,
|
|
const struct timespec *abstime) {
|
|
int rv = 0;
|
|
|
|
THREAD_FREEZE_POINT1_VIP();
|
|
if (freezePoint2) {
|
|
RECREATE_CONTINUE();
|
|
RECREATE_PASS_VIP();
|
|
RECREATE_GATE_VIP();
|
|
return rv;
|
|
}
|
|
if (recreated && mtx) {
|
|
if (!freezePoint1 && pthread_mutex_trylock(mtx)) {
|
|
tinfo->reacquireMutex = mtx;
|
|
}
|
|
RECREATE_CONTINUE();
|
|
RECREATE_PASS_VIP();
|
|
}
|
|
rv = REAL(pthread_cond_timedwait)(cond, mtx, abstime);
|
|
if (recreated && mtx) {
|
|
RECREATE_GATE_VIP();
|
|
}
|
|
THREAD_FREEZE_POINT2_VIP();
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" int __pthread_cond_timedwait(pthread_cond_t *cond,
|
|
pthread_mutex_t *mtx,
|
|
const struct timespec *abstime,
|
|
clockid_t clock);
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap___pthread_cond_timedwait(pthread_cond_t *cond,
|
|
pthread_mutex_t *mtx,
|
|
const struct timespec *abstime,
|
|
clockid_t clock) {
|
|
int rv = 0;
|
|
|
|
THREAD_FREEZE_POINT1_VIP();
|
|
if (freezePoint2) {
|
|
RECREATE_CONTINUE();
|
|
RECREATE_PASS_VIP();
|
|
RECREATE_GATE_VIP();
|
|
return rv;
|
|
}
|
|
if (recreated && mtx) {
|
|
if (!freezePoint1 && pthread_mutex_trylock(mtx)) {
|
|
tinfo->reacquireMutex = mtx;
|
|
}
|
|
RECREATE_CONTINUE();
|
|
RECREATE_PASS_VIP();
|
|
}
|
|
rv = REAL(__pthread_cond_timedwait)(cond, mtx, abstime, clock);
|
|
if (recreated && mtx) {
|
|
RECREATE_GATE_VIP();
|
|
}
|
|
THREAD_FREEZE_POINT2_VIP();
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pthread_mutex_lock(pthread_mutex_t *mtx) {
|
|
int rv = 0;
|
|
|
|
THREAD_FREEZE_POINT1();
|
|
if (freezePoint2) {
|
|
return rv;
|
|
}
|
|
rv = REAL(pthread_mutex_lock)(mtx);
|
|
THREAD_FREEZE_POINT2();
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_poll(struct pollfd *fds, nfds_t nfds, int timeout) {
|
|
int rv;
|
|
|
|
THREAD_FREEZE_POINT1();
|
|
rv = REAL(poll)(fds, nfds, timeout);
|
|
THREAD_FREEZE_POINT2();
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_epoll_create(int size) {
|
|
int epollfd = REAL(epoll_create)(size);
|
|
|
|
if (!sIsNuwaProcess) {
|
|
return epollfd;
|
|
}
|
|
|
|
if (epollfd >= 0) {
|
|
EpollManager::Singleton()->AddEpollInfo(epollfd, size);
|
|
}
|
|
|
|
return epollfd;
|
|
}
|
|
|
|
/**
|
|
* Wrapping the functions to create file descriptor pairs. In the child process
|
|
* FD pairs are created for intra-process signaling. The generation of FD pairs
|
|
* need to be tracked in the nuwa process so they can be recreated in the
|
|
* spawned process.
|
|
*/
|
|
struct FdPairInfo {
|
|
enum {
|
|
kPipe,
|
|
kSocketpair
|
|
} call;
|
|
|
|
int FDs[2];
|
|
int flags;
|
|
int domain;
|
|
int type;
|
|
int protocol;
|
|
};
|
|
|
|
/**
|
|
* Protects the access to sSingalFds.
