gecko-dev/layout/painting/nsCSSRendering.cpp

6228 строки
238 KiB
C++
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// vim:cindent:ts=2:et:sw=2:
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* utility functions for drawing borders and backgrounds */
#include <ctime>
#include "gfx2DGlue.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Helpers.h"
#include "mozilla/gfx/PathHelpers.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MathAlgorithms.h"
#include "BorderConsts.h"
#include "nsStyleConsts.h"
#include "nsPresContext.h"
#include "nsIFrame.h"
#include "nsPoint.h"
#include "nsRect.h"
#include "nsIPresShell.h"
#include "nsFrameManager.h"
#include "nsStyleContext.h"
#include "nsGkAtoms.h"
#include "nsCSSAnonBoxes.h"
#include "nsIContent.h"
#include "nsIDocumentInlines.h"
#include "nsIScrollableFrame.h"
#include "imgIRequest.h"
#include "imgIContainer.h"
#include "ImageOps.h"
#include "nsCSSRendering.h"
#include "nsCSSColorUtils.h"
#include "nsITheme.h"
#include "nsThemeConstants.h"
#include "nsLayoutUtils.h"
#include "nsBlockFrame.h"
#include "gfxContext.h"
#include "nsRenderingContext.h"
#include "nsStyleStructInlines.h"
#include "nsCSSFrameConstructor.h"
#include "nsCSSProps.h"
#include "nsContentUtils.h"
#include "nsSVGEffects.h"
#include "nsSVGIntegrationUtils.h"
#include "gfxDrawable.h"
#include "GeckoProfiler.h"
#include "nsCSSRenderingBorders.h"
#include "mozilla/css/ImageLoader.h"
#include "ImageContainer.h"
#include "mozilla/Telemetry.h"
#include "gfxUtils.h"
#include "gfxGradientCache.h"
#include "nsInlineFrame.h"
#include "nsRubyTextContainerFrame.h"
#include <algorithm>
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::gfx;
using namespace mozilla::image;
using mozilla::CSSSizeOrRatio;
static int gFrameTreeLockCount = 0;
// To avoid storing this data on nsInlineFrame (bloat) and to avoid
// recalculating this for each frame in a continuation (perf), hold
// a cache of various coordinate information that we need in order
// to paint inline backgrounds.
struct InlineBackgroundData
{
InlineBackgroundData()
: mFrame(nullptr), mLineContainer(nullptr)
{
}
~InlineBackgroundData()
{
}
void Reset()
{
mBoundingBox.SetRect(0,0,0,0);
mContinuationPoint = mLineContinuationPoint = mUnbrokenMeasure = 0;
mFrame = mLineContainer = nullptr;
mPIStartBorderData.Reset();
}
/**
* Return a continuous rect for (an inline) aFrame relative to the
* continuation that draws the left-most part of the background.
* This is used when painting backgrounds.
*/
nsRect GetContinuousRect(nsIFrame* aFrame)
{
MOZ_ASSERT(static_cast<nsInlineFrame*>(do_QueryFrame(aFrame)));
SetFrame(aFrame);
nscoord pos; // an x coordinate if writing-mode is horizontal;
// y coordinate if vertical
if (mBidiEnabled) {
pos = mLineContinuationPoint;
// Scan continuations on the same line as aFrame and accumulate the widths
// of frames that are to the left (if this is an LTR block) or right
// (if it's RTL) of the current one.
bool isRtlBlock = (mLineContainer->StyleVisibility()->mDirection ==
NS_STYLE_DIRECTION_RTL);
nscoord curOffset = mVertical ? aFrame->GetOffsetTo(mLineContainer).y
: aFrame->GetOffsetTo(mLineContainer).x;
// If the continuation is fluid we know inlineFrame is not on the same line.
// If it's not fluid, we need to test further to be sure.
nsIFrame* inlineFrame = aFrame->GetPrevContinuation();
while (inlineFrame && !inlineFrame->GetNextInFlow() &&
AreOnSameLine(aFrame, inlineFrame)) {
nscoord frameOffset = mVertical
? inlineFrame->GetOffsetTo(mLineContainer).y
: inlineFrame->GetOffsetTo(mLineContainer).x;
if (isRtlBlock == (frameOffset >= curOffset)) {
pos += mVertical
? inlineFrame->GetSize().height
: inlineFrame->GetSize().width;
}
inlineFrame = inlineFrame->GetPrevContinuation();
}
inlineFrame = aFrame->GetNextContinuation();
while (inlineFrame && !inlineFrame->GetPrevInFlow() &&
AreOnSameLine(aFrame, inlineFrame)) {
nscoord frameOffset = mVertical
? inlineFrame->GetOffsetTo(mLineContainer).y
: inlineFrame->GetOffsetTo(mLineContainer).x;
if (isRtlBlock == (frameOffset >= curOffset)) {
pos += mVertical
? inlineFrame->GetSize().height
: inlineFrame->GetSize().width;
}
inlineFrame = inlineFrame->GetNextContinuation();
}
if (isRtlBlock) {
// aFrame itself is also to the right of its left edge, so add its width.
pos += mVertical ? aFrame->GetSize().height : aFrame->GetSize().width;
// pos is now the distance from the left [top] edge of aFrame to the right [bottom] edge
// of the unbroken content. Change it to indicate the distance from the
// left [top] edge of the unbroken content to the left [top] edge of aFrame.
pos = mUnbrokenMeasure - pos;
}
} else {
pos = mContinuationPoint;
}
// Assume background-origin: border and return a rect with offsets
// relative to (0,0). If we have a different background-origin,
// then our rect should be deflated appropriately by our caller.
return mVertical
? nsRect(0, -pos, mFrame->GetSize().width, mUnbrokenMeasure)
: nsRect(-pos, 0, mUnbrokenMeasure, mFrame->GetSize().height);
}
/**
* Return a continuous rect for (an inline) aFrame relative to the
* continuation that should draw the left[top]-border. This is used when painting
* borders and clipping backgrounds. This may NOT be the same continuous rect
* as for drawing backgrounds; the continuation with the left[top]-border might be
* somewhere in the middle of that rect (e.g. BIDI), in those cases we need
* the reverse background order starting at the left[top]-border continuation.
*/
nsRect GetBorderContinuousRect(nsIFrame* aFrame, nsRect aBorderArea)
{
// Calling GetContinuousRect(aFrame) here may lead to Reset/Init which
// resets our mPIStartBorderData so we save it ...
PhysicalInlineStartBorderData saved(mPIStartBorderData);
nsRect joinedBorderArea = GetContinuousRect(aFrame);
if (!saved.mIsValid || saved.mFrame != mPIStartBorderData.mFrame) {
if (aFrame == mPIStartBorderData.mFrame) {
if (mVertical) {
mPIStartBorderData.SetCoord(joinedBorderArea.y);
} else {
mPIStartBorderData.SetCoord(joinedBorderArea.x);
}
} else if (mPIStartBorderData.mFrame) {
if (mVertical) {
mPIStartBorderData.SetCoord(GetContinuousRect(mPIStartBorderData.mFrame).y);
} else {
mPIStartBorderData.SetCoord(GetContinuousRect(mPIStartBorderData.mFrame).x);
}
}
} else {
// ... and restore it when possible.
mPIStartBorderData.mCoord = saved.mCoord;
}
if (mVertical) {
if (joinedBorderArea.y > mPIStartBorderData.mCoord) {
joinedBorderArea.y =
-(mUnbrokenMeasure + joinedBorderArea.y - aBorderArea.height);
} else {
joinedBorderArea.y -= mPIStartBorderData.mCoord;
}
} else {
if (joinedBorderArea.x > mPIStartBorderData.mCoord) {
joinedBorderArea.x =
-(mUnbrokenMeasure + joinedBorderArea.x - aBorderArea.width);
} else {
joinedBorderArea.x -= mPIStartBorderData.mCoord;
}
}
return joinedBorderArea;
}
nsRect GetBoundingRect(nsIFrame* aFrame)
{
SetFrame(aFrame);
// Move the offsets relative to (0,0) which puts the bounding box into
// our coordinate system rather than our parent's. We do this by
// moving it the back distance from us to the bounding box.
// This also assumes background-origin: border, so our caller will
// need to deflate us if needed.
nsRect boundingBox(mBoundingBox);
nsPoint point = mFrame->GetPosition();
boundingBox.MoveBy(-point.x, -point.y);
return boundingBox;
}
protected:
// This is a coordinate on the inline axis, but is not a true logical inline-
// coord because it is always measured from left to right (if horizontal) or
// from top to bottom (if vertical), ignoring any bidi RTL directionality.
// We'll call this "physical inline start", or PIStart for short.
struct PhysicalInlineStartBorderData {
nsIFrame* mFrame; // the continuation that may have a left-border
nscoord mCoord; // cached GetContinuousRect(mFrame).x or .y
bool mIsValid; // true if mCoord is valid
void Reset() { mFrame = nullptr; mIsValid = false; }
void SetCoord(nscoord aCoord) { mCoord = aCoord; mIsValid = true; }
};
nsIFrame* mFrame;
nsIFrame* mLineContainer;
nsRect mBoundingBox;
nscoord mContinuationPoint;
nscoord mUnbrokenMeasure;
nscoord mLineContinuationPoint;
PhysicalInlineStartBorderData mPIStartBorderData;
bool mBidiEnabled;
bool mVertical;
void SetFrame(nsIFrame* aFrame)
{
NS_PRECONDITION(aFrame, "Need a frame");
NS_ASSERTION(gFrameTreeLockCount > 0,
"Can't call this when frame tree is not locked");
if (aFrame == mFrame) {
return;
}
nsIFrame *prevContinuation = GetPrevContinuation(aFrame);
if (!prevContinuation || mFrame != prevContinuation) {
// Ok, we've got the wrong frame. We have to start from scratch.
Reset();
Init(aFrame);
return;
}
// Get our last frame's size and add its width to our continuation
// point before we cache the new frame.
mContinuationPoint += mVertical ? mFrame->GetSize().height
: mFrame->GetSize().width;
// If this a new line, update mLineContinuationPoint.
if (mBidiEnabled &&
(aFrame->GetPrevInFlow() || !AreOnSameLine(mFrame, aFrame))) {
mLineContinuationPoint = mContinuationPoint;
}
mFrame = aFrame;
}
nsIFrame* GetPrevContinuation(nsIFrame* aFrame)
{
nsIFrame* prevCont = aFrame->GetPrevContinuation();
if (!prevCont &&
(aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT)) {
nsIFrame* block =
aFrame->Properties().Get(nsIFrame::IBSplitPrevSibling());
if (block) {
// The {ib} properties are only stored on first continuations
NS_ASSERTION(!block->GetPrevContinuation(),
"Incorrect value for IBSplitPrevSibling");
prevCont =
block->Properties().Get(nsIFrame::IBSplitPrevSibling());
NS_ASSERTION(prevCont, "How did that happen?");
}
}
return prevCont;
}
nsIFrame* GetNextContinuation(nsIFrame* aFrame)
{
nsIFrame* nextCont = aFrame->GetNextContinuation();
if (!nextCont &&
(aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT)) {
// The {ib} properties are only stored on first continuations
aFrame = aFrame->FirstContinuation();
nsIFrame* block = aFrame->Properties().Get(nsIFrame::IBSplitSibling());
if (block) {
nextCont = block->Properties().Get(nsIFrame::IBSplitSibling());
NS_ASSERTION(nextCont, "How did that happen?");
}
}
return nextCont;
}
void Init(nsIFrame* aFrame)
{
mPIStartBorderData.Reset();
mBidiEnabled = aFrame->PresContext()->BidiEnabled();
if (mBidiEnabled) {
// Find the line container frame
mLineContainer = aFrame;
while (mLineContainer &&
mLineContainer->IsFrameOfType(nsIFrame::eLineParticipant)) {
mLineContainer = mLineContainer->GetParent();
}
MOZ_ASSERT(mLineContainer, "Cannot find line containing frame.");
MOZ_ASSERT(mLineContainer != aFrame, "line container frame "
"should be an ancestor of the target frame.");
}
mVertical = aFrame->GetWritingMode().IsVertical();
// Start with the previous flow frame as our continuation point
// is the total of the widths of the previous frames.
nsIFrame* inlineFrame = GetPrevContinuation(aFrame);
while (inlineFrame) {
if (!mPIStartBorderData.mFrame &&
!(mVertical ? inlineFrame->GetSkipSides().Top()
: inlineFrame->GetSkipSides().Left())) {
mPIStartBorderData.mFrame = inlineFrame;
}
nsRect rect = inlineFrame->GetRect();
mContinuationPoint += mVertical ? rect.height : rect.width;
if (mBidiEnabled && !AreOnSameLine(aFrame, inlineFrame)) {
mLineContinuationPoint += mVertical ? rect.height : rect.width;
}
mUnbrokenMeasure += mVertical ? rect.height : rect.width;
mBoundingBox.UnionRect(mBoundingBox, rect);
inlineFrame = GetPrevContinuation(inlineFrame);
}
// Next add this frame and subsequent frames to the bounding box and
// unbroken width.
inlineFrame = aFrame;
while (inlineFrame) {
if (!mPIStartBorderData.mFrame &&
!(mVertical ? inlineFrame->GetSkipSides().Top()
: inlineFrame->GetSkipSides().Left())) {
mPIStartBorderData.mFrame = inlineFrame;
}
nsRect rect = inlineFrame->GetRect();
mUnbrokenMeasure += mVertical ? rect.height : rect.width;
mBoundingBox.UnionRect(mBoundingBox, rect);
inlineFrame = GetNextContinuation(inlineFrame);
}
mFrame = aFrame;
}
bool AreOnSameLine(nsIFrame* aFrame1, nsIFrame* aFrame2) {
if (nsBlockFrame* blockFrame = do_QueryFrame(mLineContainer)) {
bool isValid1, isValid2;
nsBlockInFlowLineIterator it1(blockFrame, aFrame1, &isValid1);
nsBlockInFlowLineIterator it2(blockFrame, aFrame2, &isValid2);
return isValid1 && isValid2 &&
// Make sure aFrame1 and aFrame2 are in the same continuation of
// blockFrame.
it1.GetContainer() == it2.GetContainer() &&
// And on the same line in it
it1.GetLine() == it2.GetLine();
}
if (nsRubyTextContainerFrame* rtcFrame = do_QueryFrame(mLineContainer)) {
nsBlockFrame* block = nsLayoutUtils::FindNearestBlockAncestor(rtcFrame);
// Ruby text container can only hold one line of text, so if they
// are in the same continuation, they are in the same line. Since
// ruby text containers are bidi isolate, they are never split for
// bidi reordering, which means being in different continuation
// indicates being in different lines.
for (nsIFrame* frame = rtcFrame->FirstContinuation();
frame; frame = frame->GetNextContinuation()) {
bool isDescendant1 =
nsLayoutUtils::IsProperAncestorFrame(frame, aFrame1, block);
bool isDescendant2 =
nsLayoutUtils::IsProperAncestorFrame(frame, aFrame2, block);
if (isDescendant1 && isDescendant2) {
return true;
}
if (isDescendant1 || isDescendant2) {
return false;
}
}
MOZ_ASSERT_UNREACHABLE("None of the frames is a descendant of this rtc?");
}
MOZ_ASSERT_UNREACHABLE("Do we have any other type of line container?");
return false;
}
};
// A resolved color stop, with a specific position along the gradient line and
// a color.
struct ColorStop {
ColorStop(): mPosition(0), mIsMidpoint(false) {}
ColorStop(double aPosition, bool aIsMidPoint, const Color& aColor) :
mPosition(aPosition), mIsMidpoint(aIsMidPoint), mColor(aColor) {}
double mPosition; // along the gradient line; 0=start, 1=end
bool mIsMidpoint;
Color mColor;
};
/* Local functions */
static DrawResult DrawBorderImage(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
const nsRect& aDirtyRect,
Sides aSkipSides,
PaintBorderFlags aFlags);
static nscolor MakeBevelColor(mozilla::Side whichSide, uint8_t style,
nscolor aBackgroundColor,
nscolor aBorderColor);
static InlineBackgroundData* gInlineBGData = nullptr;
// Initialize any static variables used by nsCSSRendering.
void nsCSSRendering::Init()
{
NS_ASSERTION(!gInlineBGData, "Init called twice");
gInlineBGData = new InlineBackgroundData();
}
// Clean up any global variables used by nsCSSRendering.
void nsCSSRendering::Shutdown()
{
delete gInlineBGData;
gInlineBGData = nullptr;
}
/**
* Make a bevel color
*/
static nscolor
MakeBevelColor(mozilla::Side whichSide, uint8_t style,
nscolor aBackgroundColor, nscolor aBorderColor)
{
nscolor colors[2];
nscolor theColor;
// Given a background color and a border color
// calculate the color used for the shading
NS_GetSpecial3DColors(colors, aBackgroundColor, aBorderColor);
if ((style == NS_STYLE_BORDER_STYLE_OUTSET) ||
(style == NS_STYLE_BORDER_STYLE_RIDGE)) {
// Flip colors for these two border styles
switch (whichSide) {
case eSideBottom: whichSide = eSideTop; break;
case eSideRight: whichSide = eSideLeft; break;
case eSideTop: whichSide = eSideBottom; break;
case eSideLeft: whichSide = eSideRight; break;
}
}
switch (whichSide) {
case eSideBottom:
theColor = colors[1];
break;
case eSideRight:
theColor = colors[1];
break;
case eSideTop:
theColor = colors[0];
break;
case eSideLeft:
default:
theColor = colors[0];
break;
}
return theColor;
}
static bool
GetRadii(nsIFrame* aForFrame, const nsStyleBorder& aBorder,
const nsRect& aOrigBorderArea, const nsRect& aBorderArea,
nscoord aRadii[8])
{
bool haveRoundedCorners;
nsSize sz = aBorderArea.Size();
nsSize frameSize = aForFrame->GetSize();
if (&aBorder == aForFrame->StyleBorder() &&
frameSize == aOrigBorderArea.Size()) {
haveRoundedCorners = aForFrame->GetBorderRadii(sz, sz, Sides(), aRadii);
} else {
haveRoundedCorners =
nsIFrame::ComputeBorderRadii(aBorder.mBorderRadius, frameSize, sz, Sides(), aRadii);
}
return haveRoundedCorners;
}
static bool
GetRadii(nsIFrame* aForFrame, const nsStyleBorder& aBorder,
const nsRect& aOrigBorderArea, const nsRect& aBorderArea,
RectCornerRadii* aBgRadii)
{
nscoord radii[8];
bool haveRoundedCorners = GetRadii(aForFrame, aBorder, aOrigBorderArea, aBorderArea, radii);
if (haveRoundedCorners) {
auto d2a = aForFrame->PresContext()->AppUnitsPerDevPixel();
nsCSSRendering::ComputePixelRadii(radii, d2a, aBgRadii);
}
return haveRoundedCorners;
}
static nsRect
JoinBoxesForVerticalSlice(nsIFrame* aFrame, const nsRect& aBorderArea)
{
// Inflate vertically as if our continuations were laid out vertically
// adjacent. Note that we don't touch the width.
nsRect borderArea = aBorderArea;
nscoord h = 0;
nsIFrame* f = aFrame->GetNextContinuation();
for (; f; f = f->GetNextContinuation()) {
MOZ_ASSERT(!(f->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT),
"anonymous ib-split block shouldn't have border/background");
h += f->GetRect().height;
}
borderArea.height += h;
h = 0;
f = aFrame->GetPrevContinuation();
for (; f; f = f->GetPrevContinuation()) {
MOZ_ASSERT(!(f->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT),
"anonymous ib-split block shouldn't have border/background");
h += f->GetRect().height;
}
borderArea.y -= h;
borderArea.height += h;
return borderArea;
}
/**
* Inflate aBorderArea which is relative to aFrame's origin to calculate
* a hypothetical non-split frame area for all the continuations.