|
|
*/
|
|
static pthread_mutex_t sSignalFdLock = PTHREAD_MUTEX_INITIALIZER;
|
|
static std::vector<FdPairInfo> sSignalFds;
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_socketpair(int domain, int type, int protocol, int sv[2])
|
|
{
|
|
int rv = REAL(socketpair)(domain, type, protocol, sv);
|
|
|
|
if (!sIsNuwaProcess || rv < 0) {
|
|
return rv;
|
|
}
|
|
|
|
REAL(pthread_mutex_lock)(&sSignalFdLock);
|
|
FdPairInfo signalFd;
|
|
signalFd.call = FdPairInfo::kSocketpair;
|
|
signalFd.FDs[0] = sv[0];
|
|
signalFd.FDs[1] = sv[1];
|
|
signalFd.domain = domain;
|
|
signalFd.type = type;
|
|
signalFd.protocol = protocol;
|
|
|
|
sSignalFds.push_back(signalFd);
|
|
pthread_mutex_unlock(&sSignalFdLock);
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pipe2(int __pipedes[2], int flags)
|
|
{
|
|
int rv = REAL(pipe2)(__pipedes, flags);
|
|
if (!sIsNuwaProcess || rv < 0) {
|
|
return rv;
|
|
}
|
|
|
|
REAL(pthread_mutex_lock)(&sSignalFdLock);
|
|
FdPairInfo signalFd;
|
|
signalFd.call = FdPairInfo::kPipe;
|
|
signalFd.FDs[0] = __pipedes[0];
|
|
signalFd.FDs[1] = __pipedes[1];
|
|
signalFd.flags = flags;
|
|
sSignalFds.push_back(signalFd);
|
|
pthread_mutex_unlock(&sSignalFdLock);
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_pipe(int __pipedes[2])
|
|
{
|
|
return __wrap_pipe2(__pipedes, 0);
|
|
}
|
|
|
|
static void
|
|
DupeSingleFd(int newFd, int origFd)
|
|
{
|
|
struct stat sb;
|
|
if (fstat(origFd, &sb)) {
|
|
// Maybe the original FD is closed.
|
|
return;
|
|
}
|
|
int fd = fcntl(origFd, F_GETFD);
|
|
int fl = fcntl(origFd, F_GETFL);
|
|
dup2(newFd, origFd);
|
|
fcntl(origFd, F_SETFD, fd);
|
|
fcntl(origFd, F_SETFL, fl);
|
|
REAL(close)(newFd);
|
|
}
|
|
|
|
extern "C" MFBT_API void
|
|
ReplaceSignalFds()
|
|
{
|
|
for (std::vector<FdPairInfo>::iterator it = sSignalFds.begin();
|
|
it < sSignalFds.end(); ++it) {
|
|
int fds[2];
|
|
int rc = 0;
|
|
switch (it->call) {
|
|
case FdPairInfo::kPipe:
|
|
rc = REAL(pipe2)(fds, it->flags);
|
|
break;
|
|
case FdPairInfo::kSocketpair:
|
|
rc = REAL(socketpair)(it->domain, it->type, it->protocol, fds);
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
if (rc == 0) {
|
|
DupeSingleFd(fds[0], it->FDs[0]);
|
|
DupeSingleFd(fds[1], it->FDs[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_epoll_ctl(int aEpollFd, int aOp, int aFd, struct epoll_event *aEvent) {
|
|
int rv = REAL(epoll_ctl)(aEpollFd, aOp, aFd, aEvent);
|
|
|
|
if (!sIsNuwaProcess || rv == -1) {
|
|
return rv;
|
|
}
|
|
|
|
EpollManager::EpollInfo *info =
|
|
EpollManager::Singleton()->FindEpollInfo(aEpollFd);
|
|
if (info == nullptr) {
|
|
abort();
|
|
}
|
|
|
|
switch(aOp) {
|
|
case EPOLL_CTL_ADD:
|
|
info->AddEvents(aFd, *aEvent);
|
|
break;
|
|
|
|
case EPOLL_CTL_MOD:
|
|
info->ModifyEvents(aFd, *aEvent);
|
|
break;
|
|
|
|
case EPOLL_CTL_DEL:
|
|
info->RemoveEvents(aFd);
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
// XXX: thinker: Maybe, we should also track dup, dup2, and other functions.
|
|
extern "C" MFBT_API int
|
|
__wrap_close(int aFd) {
|
|
int rv = REAL(close)(aFd);
|
|
if (!sIsNuwaProcess || rv == -1) {
|
|
return rv;
|
|
}
|
|
|
|
EpollManager::EpollInfo *info =
|
|
EpollManager::Singleton()->FindEpollInfo(aFd);
|
|
if (info) {
|
|
EpollManager::Singleton()->RemoveEpollInfo(aFd);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern "C" MFBT_API int
|
|
__wrap_tgkill(pid_t tgid, pid_t tid, int signalno)
|
|
{
|
|
if (sIsNuwaProcess) {
|
|
return tgkill(tgid, tid, signalno);
|
|
}
|
|
|
|
if (tid == sMainThread.origNativeThreadID) {
|
|
return tgkill(tgid, sMainThread.recreatedNativeThreadID, signalno);
|
|
}
|
|
|
|
thread_info_t *tinfo = (tid == sMainThread.origNativeThreadID ?
|
|
&sMainThread :
|
|
GetThreadInfo(tid));
|
|
if (!tinfo) {
|
|
return tgkill(tgid, tid, signalno);
|
|
}
|
|
|
|
return tgkill(tgid, tinfo->recreatedNativeThreadID, signalno);
|
|
}
|
|
|
|
static void *
|
|
thread_recreate_startup(void *arg) {
|
|
/*
|
|
* Dark Art!! Never do the same unless you are ABSOLUTELY sure what you are
|
|
* doing!
|
|
*
|
|
* The stack space collapsed by this frame had been reserved by
|
|
* thread_create_startup(). And thread_create_startup() will
|
|
* return immediately after returning from real start routine, so
|
|
* all collapsed values does not affect the result.
|
|
*
|
|
* All outer frames of thread_create_startup() and
|
|
* thread_recreate_startup() are equivalent, so
|
|
* thread_create_startup() will return successfully.
|
|
*/
|
|
thread_info_t *tinfo = (thread_info_t *)arg;
|
|
|
|
prctl(PR_SET_NAME, (unsigned long)&tinfo->nativeThreadName, 0, 0, 0);
|
|
RestoreTLSInfo(tinfo);
|
|
|
|
if (setjmp(tinfo->retEnv) != 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
// longjump() to recreate the stack on the new thread.
|
|
longjmp(tinfo->jmpEnv, 1);
|
|
|
|
// Never go here!
|
|
abort();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/**
|
|
* Recreate the context given by tinfo at a new thread.
|
|
*/
|
|
static void
|
|
thread_recreate(thread_info_t *tinfo) {
|
|
pthread_t thread;
|
|
|
|
// Note that the thread_recreate_startup() runs on the stack specified by
|
|
// tinfo.
|
|
pthread_create(&thread, &tinfo->threadAttr, thread_recreate_startup, tinfo);
|
|
}
|
|
|
|
/**
|
|
* Recreate all threads in a process forked from an Nuwa process.
|
|
*/
|
|
static void
|
|
RecreateThreads() {
|
|
sIsNuwaProcess = false;
|
|
sIsFreezing = false;
|
|
|
|
sMainThread.recreatedThreadID = pthread_self();
|
|
sMainThread.recreatedNativeThreadID = gettid();
|
|
|
|
// Run registered constructors.
|
|
for (std::vector<nuwa_construct_t>::iterator ctr = sConstructors.begin();
|
|
ctr != sConstructors.end();
|
|
ctr++) {
|
|
(*ctr).construct((*ctr).arg);
|
|
}
|
|
sConstructors.clear();
|
|
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
thread_info_t *tinfo = sAllThreads.getFirst();
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
|
|
RECREATE_START();
|
|
while (tinfo != nullptr) {
|
|
if (tinfo->flags & TINFO_FLAG_NUWA_SUPPORT) {
|
|
RECREATE_BEFORE(tinfo);
|
|
thread_recreate(tinfo);
|
|
RECREATE_WAIT();
|
|
if (tinfo->reacquireMutex) {
|
|
REAL(pthread_mutex_lock)(tinfo->reacquireMutex);
|
|
}
|
|
} else if(!(tinfo->flags & TINFO_FLAG_NUWA_SKIP)) {
|
|
// An unmarked thread is found other than the main thread.