* See "Joining Boxes for 'slice'" in
* http://dev.w3.org/csswg/css-break/#break-decoration
*/
enum InlineBoxOrder { eForBorder, eForBackground };
static nsRect
JoinBoxesForSlice(nsIFrame* aFrame, const nsRect& aBorderArea,
InlineBoxOrder aOrder)
{
if (static_cast<nsInlineFrame*>(do_QueryFrame(aFrame))) {
return (aOrder == eForBorder
? gInlineBGData->GetBorderContinuousRect(aFrame, aBorderArea)
: gInlineBGData->GetContinuousRect(aFrame)) +
aBorderArea.TopLeft();
}
return JoinBoxesForVerticalSlice(aFrame, aBorderArea);
}
static bool
IsBoxDecorationSlice(const nsStyleBorder& aStyleBorder)
{
return aStyleBorder.mBoxDecorationBreak == StyleBoxDecorationBreak::Slice;
}
static nsRect
BoxDecorationRectForBorder(nsIFrame* aFrame, const nsRect& aBorderArea,
Sides aSkipSides,
const nsStyleBorder* aStyleBorder = nullptr)
{
if (!aStyleBorder) {
aStyleBorder = aFrame->StyleBorder();
}
// If aSkipSides.IsEmpty() then there are no continuations, or it's
// a ::first-letter that wants all border sides on the first continuation.
return ::IsBoxDecorationSlice(*aStyleBorder) && !aSkipSides.IsEmpty()
? ::JoinBoxesForSlice(aFrame, aBorderArea, eForBorder)
: aBorderArea;
}
static nsRect
BoxDecorationRectForBackground(nsIFrame* aFrame, const nsRect& aBorderArea,
Sides aSkipSides,
const nsStyleBorder* aStyleBorder = nullptr)
{
if (!aStyleBorder) {
aStyleBorder = aFrame->StyleBorder();
}
// If aSkipSides.IsEmpty() then there are no continuations, or it's
// a ::first-letter that wants all border sides on the first continuation.
return ::IsBoxDecorationSlice(*aStyleBorder) && !aSkipSides.IsEmpty()
? ::JoinBoxesForSlice(aFrame, aBorderArea, eForBackground)
: aBorderArea;
}
//----------------------------------------------------------------------
// Thebes Border Rendering Code Start
/*
* Compute the float-pixel radii that should be used for drawing
* this border/outline, given the various input bits.
*/
/* static */ void
nsCSSRendering::ComputePixelRadii(const nscoord *aAppUnitsRadii,
nscoord aAppUnitsPerPixel,
RectCornerRadii *oBorderRadii)
{
Float radii[8];
NS_FOR_CSS_HALF_CORNERS(corner)
radii[corner] = Float(aAppUnitsRadii[corner]) / aAppUnitsPerPixel;
(*oBorderRadii)[C_TL] = Size(radii[NS_CORNER_TOP_LEFT_X],
radii[NS_CORNER_TOP_LEFT_Y]);
(*oBorderRadii)[C_TR] = Size(radii[NS_CORNER_TOP_RIGHT_X],
radii[NS_CORNER_TOP_RIGHT_Y]);
(*oBorderRadii)[C_BR] = Size(radii[NS_CORNER_BOTTOM_RIGHT_X],
radii[NS_CORNER_BOTTOM_RIGHT_Y]);
(*oBorderRadii)[C_BL] = Size(radii[NS_CORNER_BOTTOM_LEFT_X],
radii[NS_CORNER_BOTTOM_LEFT_Y]);
}
DrawResult
nsCSSRendering::PaintBorder(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsStyleContext* aStyleContext,
PaintBorderFlags aFlags,
Sides aSkipSides)
{
PROFILER_LABEL("nsCSSRendering", "PaintBorder",
js::ProfileEntry::Category::GRAPHICS);
nsStyleContext *styleIfVisited = aStyleContext->GetStyleIfVisited();
const nsStyleBorder *styleBorder = aStyleContext->StyleBorder();
// Don't check RelevantLinkVisited here, since we want to take the
// same amount of time whether or not it's true.
if (!styleIfVisited) {
return PaintBorderWithStyleBorder(aPresContext, aRenderingContext, aForFrame,
aDirtyRect, aBorderArea, *styleBorder,
aStyleContext, aFlags, aSkipSides);
}
nsStyleBorder newStyleBorder(*styleBorder);
NS_FOR_CSS_SIDES(side) {
nscolor color = aStyleContext->GetVisitedDependentColor(
nsCSSProps::SubpropertyEntryFor(eCSSProperty_border_color)[side]);
newStyleBorder.mBorderColor[side] = StyleComplexColor::FromColor(color);
}
return PaintBorderWithStyleBorder(aPresContext, aRenderingContext, aForFrame,
aDirtyRect, aBorderArea, newStyleBorder,
aStyleContext, aFlags, aSkipSides);
}
Maybe<nsCSSBorderRenderer>
nsCSSRendering::CreateBorderRenderer(nsPresContext* aPresContext,
DrawTarget* aDrawTarget,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsStyleContext* aStyleContext,
Sides aSkipSides)
{
nsStyleContext *styleIfVisited = aStyleContext->GetStyleIfVisited();
const nsStyleBorder *styleBorder = aStyleContext->StyleBorder();
// Don't check RelevantLinkVisited here, since we want to take the
// same amount of time whether or not it's true.
if (!styleIfVisited) {
return CreateBorderRendererWithStyleBorder(aPresContext, aDrawTarget,
aForFrame, aDirtyRect,
aBorderArea, *styleBorder,
aStyleContext, aSkipSides);
}
nsStyleBorder newStyleBorder(*styleBorder);
NS_FOR_CSS_SIDES(side) {
nscolor color = aStyleContext->GetVisitedDependentColor(
nsCSSProps::SubpropertyEntryFor(eCSSProperty_border_color)[side]);
newStyleBorder.mBorderColor[side] = StyleComplexColor::FromColor(color);
}
return CreateBorderRendererWithStyleBorder(aPresContext, aDrawTarget,
aForFrame, aDirtyRect, aBorderArea,
newStyleBorder, aStyleContext,
aSkipSides);
}
nsCSSBorderRenderer
ConstructBorderRenderer(nsPresContext* aPresContext,
nsStyleContext* aStyleContext,
DrawTarget* aDrawTarget,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
Sides aSkipSides,
bool* aNeedsClip)
{
nsMargin border = aStyleBorder.GetComputedBorder();
// Get our style context's color struct.
const nsStyleColor* ourColor = aStyleContext->StyleColor();
// In NavQuirks mode we want to use the parent's context as a starting point
// for determining the background color.
bool quirks = aPresContext->CompatibilityMode() == eCompatibility_NavQuirks;
nsIFrame* bgFrame = nsCSSRendering::FindNonTransparentBackgroundFrame(aForFrame, quirks);
nsStyleContext* bgContext = bgFrame->StyleContext();
nscolor bgColor =
bgContext->GetVisitedDependentColor(eCSSProperty_background_color);
// Compute the outermost boundary of the area that might be painted.
// Same coordinate space as aBorderArea & aBGClipRect.
nsRect joinedBorderArea =
::BoxDecorationRectForBorder(aForFrame, aBorderArea, aSkipSides, &aStyleBorder);
RectCornerRadii bgRadii;
::GetRadii(aForFrame, aStyleBorder, aBorderArea, joinedBorderArea, &bgRadii);
PrintAsFormatString(" joinedBorderArea: %d %d %d %d\n", joinedBorderArea.x, joinedBorderArea.y,
joinedBorderArea.width, joinedBorderArea.height);
// start drawing
if (::IsBoxDecorationSlice(aStyleBorder)) {
if (joinedBorderArea.IsEqualEdges(aBorderArea)) {
// No need for a clip, just skip the sides we don't want.
border.ApplySkipSides(aSkipSides);
} else {
// We're drawing borders around the joined continuation boxes so we need
// to clip that to the slice that we want for this frame.