|
|
|
|
// All threads should be marked as one of SUPPORT or SKIP, or
|
|
// abort the process to make sure all threads in the Nuwa
|
|
// process are Nuwa-aware.
|
|
abort();
|
|
}
|
|
|
|
tinfo = tinfo->getNext();
|
|
}
|
|
RECREATE_WAIT_ALL_VIP();
|
|
RECREATE_OPEN_GATE();
|
|
|
|
RECREATE_FINISH();
|
|
|
|
// Run registered final constructors.
|
|
for (std::vector<nuwa_construct_t>::iterator ctr = sFinalConstructors.begin();
|
|
ctr != sFinalConstructors.end();
|
|
ctr++) {
|
|
(*ctr).construct((*ctr).arg);
|
|
}
|
|
sFinalConstructors.clear();
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
/**
|
|
* Recreate all epoll fds and restore status; include all events.
|
|
*/
|
|
static void
|
|
RecreateEpollFds() {
|
|
EpollManager *man = EpollManager::Singleton();
|
|
|
|
for (EpollManager::const_iterator info_it = man->begin();
|
|
info_it != man->end();
|
|
info_it++) {
|
|
int epollfd = info_it->first;
|
|
const EpollManager::EpollInfo *info = &info_it->second;
|
|
|
|
int fdflags = fcntl(epollfd, F_GETFD);
|
|
if (fdflags == -1) {
|
|
abort();
|
|
}
|
|
int fl = fcntl(epollfd, F_GETFL);
|
|
if (fl == -1) {
|
|
abort();
|
|
}
|
|
|
|
int newepollfd = REAL(epoll_create)(info->BackSize());
|
|
if (newepollfd == -1) {
|
|
abort();
|
|
}
|
|
int rv = REAL(close)(epollfd);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
rv = dup2(newepollfd, epollfd);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
rv = REAL(close)(newepollfd);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
|
|
rv = fcntl(epollfd, F_SETFD, fdflags);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
rv = fcntl(epollfd, F_SETFL, fl);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
|
|
for (EpollManager::EpollInfo::const_iterator events_it = info->begin();
|
|
events_it != info->end();
|
|
events_it++) {
|
|
int fd = events_it->first;
|
|
epoll_event events;
|
|
events = events_it->second;
|
|
rv = REAL(epoll_ctl)(epollfd, EPOLL_CTL_ADD, fd, &events);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Shutdown EpollManager. It won't be needed in the spawned process.
|
|
EpollManager::Shutdown();
|
|
}
|
|
|
|
/**
|
|
* Fix IPC to make it ready.
|
|
*
|
|
* Especially, fix ContentChild.
|
|
*/
|
|
static void
|
|
ReplaceIPC(NuwaProtoFdInfo *aInfoList, int aInfoSize) {
|
|
int i;
|
|
int rv;
|
|
|
|
for (i = 0; i < aInfoSize; i++) {
|
|
int fd = fcntl(aInfoList[i].originFd, F_GETFD);
|
|
if (fd == -1) {
|
|
abort();
|
|
}
|
|
|
|
int fl = fcntl(aInfoList[i].originFd, F_GETFL);
|
|
if (fl == -1) {
|
|
abort();
|
|
}
|
|
|
|
rv = dup2(aInfoList[i].newFds[NUWA_NEWFD_CHILD], aInfoList[i].originFd);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
|
|
rv = fcntl(aInfoList[i].originFd, F_SETFD, fd);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
|
|
rv = fcntl(aInfoList[i].originFd, F_SETFL, fl);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Add a new content process at the chrome process.
|
|
*/
|
|
static void
|
|
AddNewProcess(pid_t pid, NuwaProtoFdInfo *aInfoList, int aInfoSize) {
|
|
static bool (*AddNewIPCProcess)(pid_t, NuwaProtoFdInfo *, int) = nullptr;
|
|
|
|
if (AddNewIPCProcess == nullptr) {
|
|
AddNewIPCProcess = (bool (*)(pid_t, NuwaProtoFdInfo *, int))
|
|
dlsym(RTLD_DEFAULT, "AddNewIPCProcess");
|
|
}
|
|
AddNewIPCProcess(pid, aInfoList, aInfoSize);
|
|
}
|
|
|
|
static void
|
|
PrepareProtoSockets(NuwaProtoFdInfo *aInfoList, int aInfoSize) {
|
|
int i;
|
|
int rv;
|
|
|
|
for (i = 0; i < aInfoSize; i++) {
|
|
rv = REAL(socketpair)(PF_UNIX, SOCK_STREAM, 0, aInfoList[i].newFds);
|
|
if (rv == -1) {
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
CloseAllProtoSockets(NuwaProtoFdInfo *aInfoList, int aInfoSize) {
|
|
int i;
|
|
|
|
for (i = 0; i < aInfoSize; i++) {
|
|
REAL(close)(aInfoList[i].newFds[0]);
|
|
REAL(close)(aInfoList[i].newFds[1]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
AfterForkHook()
|
|
{
|
|
void (*AfterNuwaFork)();
|
|
|
|
// This is defined in dom/ipc/ContentChild.cpp
|
|
AfterNuwaFork = (void (*)())
|
|
dlsym(RTLD_DEFAULT, "AfterNuwaFork");
|
|
AfterNuwaFork();
|
|
}
|
|
|
|
/**
|
|
* Fork a new process that is ready for running IPC.
|
|
*
|
|
* @return the PID of the new process.
|
|
*/
|
|
static int
|
|
ForkIPCProcess() {
|
|
int pid;
|
|
|
|
REAL(pthread_mutex_lock)(&sForkLock);
|
|
|
|
PrepareProtoSockets(sProtoFdInfos, sProtoFdInfosSize);
|
|
|
|
sNuwaForking = true;
|
|
pid = fork();
|
|
sNuwaForking = false;
|
|
if (pid == -1) {
|
|
abort();
|
|
}
|
|
|
|
if (pid > 0) {
|
|
// in the parent
|
|
AddNewProcess(pid, sProtoFdInfos, sProtoFdInfosSize);
|
|
CloseAllProtoSockets(sProtoFdInfos, sProtoFdInfosSize);
|
|
} else {
|
|
// in the child
|
|
if (getenv("MOZ_DEBUG_CHILD_PROCESS")) {
|
|
printf("\n\nNUWA CHILDCHILDCHILDCHILD\n debug me @ %d\n\n", getpid());
|
|
sleep(30);
|
|
}
|
|
AfterForkHook();
|
|
ReplaceSignalFds();
|
|
ReplaceIPC(sProtoFdInfos, sProtoFdInfosSize);
|
|
RecreateEpollFds();
|
|
RecreateThreads();
|
|
CloseAllProtoSockets(sProtoFdInfos, sProtoFdInfosSize);
|
|
}
|
|
|
|
sForkWaitCondChanged = true;
|
|
pthread_cond_signal(&sForkWaitCond);
|
|
pthread_mutex_unlock(&sForkLock);
|
|
|
|
return pid;
|
|
}
|
|
|
|
/**
|
|
* Prepare for spawning a new process. Called on the IPC thread.
|
|
*/
|
|
MFBT_API void
|
|
NuwaSpawnPrepare() {
|
|
REAL(pthread_mutex_lock)(&sForkLock);
|
|
|
|
sForkWaitCondChanged = false; // Will be modified on the main thread.
|
|
}
|
|
|
|
/**
|
|
* Let IPC thread wait until fork action on the main thread has completed.
|
|
*/
|
|
MFBT_API void
|
|
NuwaSpawnWait() {
|
|
while (!sForkWaitCondChanged) {
|
|
REAL(pthread_cond_wait)(&sForkWaitCond, &sForkLock);
|
|
}
|
|
pthread_mutex_unlock(&sForkLock);
|
|
}
|
|
|
|
/**
|
|
* Spawn a new process. If not ready for spawn (still waiting for some threads
|
|
* to freeze), postpone the spawn request until ready.
|
|
*
|
|
* @return the pid of the new process, or 0 if not ready.
|
|
*/
|
|
MFBT_API pid_t
|
|
NuwaSpawn() {
|
|
if (gettid() != getpid()) {
|
|
// Not the main thread.
|
|
abort();
|
|
}
|
|
|
|
pid_t pid = 0;
|
|
|
|
if (sNuwaReady) {
|
|
pid = ForkIPCProcess();
|
|
} else {
|
|
sNuwaPendingSpawn = true;
|
|
}
|
|
|
|
return pid;
|
|
}
|
|
|
|
/**
|
|
* Prepare to freeze the Nuwa-supporting threads.