*aNeedsClip = true;
}
} else {
MOZ_ASSERT(joinedBorderArea.IsEqualEdges(aBorderArea),
"Should use aBorderArea for box-decoration-break:clone");
MOZ_ASSERT(aForFrame->GetSkipSides().IsEmpty() ||
IS_TRUE_OVERFLOW_CONTAINER(aForFrame),
"Should not skip sides for box-decoration-break:clone except "
"::first-letter/line continuations or other frame types that "
"don't have borders but those shouldn't reach this point. "
"Overflow containers do reach this point though.");
border.ApplySkipSides(aSkipSides);
}
// Convert to dev pixels.
nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
Rect joinedBorderAreaPx = NSRectToRect(joinedBorderArea, twipsPerPixel);
Float borderWidths[4] = { Float(border.top / twipsPerPixel),
Float(border.right / twipsPerPixel),
Float(border.bottom / twipsPerPixel),
Float(border.left / twipsPerPixel) };
Rect dirtyRect = NSRectToRect(aDirtyRect, twipsPerPixel);
uint8_t borderStyles[4];
nscolor borderColors[4];
nsBorderColors* compositeColors[4];
// pull out styles, colors, composite colors
NS_FOR_CSS_SIDES (i) {
borderStyles[i] = aStyleBorder.GetBorderStyle(i);
borderColors[i] = ourColor->CalcComplexColor(aStyleBorder.mBorderColor[i]);
aStyleBorder.GetCompositeColors(i, &compositeColors[i]);
}
PrintAsFormatString(" borderStyles: %d %d %d %d\n", borderStyles[0], borderStyles[1], borderStyles[2], borderStyles[3]);
nsIDocument* document = nullptr;
nsIContent* content = aForFrame->GetContent();
if (content) {
document = content->OwnerDoc();
}
return nsCSSBorderRenderer(aPresContext,
document,
aDrawTarget,
dirtyRect,
joinedBorderAreaPx,
borderStyles,
borderWidths,
bgRadii,
borderColors,
compositeColors,
bgColor);
}
DrawResult
nsCSSRendering::PaintBorderWithStyleBorder(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
nsStyleContext* aStyleContext,
PaintBorderFlags aFlags,
Sides aSkipSides)
{
DrawTarget& aDrawTarget = *aRenderingContext.GetDrawTarget();
PrintAsStringNewline("++ PaintBorder");
// Check to see if we have an appearance defined. If so, we let the theme
// renderer draw the border. DO not get the data from aForFrame, since the passed in style context
// may be different! Always use |aStyleContext|!
const nsStyleDisplay* displayData = aStyleContext->StyleDisplay();
if (displayData->mAppearance) {
nsITheme *theme = aPresContext->GetTheme();
if (theme &&
theme->ThemeSupportsWidget(aPresContext, aForFrame,
displayData->mAppearance)) {
return DrawResult::SUCCESS; // Let the theme handle it.
}
}
if (aStyleBorder.IsBorderImageLoaded()) {
return DrawBorderImage(aPresContext, aRenderingContext, aForFrame,
aBorderArea, aStyleBorder, aDirtyRect,
aSkipSides, aFlags);
}
DrawResult result = DrawResult::SUCCESS;
// If we had a border-image, but it wasn't loaded, then we should return
// DrawResult::NOT_READY; we'll want to try again if we do a paint with sync
// decoding enabled.
if (aStyleBorder.mBorderImageSource.GetType() != eStyleImageType_Null) {
result = DrawResult::NOT_READY;
}
nsMargin border = aStyleBorder.GetComputedBorder();
if (0 == border.left && 0 == border.right &&
0 == border.top && 0 == border.bottom) {
// Empty border area
return result;
}
bool needsClip = false;
nsCSSBorderRenderer br = ConstructBorderRenderer(aPresContext,
aStyleContext,
&aDrawTarget,
aForFrame,
aDirtyRect,
aBorderArea,
aStyleBorder,
aSkipSides,
&needsClip);
if (needsClip) {
aDrawTarget.PushClipRect(
NSRectToSnappedRect(aBorderArea,
aForFrame->PresContext()->AppUnitsPerDevPixel(),
aDrawTarget));
}
br.DrawBorders();
if (needsClip) {
aDrawTarget.PopClip();
}
PrintAsStringNewline();
return result;
}
Maybe<nsCSSBorderRenderer>
nsCSSRendering::CreateBorderRendererWithStyleBorder(nsPresContext* aPresContext,
DrawTarget* aDrawTarget,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
nsStyleContext* aStyleContext,
Sides aSkipSides)
{
const nsStyleDisplay* displayData = aStyleContext->StyleDisplay();
if (displayData->mAppearance) {
nsITheme *theme = aPresContext->GetTheme();
if (theme &&
theme->ThemeSupportsWidget(aPresContext, aForFrame,
displayData->mAppearance)) {
return Nothing();
}
}
if (aStyleBorder.mBorderImageSource.GetType() != eStyleImageType_Null) {
return Nothing();
}
nsMargin border = aStyleBorder.GetComputedBorder();
if (0 == border.left && 0 == border.right &&
0 == border.top && 0 == border.bottom) {
// Empty border area
return Nothing();
}
bool needsClip = false;
nsCSSBorderRenderer br = ConstructBorderRenderer(aPresContext,
aStyleContext,
aDrawTarget,
aForFrame,
aDirtyRect,
aBorderArea,
aStyleBorder,
aSkipSides,
&needsClip);
if (needsClip) {
return Nothing();
}
return Some(br);
}
static nsRect
GetOutlineInnerRect(nsIFrame* aFrame)
{
nsRect* savedOutlineInnerRect =
aFrame->Properties().Get(nsIFrame::OutlineInnerRectProperty());
if (savedOutlineInnerRect)
return *savedOutlineInnerRect;
NS_NOTREACHED("we should have saved a frame property");
return nsRect(nsPoint(0, 0), aFrame->GetSize());
}
void
nsCSSRendering::PaintOutline(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsStyleContext* aStyleContext)
{
nscoord twipsRadii[8];
// Get our style context's color struct.
const nsStyleOutline* ourOutline = aStyleContext->StyleOutline();
MOZ_ASSERT(ourOutline != NS_STYLE_BORDER_STYLE_NONE,
"shouldn't have created nsDisplayOutline item");
uint8_t outlineStyle = ourOutline->mOutlineStyle;
nscoord width = ourOutline->GetOutlineWidth();
if (width == 0 && outlineStyle != NS_STYLE_BORDER_STYLE_AUTO) {
// Empty outline
return;
}
nsIFrame* bgFrame = nsCSSRendering::FindNonTransparentBackgroundFrame
(aForFrame, false);
nsStyleContext* bgContext = bgFrame->StyleContext();
nscolor bgColor =
bgContext->GetVisitedDependentColor(eCSSProperty_background_color);
nsRect innerRect;
if (
#ifdef MOZ_XUL
aStyleContext->GetPseudoType() == CSSPseudoElementType::XULTree
#else
false
#endif
) {
innerRect = aBorderArea;
} else {
innerRect = GetOutlineInnerRect(aForFrame) + aBorderArea.TopLeft();
}
nscoord offset = ourOutline->mOutlineOffset;
innerRect.Inflate(offset, offset);
// If the dirty rect is completely inside the border area (e.g., only the
// content is being painted), then we can skip out now
// XXX this isn't exactly true for rounded borders, where the inside curves may
// encroach into the content area. A safer calculation would be to
// shorten insideRect by the radius one each side before performing this test.
if (innerRect.Contains(aDirtyRect))
return;
nsRect outerRect = innerRect;
outerRect.Inflate(width, width);
// get the radius for our outline
nsIFrame::ComputeBorderRadii(ourOutline->mOutlineRadius, aBorderArea.Size(),
outerRect.Size(), Sides(), twipsRadii);
// Get our conversion values
nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
// get the outer rectangles
Rect oRect(NSRectToRect(outerRect, twipsPerPixel));
// convert the radii
nsMargin outlineMargin(width, width, width, width);
RectCornerRadii outlineRadii;
ComputePixelRadii(twipsRadii, twipsPerPixel, &outlineRadii);
if (outlineStyle == NS_STYLE_BORDER_STYLE_AUTO) {
if (nsLayoutUtils::IsOutlineStyleAutoEnabled()) {
nsITheme* theme = aPresContext->GetTheme();
if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame,
NS_THEME_FOCUS_OUTLINE)) {
theme->DrawWidgetBackground(&aRenderingContext, aForFrame,
NS_THEME_FOCUS_OUTLINE, innerRect,
aDirtyRect);
return;
}
}
if (width == 0) {
return; // empty outline
}
// http://dev.w3.org/csswg/css-ui/#outline
// "User agents may treat 'auto' as 'solid'."
outlineStyle = NS_STYLE_BORDER_STYLE_SOLID;
}
uint8_t outlineStyles[4] = { outlineStyle, outlineStyle,
outlineStyle, outlineStyle };
// This handles treating the initial color as 'currentColor'; if we
// ever want 'invert' back we'll need to do a bit of work here too.
nscolor outlineColor =
aStyleContext->GetVisitedDependentColor(eCSSProperty_outline_color);
nscolor outlineColors[4] = { outlineColor,
outlineColor,
outlineColor,
outlineColor };
// convert the border widths
Float outlineWidths[4] = { Float(width / twipsPerPixel),
Float(width / twipsPerPixel),
Float(width / twipsPerPixel),
Float(width / twipsPerPixel) };
Rect dirtyRect = NSRectToRect(aDirtyRect, twipsPerPixel);
nsIDocument* document = nullptr;
nsIContent* content = aForFrame->GetContent();
if (content) {
document = content->OwnerDoc();
}
// start drawing
nsCSSBorderRenderer br(aPresContext,
document,
aRenderingContext.GetDrawTarget(),
dirtyRect,
oRect,
outlineStyles,
outlineWidths,
outlineRadii,
outlineColors,
nullptr,
bgColor);
br.DrawBorders();
PrintAsStringNewline();
}
void
nsCSSRendering::PaintFocus(nsPresContext* aPresContext,
DrawTarget* aDrawTarget,
const nsRect& aFocusRect,
nscolor aColor)
{
nscoord oneCSSPixel = nsPresContext::CSSPixelsToAppUnits(1);
nscoord oneDevPixel = aPresContext->DevPixelsToAppUnits(1);
Rect focusRect(NSRectToRect(aFocusRect, oneDevPixel));
RectCornerRadii focusRadii;
{
nscoord twipsRadii[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
ComputePixelRadii(twipsRadii, oneDevPixel, &focusRadii);
}
Float focusWidths[4] = { Float(oneCSSPixel / oneDevPixel),
Float(oneCSSPixel / oneDevPixel),
Float(oneCSSPixel / oneDevPixel),
Float(oneCSSPixel / oneDevPixel) };
uint8_t focusStyles[4] = { NS_STYLE_BORDER_STYLE_DOTTED,
NS_STYLE_BORDER_STYLE_DOTTED,
NS_STYLE_BORDER_STYLE_DOTTED,
NS_STYLE_BORDER_STYLE_DOTTED };
nscolor focusColors[4] = { aColor, aColor, aColor, aColor };
// Because this renders a dotted border, the background color
// should not be used. Therefore, we provide a value that will
// be blatantly wrong if it ever does get used. (If this becomes
// something that CSS can style, this function will then have access
// to a style context and can use the same logic that PaintBorder
// and PaintOutline do.)