|
|
*/
|
|
MFBT_API void
|
|
PrepareNuwaProcess() {
|
|
sIsNuwaProcess = true;
|
|
// Explicitly ignore SIGCHLD so we don't have to call watpid() to reap
|
|
// dead child processes.
|
|
signal(SIGCHLD, SIG_IGN);
|
|
|
|
// Make marked threads block in one freeze point.
|
|
REAL(pthread_mutex_lock)(&sThreadFreezeLock);
|
|
|
|
// Populate sMainThread for mapping of tgkill.
|
|
sMainThread.origThreadID = pthread_self();
|
|
sMainThread.origNativeThreadID = gettid();
|
|
}
|
|
|
|
// Make current process as a Nuwa process.
|
|
MFBT_API void
|
|
MakeNuwaProcess() {
|
|
void (*GetProtoFdInfos)(NuwaProtoFdInfo *, int, int *) = nullptr;
|
|
void (*OnNuwaProcessReady)() = nullptr;
|
|
sIsFreezing = true;
|
|
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
|
|
// wait until all threads are frozen.
|
|
while ((sThreadFreezeCount + sThreadSkipCount) != sThreadCount) {
|
|
REAL(pthread_cond_wait)(&sThreadChangeCond, &sThreadCountLock);
|
|
}
|
|
|
|
GetProtoFdInfos = (void (*)(NuwaProtoFdInfo *, int, int *))
|
|
dlsym(RTLD_DEFAULT, "GetProtoFdInfos");
|
|
GetProtoFdInfos(sProtoFdInfos, NUWA_TOPLEVEL_MAX, &sProtoFdInfosSize);
|
|
|
|
sNuwaReady = true;
|
|
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
|
|
OnNuwaProcessReady = (void (*)())dlsym(RTLD_DEFAULT, "OnNuwaProcessReady");
|
|
OnNuwaProcessReady();
|
|
|
|
if (sNuwaPendingSpawn) {
|
|
sNuwaPendingSpawn = false;
|
|
NuwaSpawn();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Mark the current thread as supporting Nuwa. The thread will be recreated in
|
|
* the spawned process.
|
|
*/
|
|
MFBT_API void
|
|
NuwaMarkCurrentThread(void (*recreate)(void *), void *arg) {
|
|
if (!sIsNuwaProcess) {
|
|
return;
|
|
}
|
|
|
|
thread_info_t *tinfo = CUR_THREAD_INFO;
|
|
if (tinfo == nullptr) {
|
|
abort();
|
|
}
|
|
|
|
tinfo->flags |= TINFO_FLAG_NUWA_SUPPORT;
|
|
tinfo->recrFunc = recreate;
|
|
tinfo->recrArg = arg;
|
|
|
|
// XXX Thread name might be set later than this call. If this is the case, we
|
|
// might need to delay getting the thread name.
|
|
prctl(PR_GET_NAME, (unsigned long)&tinfo->nativeThreadName, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* Mark the current thread as not supporting Nuwa. Don't recreate this thread in
|
|
* the spawned process.
|
|
*/
|
|
MFBT_API void
|
|
NuwaSkipCurrentThread() {
|
|
if (!sIsNuwaProcess) return;
|
|
|
|
thread_info_t *tinfo = CUR_THREAD_INFO;
|
|
if (tinfo == nullptr) {
|
|
abort();
|
|
}
|
|
|
|
if (!(tinfo->flags & TINFO_FLAG_NUWA_SKIP)) {
|
|
sThreadSkipCount++;
|
|
}
|
|
tinfo->flags |= TINFO_FLAG_NUWA_SKIP;
|
|
}
|
|
|
|
/**
|
|
* Force to freeze the current thread.
|
|
*
|
|
* This method does not return in Nuwa process. It returns for the
|
|
* recreated thread.