nsCSSBorderRenderer br(aPresContext,
nullptr,
aDrawTarget,
focusRect,
focusRect,
focusStyles,
focusWidths,
focusRadii,
focusColors,
nullptr,
NS_RGB(255, 0, 0));
br.DrawBorders();
PrintAsStringNewline();
}
// Thebes Border Rendering Code End
//----------------------------------------------------------------------
//----------------------------------------------------------------------
/**
* Helper for ComputeObjectAnchorPoint; parameters are the same as for
* that function, except they're for a single coordinate / a single size
* dimension. (so, x/width vs. y/height)
*/
static void
ComputeObjectAnchorCoord(const Position::Coord& aCoord,
const nscoord aOriginBounds,
const nscoord aImageSize,
nscoord* aTopLeftCoord,
nscoord* aAnchorPointCoord)
{
*aAnchorPointCoord = aCoord.mLength;
*aTopLeftCoord = aCoord.mLength;
if (aCoord.mHasPercent) {
// Adjust aTopLeftCoord by the specified % of the extra space.
nscoord extraSpace = aOriginBounds - aImageSize;
*aTopLeftCoord += NSToCoordRound(aCoord.mPercent * extraSpace);
// The anchor-point doesn't care about our image's size; just the size
// of the region we're rendering into.
*aAnchorPointCoord += NSToCoordRound(aCoord.mPercent * aOriginBounds);
}
}
void
nsImageRenderer::ComputeObjectAnchorPoint(
const Position& aPos,
const nsSize& aOriginBounds,
const nsSize& aImageSize,
nsPoint* aTopLeft,
nsPoint* aAnchorPoint)
{
ComputeObjectAnchorCoord(aPos.mXPosition,
aOriginBounds.width, aImageSize.width,
&aTopLeft->x, &aAnchorPoint->x);
ComputeObjectAnchorCoord(aPos.mYPosition,
aOriginBounds.height, aImageSize.height,
&aTopLeft->y, &aAnchorPoint->y);
}
nsIFrame*
nsCSSRendering::FindNonTransparentBackgroundFrame(nsIFrame* aFrame,
bool aStartAtParent /*= false*/)
{
NS_ASSERTION(aFrame, "Cannot find NonTransparentBackgroundFrame in a null frame");
nsIFrame* frame = nullptr;
if (aStartAtParent) {
frame = nsLayoutUtils::GetParentOrPlaceholderFor(aFrame);
}
if (!frame) {
frame = aFrame;
}
while (frame) {
// No need to call GetVisitedDependentColor because it always uses
// this alpha component anyway.
if (NS_GET_A(frame->StyleBackground()->mBackgroundColor) > 0)
break;
if (frame->IsThemed())
break;
nsIFrame* parent = nsLayoutUtils::GetParentOrPlaceholderFor(frame);
if (!parent)
break;
frame = parent;
}
return frame;
}
// Returns true if aFrame is a canvas frame.
// We need to treat the viewport as canvas because, even though
// it does not actually paint a background, we need to get the right
// background style so we correctly detect transparent documents.
bool
nsCSSRendering::IsCanvasFrame(nsIFrame* aFrame)
{
nsIAtom* frameType = aFrame->GetType();
return frameType == nsGkAtoms::canvasFrame ||
frameType == nsGkAtoms::rootFrame ||
frameType == nsGkAtoms::pageContentFrame ||
frameType == nsGkAtoms::viewportFrame;
}
nsIFrame*
nsCSSRendering::FindBackgroundStyleFrame(nsIFrame* aForFrame)
{
const nsStyleBackground* result = aForFrame->StyleBackground();
// Check if we need to do propagation from BODY rather than HTML.
if (!result->IsTransparent()) {
return aForFrame;
}
nsIContent* content = aForFrame->GetContent();
// The root element content can't be null. We wouldn't know what
// frame to create for aFrame.
// Use |OwnerDoc| so it works during destruction.
if (!content) {
return aForFrame;
}
nsIDocument* document = content->OwnerDoc();
dom::Element* bodyContent = document->GetBodyElement();
// We need to null check the body node (bug 118829) since
// there are cases, thanks to the fix for bug 5569, where we
// will reflow a document with no body. In particular, if a
// SCRIPT element in the head blocks the parser and then has a
// SCRIPT that does "document.location.href = 'foo'", then
// nsParser::Terminate will call |DidBuildModel| methods
// through to the content sink, which will call |StartLayout|
// and thus |Initialize| on the pres shell. See bug 119351
// for the ugly details.
if (!bodyContent) {
return aForFrame;
}
nsIFrame *bodyFrame = bodyContent->GetPrimaryFrame();
if (!bodyFrame) {
return aForFrame;
}
return nsLayoutUtils::GetStyleFrame(bodyFrame);
}
/**
* |FindBackground| finds the correct style data to use to paint the
* background. It is responsible for handling the following two
* statements in section 14.2 of CSS2:
*
* The background of the box generated by the root element covers the
* entire canvas.
*
* For HTML documents, however, we recommend that authors specify the
* background for the BODY element rather than the HTML element. User
* agents should observe the following precedence rules to fill in the
* background: if the value of the 'background' property for the HTML
* element is different from 'transparent' then use it, else use the
* value of the 'background' property for the BODY element. If the
* resulting value is 'transparent', the rendering is undefined.
*
* Thus, in our implementation, it is responsible for ensuring that:
* + we paint the correct background on the |nsCanvasFrame|,
* |nsRootBoxFrame|, or |nsPageFrame|,
* + we don't paint the background on the root element, and
* + we don't paint the background on the BODY element in *some* cases,
* and for SGML-based HTML documents only.
*
* |FindBackground| returns true if a background should be painted, and
* the resulting style context to use for the background information
* will be filled in to |aBackground|.
*/
nsStyleContext*
nsCSSRendering::FindRootFrameBackground(nsIFrame* aForFrame)
{
return FindBackgroundStyleFrame(aForFrame)->StyleContext();
}
inline bool
FindElementBackground(nsIFrame* aForFrame, nsIFrame* aRootElementFrame,
nsStyleContext** aBackgroundSC)
{
if (aForFrame == aRootElementFrame) {
// We must have propagated our background to the viewport or canvas. Abort.
return false;
}
*aBackgroundSC = aForFrame->StyleContext();
// Return true unless the frame is for a BODY element whose background
// was propagated to the viewport.
nsIContent* content = aForFrame->GetContent();
if (!content || content->NodeInfo()->NameAtom() != nsGkAtoms::body)
return true; // not frame for a "body" element
// It could be a non-HTML "body" element but that's OK, we'd fail the
// bodyContent check below
if (aForFrame->StyleContext()->GetPseudo())
return true; // A pseudo-element frame.
// We should only look at the <html> background if we're in an HTML document
nsIDocument* document = content->OwnerDoc();
dom::Element* bodyContent = document->GetBodyElement();
if (bodyContent != content)
return true; // this wasn't the background that was propagated
// This can be called even when there's no root element yet, during frame
// construction, via nsLayoutUtils::FrameHasTransparency and
// nsContainerFrame::SyncFrameViewProperties.
if (!aRootElementFrame)
return true;
const nsStyleBackground* htmlBG = aRootElementFrame->StyleBackground();
return !htmlBG->IsTransparent();
}
bool
nsCSSRendering::FindBackground(nsIFrame* aForFrame,
nsStyleContext** aBackgroundSC)
{
nsIFrame* rootElementFrame =
aForFrame->PresContext()->PresShell()->FrameConstructor()->GetRootElementStyleFrame();
if (IsCanvasFrame(aForFrame)) {
*aBackgroundSC = FindCanvasBackground(aForFrame, rootElementFrame);
return true;
} else {
return FindElementBackground(aForFrame, rootElementFrame, aBackgroundSC);
}
}
void
nsCSSRendering::BeginFrameTreesLocked()
{
++gFrameTreeLockCount;
}
void
nsCSSRendering::EndFrameTreesLocked()
{
NS_ASSERTION(gFrameTreeLockCount > 0, "Unbalanced EndFrameTreeLocked");
--gFrameTreeLockCount;
if (gFrameTreeLockCount == 0) {
gInlineBGData->Reset();
}
}
void
nsCSSRendering::PaintBoxShadowOuter(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aFrameArea,
const nsRect& aDirtyRect,
float aOpacity)
{
DrawTarget& aDrawTarget = *aRenderingContext.GetDrawTarget();
nsCSSShadowArray* shadows = aForFrame->StyleEffects()->mBoxShadow;
if (!shadows)
return;
bool hasBorderRadius;
bool nativeTheme; // mutually exclusive with hasBorderRadius
const nsStyleDisplay* styleDisplay = aForFrame->StyleDisplay();
nsITheme::Transparency transparency;
if (aForFrame->IsThemed(styleDisplay, &transparency)) {
// We don't respect border-radius for native-themed widgets
hasBorderRadius = false;
// For opaque (rectangular) theme widgets we can take the generic
// border-box path with border-radius disabled.
nativeTheme = transparency != nsITheme::eOpaque;
} else {
nativeTheme = false;
hasBorderRadius = true; // we'll update this below
}
nsRect frameRect = nativeTheme ?
aForFrame->GetVisualOverflowRectRelativeToSelf() + aFrameArea.TopLeft() :
aFrameArea;
Sides skipSides = aForFrame->GetSkipSides();
frameRect = ::BoxDecorationRectForBorder(aForFrame, frameRect, skipSides);
// Get any border radius, since box-shadow must also have rounded corners if
// the frame does.
RectCornerRadii borderRadii;
const nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
if (hasBorderRadius) {
nscoord twipsRadii[8];
NS_ASSERTION(aFrameArea.Size() == aForFrame->VisualBorderRectRelativeToSelf().Size(),
"unexpected size");
nsSize sz = frameRect.Size();
hasBorderRadius = aForFrame->GetBorderRadii(sz, sz, Sides(), twipsRadii);
if (hasBorderRadius) {
ComputePixelRadii(twipsRadii, twipsPerPixel, &borderRadii);
}
}
// We don't show anything that intersects with the frame we're blurring on. So tell the
// blurrer not to do unnecessary work there.
gfxRect skipGfxRect = ThebesRect(NSRectToRect(frameRect, twipsPerPixel));
skipGfxRect.Round();
bool useSkipGfxRect = true;
if (nativeTheme) {
// Optimize non-leaf native-themed frames by skipping computing pixels
// in the padding-box. We assume the padding-box is going to be painted
// opaquely for non-leaf frames.
// XXX this may not be a safe assumption; we should make this go away
// by optimizing box-shadow drawing more for the cases where we don't have a skip-rect.
useSkipGfxRect = !aForFrame->IsLeaf();
nsRect paddingRect =
aForFrame->GetPaddingRect() - aForFrame->GetPosition() + aFrameArea.TopLeft();
skipGfxRect = nsLayoutUtils::RectToGfxRect(paddingRect, twipsPerPixel);
} else if (hasBorderRadius) {
skipGfxRect.Deflate(gfxMargin(
std::max(borderRadii[C_TL].height, borderRadii[C_TR].height), 0,
std::max(borderRadii[C_BL].height, borderRadii[C_BR].height), 0));
}
gfxContext* renderContext = aRenderingContext.ThebesContext();
for (uint32_t i = shadows->Length(); i > 0; --i) {
nsCSSShadowItem* shadowItem = shadows->ShadowAt(i - 1);
if (shadowItem->mInset)
continue;
nsRect shadowRect = frameRect;
shadowRect.MoveBy(shadowItem->mXOffset, shadowItem->mYOffset);
if (!nativeTheme) {
shadowRect.Inflate(shadowItem->mSpread, shadowItem->mSpread);
}
// shadowRect won't include the blur, so make an extra rect here that includes the blur
// for use in the even-odd rule below.
nsRect shadowRectPlusBlur = shadowRect;
nscoord blurRadius = shadowItem->mRadius;
shadowRectPlusBlur.Inflate(
nsContextBoxBlur::GetBlurRadiusMargin(blurRadius, twipsPerPixel));
Rect shadowGfxRectPlusBlur =
NSRectToRect(shadowRectPlusBlur, twipsPerPixel);
shadowGfxRectPlusBlur.RoundOut();
MaybeSnapToDevicePixels(shadowGfxRectPlusBlur, aDrawTarget, true);
// Set the shadow color; if not specified, use the foreground color
nscolor shadowColor;
if (shadowItem->mHasColor)
shadowColor = shadowItem->mColor;
else
shadowColor = aForFrame->StyleColor()->mColor;
Color gfxShadowColor(Color::FromABGR(shadowColor));
gfxShadowColor.a *= aOpacity;
if (nativeTheme) {
nsContextBoxBlur blurringArea;
// When getting the widget shape from the native theme, we're going
// to draw the widget into the shadow surface to create a mask.
// We need to ensure that there actually *is* a shadow surface
// and that we're not going to draw directly into renderContext.
gfxContext* shadowContext =
blurringArea.Init(shadowRect, shadowItem->mSpread,
blurRadius, twipsPerPixel, renderContext, aDirtyRect,
useSkipGfxRect ? &skipGfxRect : nullptr,
nsContextBoxBlur::FORCE_MASK);
if (!shadowContext)
continue;
MOZ_ASSERT(shadowContext == blurringArea.GetContext());
renderContext->Save();
renderContext->SetColor(gfxShadowColor);
// Draw the shape of the frame so it can be blurred. Recall how nsContextBoxBlur
// doesn't make any temporary surfaces if blur is 0 and it just returns the original
// surface? If we have no blur, we're painting this fill on the actual content surface
// (renderContext == shadowContext) which is why we set up the color and clip
// before doing this.
// We don't clip the border-box from the shadow, nor any other box.
// We assume that the native theme is going to paint over the shadow.
// Draw the widget shape
gfxContextMatrixAutoSaveRestore save(shadowContext);
gfxPoint devPixelOffset =
nsLayoutUtils::PointToGfxPoint(nsPoint(shadowItem->mXOffset,
shadowItem->mYOffset),
aPresContext->AppUnitsPerDevPixel());
shadowContext->SetMatrix(
shadowContext->CurrentMatrix().Translate(devPixelOffset));
nsRect nativeRect = aDirtyRect;
nativeRect.MoveBy(-nsPoint(shadowItem->mXOffset, shadowItem->mYOffset));
nativeRect.IntersectRect(frameRect, nativeRect);
nsRenderingContext wrapperCtx(shadowContext);
aPresContext->GetTheme()->DrawWidgetBackground(&wrapperCtx, aForFrame,
styleDisplay->mAppearance, aFrameArea, nativeRect);
blurringArea.DoPaint();
renderContext->Restore();
} else {
renderContext->Save();
{
Rect innerClipRect = NSRectToRect(frameRect, twipsPerPixel);
if (!MaybeSnapToDevicePixels(innerClipRect, aDrawTarget, true)) {
innerClipRect.Round();
}
// Clip out the interior of the frame's border edge so that the shadow
// is only painted outside that area.
RefPtr<PathBuilder> builder =
aDrawTarget.CreatePathBuilder(FillRule::FILL_EVEN_ODD);
AppendRectToPath(builder, shadowGfxRectPlusBlur);
if (hasBorderRadius) {
AppendRoundedRectToPath(builder, innerClipRect, borderRadii);
} else {
AppendRectToPath(builder, innerClipRect);
}
RefPtr<Path> path = builder->Finish();
renderContext->Clip(path);
}
// Clip the shadow so that we only get the part that applies to aForFrame.
nsRect fragmentClip = shadowRectPlusBlur;
if (!skipSides.IsEmpty()) {
if (skipSides.Left()) {
nscoord xmost = fragmentClip.XMost();
fragmentClip.x = aFrameArea.x;
fragmentClip.width = xmost - fragmentClip.x;
}
if (skipSides.Right()) {
nscoord xmost = fragmentClip.XMost();
nscoord overflow = xmost - aFrameArea.XMost();
if (overflow > 0) {
fragmentClip.width -= overflow;
}
}
if (skipSides.Top()) {
nscoord ymost = fragmentClip.YMost();
fragmentClip.y = aFrameArea.y;
fragmentClip.height = ymost - fragmentClip.y;
}
if (skipSides.Bottom()) {
nscoord ymost = fragmentClip.YMost();
nscoord overflow = ymost - aFrameArea.YMost();
if (overflow > 0) {
fragmentClip.height -= overflow;
}
}
}
fragmentClip = fragmentClip.Intersect(aDirtyRect);
renderContext->
Clip(NSRectToSnappedRect(fragmentClip,
aForFrame->PresContext()->AppUnitsPerDevPixel(),
aDrawTarget));
RectCornerRadii clipRectRadii;
if (hasBorderRadius) {
Float spreadDistance = shadowItem->mSpread / twipsPerPixel;
Float borderSizes[4];
borderSizes[eSideLeft] = spreadDistance;
borderSizes[eSideTop] = spreadDistance;
borderSizes[eSideRight] = spreadDistance;
borderSizes[eSideBottom] = spreadDistance;
nsCSSBorderRenderer::ComputeOuterRadii(borderRadii, borderSizes,
&clipRectRadii);
}
nsContextBoxBlur::BlurRectangle(renderContext,
shadowRect,
twipsPerPixel,
hasBorderRadius ? &clipRectRadii : nullptr,
blurRadius,
gfxShadowColor,
aDirtyRect,
skipGfxRect);
renderContext->Restore();
}
}
}
void
nsCSSRendering::PaintBoxShadowInner(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aFrameArea)
{
nsCSSShadowArray* shadows = aForFrame->StyleEffects()->mBoxShadow;
if (!shadows)
return;
if (aForFrame->IsThemed() && aForFrame->GetContent() &&
!nsContentUtils::IsChromeDoc(aForFrame->GetContent()->GetUncomposedDoc())) {
// There's no way of getting hold of a shape corresponding to a
// "padding-box" for native-themed widgets, so just don't draw
// inner box-shadows for them. But we allow chrome to paint inner
// box shadows since chrome can be aware of the platform theme.