|
|
*/
|
|
MFBT_API void
|
|
NuwaFreezeCurrentThread() {
|
|
thread_info_t *tinfo = CUR_THREAD_INFO;
|
|
if (sIsNuwaProcess &&
|
|
(tinfo = CUR_THREAD_INFO) &&
|
|
(tinfo->flags & TINFO_FLAG_NUWA_SUPPORT)) {
|
|
if (!setjmp(tinfo->jmpEnv)) {
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
SaveTLSInfo(tinfo);
|
|
sThreadFreezeCount++;
|
|
pthread_cond_signal(&sThreadChangeCond);
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
|
|
REAL(pthread_mutex_lock)(&sThreadFreezeLock);
|
|
} else {
|
|
RECREATE_CONTINUE();
|
|
RECREATE_GATE();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The caller of NuwaCheckpointCurrentThread() is at the line it wishes to
|
|
* return after the thread is recreated.
|
|
*
|
|
* The checkpointed thread will restart at the calling line of
|
|
* NuwaCheckpointCurrentThread(). This macro returns true in the Nuwa process
|
|
* and false on the recreated thread in the forked process.
|
|
*
|
|
* NuwaCheckpointCurrentThread() is implemented as a macro so we can place the
|
|
* setjmp() call in the calling method without changing its stack pointer. This
|
|
* is essential for not corrupting the stack when the calling thread continues
|
|
* to request the main thread for forking a new process. The caller of
|
|
* NuwaCheckpointCurrentThread() should not return before the process forking
|
|
* finishes.
|
|
*
|
|
* @return true for Nuwa process, and false in the forked process.
|
|
*/
|
|
MFBT_API jmp_buf*
|
|
NuwaCheckpointCurrentThread1() {
|
|
thread_info_t *tinfo = CUR_THREAD_INFO;
|
|
if (sIsNuwaProcess &&
|
|
(tinfo = CUR_THREAD_INFO) &&
|
|
(tinfo->flags & TINFO_FLAG_NUWA_SUPPORT)) {
|
|
return &tinfo->jmpEnv;
|
|
}
|
|
abort();
|
|
return nullptr;
|
|
}
|
|
|
|
MFBT_API bool
|
|
NuwaCheckpointCurrentThread2(int setjmpCond) {
|
|
thread_info_t *tinfo = CUR_THREAD_INFO;
|
|
if (setjmpCond == 0) {
|
|
REAL(pthread_mutex_lock)(&sThreadCountLock);
|
|
if (!(tinfo->flags & TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT)) {
|
|
tinfo->flags |= TINFO_FLAG_NUWA_EXPLICIT_CHECKPOINT;
|
|
SaveTLSInfo(tinfo);
|
|
sThreadFreezeCount++;
|
|
}
|
|
pthread_cond_signal(&sThreadChangeCond);
|
|
pthread_mutex_unlock(&sThreadCountLock);
|
|
return true;
|
|
}
|
|
RECREATE_CONTINUE();
|
|
RECREATE_GATE();
|
|
return false; // Recreated thread.
|
|
}
|
|
|
|
/**
|
|
* Register methods to be invoked before recreating threads in the spawned
|
|
* process.
|
|
*/
|
|
MFBT_API void
|
|
NuwaAddConstructor(void (*construct)(void *), void *arg) {
|
|
nuwa_construct_t ctr;
|
|
ctr.construct = construct;
|
|
ctr.arg = arg;
|
|
sConstructors.push_back(ctr);
|
|
}
|
|
|
|
/**
|
|
* Register methods to be invoked after recreating threads in the spawned
|
|
* process.
|
|
*/
|
|
MFBT_API void
|
|
NuwaAddFinalConstructor(void (*construct)(void *), void *arg) {
|
|
nuwa_construct_t ctr;
|
|
ctr.construct = construct;
|
|
ctr.arg = arg;
|
|
sFinalConstructors.push_back(ctr);
|
|
}
|
|
|
|
/**
|
|
* @return if the current process is the nuwa process.
|
|
*/
|
|
MFBT_API bool
|
|
IsNuwaProcess() {
|
|
return sIsNuwaProcess;
|
|
}
|
|
|
|
/**
|
|
* @return if the nuwa process is ready for spawning new processes.
|
|
*/
|
|
MFBT_API bool
|
|
IsNuwaReady() {
|
|
return sNuwaReady;
|
|
}
|
|
|
|
} // extern "C"
|