return;
}
NS_ASSERTION(aForFrame->GetType() == nsGkAtoms::fieldSetFrame ||
aFrameArea.Size() == aForFrame->GetSize(), "unexpected size");
Sides skipSides = aForFrame->GetSkipSides();
nsRect frameRect =
::BoxDecorationRectForBorder(aForFrame, aFrameArea, skipSides);
nsRect paddingRect = frameRect;
nsMargin border = aForFrame->GetUsedBorder();
paddingRect.Deflate(border);
// Get any border radius, since box-shadow must also have rounded corners
// if the frame does.
nscoord twipsRadii[8];
nsSize sz = frameRect.Size();
bool hasBorderRadius = aForFrame->GetBorderRadii(sz, sz, Sides(), twipsRadii);
const nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1);
RectCornerRadii innerRadii;
if (hasBorderRadius) {
RectCornerRadii borderRadii;
ComputePixelRadii(twipsRadii, twipsPerPixel, &borderRadii);
Float borderSizes[4] = {
Float(border.top / twipsPerPixel),
Float(border.right / twipsPerPixel),
Float(border.bottom / twipsPerPixel),
Float(border.left / twipsPerPixel)
};
nsCSSBorderRenderer::ComputeInnerRadii(borderRadii, borderSizes,
&innerRadii);
}
for (uint32_t i = shadows->Length(); i > 0; --i) {
nsCSSShadowItem* shadowItem = shadows->ShadowAt(i - 1);
if (!shadowItem->mInset)
continue;
// shadowPaintRect: the area to paint on the temp surface
// shadowClipRect: the area on the temporary surface within shadowPaintRect
// that we will NOT paint in
nscoord blurRadius = shadowItem->mRadius;
nsMargin blurMargin =
nsContextBoxBlur::GetBlurRadiusMargin(blurRadius, twipsPerPixel);
nsRect shadowPaintRect = paddingRect;
shadowPaintRect.Inflate(blurMargin);
Rect shadowPaintGfxRect = NSRectToRect(shadowPaintRect, twipsPerPixel);
shadowPaintGfxRect.RoundOut();
// Round the spread radius to device pixels (by truncation).
// This mostly matches what we do for borders, except that we don't round
// up values between zero and one device pixels to one device pixel.
// This way of rounding is symmetric around zero, which makes sense for
// the spread radius.
int32_t spreadDistance = shadowItem->mSpread / twipsPerPixel;
nscoord spreadDistanceAppUnits = aPresContext->DevPixelsToAppUnits(spreadDistance);
nsRect shadowClipRect = paddingRect;
shadowClipRect.MoveBy(shadowItem->mXOffset, shadowItem->mYOffset);
shadowClipRect.Deflate(spreadDistanceAppUnits, spreadDistanceAppUnits);
Rect shadowClipGfxRect = NSRectToRect(shadowClipRect, twipsPerPixel);
shadowClipGfxRect.Round();
RectCornerRadii clipRectRadii;
if (hasBorderRadius) {
// Calculate the radii the inner clipping rect will have
Float borderSizes[4] = {0, 0, 0, 0};
// See PaintBoxShadowOuter and bug 514670
if (innerRadii[C_TL].width > 0 || innerRadii[C_BL].width > 0) {
borderSizes[eSideLeft] = spreadDistance;
}
if (innerRadii[C_TL].height > 0 || innerRadii[C_TR].height > 0) {
borderSizes[eSideTop] = spreadDistance;
}
if (innerRadii[C_TR].width > 0 || innerRadii[C_BR].width > 0) {
borderSizes[eSideRight] = spreadDistance;
}
if (innerRadii[C_BL].height > 0 || innerRadii[C_BR].height > 0) {
borderSizes[eSideBottom] = spreadDistance;
}
nsCSSBorderRenderer::ComputeInnerRadii(innerRadii, borderSizes,
&clipRectRadii);
}
// Set the "skip rect" to the area within the frame that we don't paint in,
// including after blurring.
nsRect skipRect = shadowClipRect;
skipRect.Deflate(blurMargin);
gfxRect skipGfxRect = nsLayoutUtils::RectToGfxRect(skipRect, twipsPerPixel);
if (hasBorderRadius) {
skipGfxRect.Deflate(gfxMargin(
std::max(clipRectRadii[C_TL].height, clipRectRadii[C_TR].height), 0,
std::max(clipRectRadii[C_BL].height, clipRectRadii[C_BR].height), 0));
}
// When there's a blur radius, gfxAlphaBoxBlur leaves the skiprect area
// unchanged. And by construction the gfxSkipRect is not touched by the
// rendered shadow (even after blurring), so those pixels must be completely
// transparent in the shadow, so drawing them changes nothing.
gfxContext* renderContext = aRenderingContext.ThebesContext();
DrawTarget* drawTarget = renderContext->GetDrawTarget();
// Clip the context to the area of the frame's padding rect, so no part of the
// shadow is painted outside. Also cut out anything beyond where the inset shadow
// will be.
Rect shadowGfxRect = NSRectToRect(paddingRect, twipsPerPixel);
shadowGfxRect.Round();
// Set the shadow color; if not specified, use the foreground color
Color shadowColor = Color::FromABGR(shadowItem->mHasColor ?
shadowItem->mColor :
aForFrame->StyleColor()->mColor);
renderContext->Save();
// This clips the outside border radius.
// clipRectRadii is the border radius inside the inset shadow.
if (hasBorderRadius) {
RefPtr<Path> roundedRect =
MakePathForRoundedRect(*drawTarget, shadowGfxRect, innerRadii);
renderContext->Clip(roundedRect);
} else {
renderContext->Clip(shadowGfxRect);
}
nsContextBoxBlur insetBoxBlur;
gfxRect destRect = nsLayoutUtils::RectToGfxRect(shadowPaintRect, twipsPerPixel);
Point shadowOffset(shadowItem->mXOffset / twipsPerPixel,
shadowItem->mYOffset / twipsPerPixel);
insetBoxBlur.InsetBoxBlur(renderContext, ToRect(destRect),
shadowClipGfxRect, shadowColor,
blurRadius, spreadDistanceAppUnits,
twipsPerPixel, hasBorderRadius,
clipRectRadii, ToRect(skipGfxRect),
shadowOffset);
renderContext->Restore();
}
}
/* static */
nsCSSRendering::PaintBGParams
nsCSSRendering::PaintBGParams::ForAllLayers(nsPresContext& aPresCtx,
nsRenderingContext& aRenderingCtx,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsIFrame *aFrame,
uint32_t aPaintFlags)
{
MOZ_ASSERT(aFrame);
PaintBGParams result(aPresCtx, aRenderingCtx, aDirtyRect, aBorderArea, aFrame,
aPaintFlags, -1, CompositionOp::OP_OVER);
return result;
}
/* static */
nsCSSRendering::PaintBGParams
nsCSSRendering::PaintBGParams::ForSingleLayer(nsPresContext& aPresCtx,
nsRenderingContext& aRenderingCtx,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsIFrame *aFrame,
uint32_t aPaintFlags,
int32_t aLayer,
CompositionOp aCompositionOp)
{
MOZ_ASSERT(aFrame && (aLayer != -1));
PaintBGParams result(aPresCtx, aRenderingCtx, aDirtyRect, aBorderArea, aFrame,
aPaintFlags, aLayer, aCompositionOp);
return result;
}
DrawResult
nsCSSRendering::PaintBackground(const PaintBGParams& aParams)
{
PROFILER_LABEL("nsCSSRendering", "PaintBackground",
js::ProfileEntry::Category::GRAPHICS);
NS_PRECONDITION(aParams.frame,
"Frame is expected to be provided to PaintBackground");
nsStyleContext *sc;
if (!FindBackground(aParams.frame, &sc)) {
// We don't want to bail out if moz-appearance is set on a root
// node. If it has a parent content node, bail because it's not
// a root, otherwise keep going in order to let the theme stuff
// draw the background. The canvas really should be drawing the
// bg, but there's no way to hook that up via css.
if (!aParams.frame->StyleDisplay()->mAppearance) {
return DrawResult::SUCCESS;
}
nsIContent* content = aParams.frame->GetContent();
if (!content || content->GetParent()) {
return DrawResult::SUCCESS;
}
sc = aParams.frame->StyleContext();
}
return PaintBackgroundWithSC(aParams, sc, *aParams.frame->StyleBorder());
}
static bool
IsOpaqueBorderEdge(const nsStyleBorder& aBorder, mozilla::Side aSide)
{
if (aBorder.GetComputedBorder().Side(aSide) == 0)
return true;
switch (aBorder.GetBorderStyle(aSide)) {
case NS_STYLE_BORDER_STYLE_SOLID:
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
case NS_STYLE_BORDER_STYLE_INSET:
case NS_STYLE_BORDER_STYLE_OUTSET:
break;
default:
return false;
}
// If we're using a border image, assume it's not fully opaque,
// because we may not even have the image loaded at this point, and
// even if we did, checking whether the relevant tile is fully
// opaque would be too much work.
if (aBorder.mBorderImageSource.GetType() != eStyleImageType_Null)
return false;
StyleComplexColor color = aBorder.mBorderColor[aSide];
// We don't know the foreground color here, so if it's being used
// we must assume it might be transparent.
if (!color.IsNumericColor()) {
return false;
}
return NS_GET_A(color.mColor) == 255;
}
/**
* Returns true if all border edges are either missing or opaque.
*/
static bool
IsOpaqueBorder(const nsStyleBorder& aBorder)
{
if (aBorder.mBorderColors)
return false;
NS_FOR_CSS_SIDES(i) {
if (!IsOpaqueBorderEdge(aBorder, i))
return false;
}
return true;
}
static inline void
SetupDirtyRects(const nsRect& aBGClipArea, const nsRect& aCallerDirtyRect,
nscoord aAppUnitsPerPixel,
/* OUT: */
nsRect* aDirtyRect, gfxRect* aDirtyRectGfx)
{
aDirtyRect->IntersectRect(aBGClipArea, aCallerDirtyRect);
// Compute the Thebes equivalent of the dirtyRect.
*aDirtyRectGfx = nsLayoutUtils::RectToGfxRect(*aDirtyRect, aAppUnitsPerPixel);
NS_WARNING_ASSERTION(aDirtyRect->IsEmpty() || !aDirtyRectGfx->IsEmpty(),
"converted dirty rect should not be empty");
MOZ_ASSERT(!aDirtyRect->IsEmpty() || aDirtyRectGfx->IsEmpty(),
"second should be empty if first is");
}
/* static */ void
nsCSSRendering::GetImageLayerClip(const nsStyleImageLayers::Layer& aLayer,
nsIFrame* aForFrame, const nsStyleBorder& aBorder,
const nsRect& aBorderArea, const nsRect& aCallerDirtyRect,
bool aWillPaintBorder, nscoord aAppUnitsPerPixel,
/* out */ ImageLayerClipState* aClipState)
{
// Compute the outermost boundary of the area that might be painted.
// Same coordinate space as aBorderArea.
Sides skipSides = aForFrame->GetSkipSides();
nsRect clipBorderArea =
::BoxDecorationRectForBorder(aForFrame, aBorderArea, skipSides, &aBorder);
bool haveRoundedCorners = GetRadii(aForFrame, aBorder, aBorderArea,
clipBorderArea, aClipState->mRadii);
uint8_t backgroundClip = aLayer.mClip;
bool isSolidBorder =
aWillPaintBorder && IsOpaqueBorder(aBorder);
if (isSolidBorder && backgroundClip == NS_STYLE_IMAGELAYER_CLIP_BORDER) {
// If we have rounded corners, we need to inflate the background
// drawing area a bit to avoid seams between the border and
// background.
backgroundClip = haveRoundedCorners ?
NS_STYLE_IMAGELAYER_CLIP_MOZ_ALMOST_PADDING : NS_STYLE_IMAGELAYER_CLIP_PADDING;
}
aClipState->mBGClipArea = clipBorderArea;
aClipState->mHasAdditionalBGClipArea = false;
aClipState->mCustomClip = false;
if (aForFrame->GetType() == nsGkAtoms::scrollFrame &&
NS_STYLE_IMAGELAYER_ATTACHMENT_LOCAL == aLayer.mAttachment) {
// As of this writing, this is still in discussion in the CSS Working Group
// http://lists.w3.org/Archives/Public/www-style/2013Jul/0250.html
// The rectangle for 'background-clip' scrolls with the content,
// but the background is also clipped at a non-scrolling 'padding-box'
// like the content. (See below.)
// Therefore, only 'content-box' makes a difference here.
if (backgroundClip == NS_STYLE_IMAGELAYER_CLIP_CONTENT) {
nsIScrollableFrame* scrollableFrame = do_QueryFrame(aForFrame);
// Clip at a rectangle attached to the scrolled content.
aClipState->mHasAdditionalBGClipArea = true;
aClipState->mAdditionalBGClipArea = nsRect(
aClipState->mBGClipArea.TopLeft()
+ scrollableFrame->GetScrolledFrame()->GetPosition()
// For the dir=rtl case:
+ scrollableFrame->GetScrollRange().TopLeft(),
scrollableFrame->GetScrolledRect().Size());
nsMargin padding = aForFrame->GetUsedPadding();
// padding-bottom is ignored on scrollable frames:
// https://bugzilla.mozilla.org/show_bug.cgi?id=748518
padding.bottom = 0;
padding.ApplySkipSides(skipSides);
aClipState->mAdditionalBGClipArea.Deflate(padding);
}
// Also clip at a non-scrolling, rounded-corner 'padding-box',
// same as the scrolled content because of the 'overflow' property.
backgroundClip = NS_STYLE_IMAGELAYER_CLIP_PADDING;
}
if (backgroundClip != NS_STYLE_IMAGELAYER_CLIP_BORDER &&
backgroundClip != NS_STYLE_IMAGELAYER_CLIP_TEXT) {
nsMargin border = aForFrame->GetUsedBorder();
if (backgroundClip == NS_STYLE_IMAGELAYER_CLIP_MOZ_ALMOST_PADDING) {
// Reduce |border| by 1px (device pixels) on all sides, if
// possible, so that we don't get antialiasing seams between the
// background and border.
border.top = std::max(0, border.top - aAppUnitsPerPixel);
border.right = std::max(0, border.right - aAppUnitsPerPixel);
border.bottom = std::max(0, border.bottom - aAppUnitsPerPixel);
border.left = std::max(0, border.left - aAppUnitsPerPixel);
} else if (backgroundClip != NS_STYLE_IMAGELAYER_CLIP_PADDING) {
NS_ASSERTION(backgroundClip == NS_STYLE_IMAGELAYER_CLIP_CONTENT,
"unexpected background-clip");
border += aForFrame->GetUsedPadding();
}
border.ApplySkipSides(skipSides);
aClipState->mBGClipArea.Deflate(border);
if (haveRoundedCorners) {
nsIFrame::InsetBorderRadii(aClipState->mRadii, border);
}
}
if (haveRoundedCorners) {
auto d2a = aForFrame->PresContext()->AppUnitsPerDevPixel();
nsCSSRendering::ComputePixelRadii(aClipState->mRadii, d2a, &aClipState->mClippedRadii);
aClipState->mHasRoundedCorners = true;
} else {
aClipState->mHasRoundedCorners = false;
}
if (!haveRoundedCorners && aClipState->mHasAdditionalBGClipArea) {
// Do the intersection here to account for the fast path(?) below.
aClipState->mBGClipArea =
aClipState->mBGClipArea.Intersect(aClipState->mAdditionalBGClipArea);
aClipState->mHasAdditionalBGClipArea = false;
}
SetupDirtyRects(aClipState->mBGClipArea, aCallerDirtyRect, aAppUnitsPerPixel,
&aClipState->mDirtyRect, &aClipState->mDirtyRectGfx);
}
static void
SetupImageLayerClip(nsCSSRendering::ImageLayerClipState& aClipState,
gfxContext *aCtx, nscoord aAppUnitsPerPixel,
gfxContextAutoSaveRestore* aAutoSR)
{
if (aClipState.mDirtyRectGfx.IsEmpty()) {
// Our caller won't draw anything under this condition, so no need
// to set more up.
return;
}
if (aClipState.mCustomClip) {
// We don't support custom clips and rounded corners, arguably a bug, but
// table painting seems to depend on it.
return;
}
DrawTarget* drawTarget = aCtx->GetDrawTarget();
// If we have rounded corners, clip all subsequent drawing to the
// rounded rectangle defined by bgArea and bgRadii (we don't know
// whether the rounded corners intrude on the dirtyRect or not).
// Do not do this if we have a caller-provided clip rect --
// as above with bgArea, arguably a bug, but table painting seems
// to depend on it.
if (aClipState.mHasAdditionalBGClipArea) {
gfxRect bgAreaGfx = nsLayoutUtils::RectToGfxRect(
aClipState.mAdditionalBGClipArea, aAppUnitsPerPixel);
bgAreaGfx.Round();
bgAreaGfx.Condition();
aAutoSR->EnsureSaved(aCtx);
aCtx->NewPath();
aCtx->Rectangle(bgAreaGfx, true);
aCtx->Clip();
}
if (aClipState.mHasRoundedCorners) {
Rect bgAreaGfx = NSRectToRect(aClipState.mBGClipArea, aAppUnitsPerPixel);
bgAreaGfx.Round();
if (bgAreaGfx.IsEmpty()) {
// I think it's become possible to hit this since
// http://hg.mozilla.org/mozilla-central/rev/50e934e4979b landed.
NS_WARNING("converted background area should not be empty");
// Make our caller not do anything.
aClipState.mDirtyRectGfx.SizeTo(gfxSize(0.0, 0.0));
return;
}
aAutoSR->EnsureSaved(aCtx);
RefPtr<Path> roundedRect =
MakePathForRoundedRect(*drawTarget, bgAreaGfx, aClipState.mClippedRadii);
aCtx->Clip(roundedRect);
}
}
static void
DrawBackgroundColor(nsCSSRendering::ImageLayerClipState& aClipState,
gfxContext *aCtx, nscoord aAppUnitsPerPixel)
{
if (aClipState.mDirtyRectGfx.IsEmpty()) {
// Our caller won't draw anything under this condition, so no need
// to set more up.
return;
}
DrawTarget* drawTarget = aCtx->GetDrawTarget();
// We don't support custom clips and rounded corners, arguably a bug, but
// table painting seems to depend on it.
if (!aClipState.mHasRoundedCorners || aClipState.mCustomClip) {
aCtx->NewPath();
aCtx->Rectangle(aClipState.mDirtyRectGfx, true);
aCtx->Fill();
return;
}
Rect bgAreaGfx = NSRectToRect(aClipState.mBGClipArea, aAppUnitsPerPixel);
bgAreaGfx.Round();
if (bgAreaGfx.IsEmpty()) {
// I think it's become possible to hit this since
// http://hg.mozilla.org/mozilla-central/rev/50e934e4979b landed.
NS_WARNING("converted background area should not be empty");
// Make our caller not do anything.
aClipState.mDirtyRectGfx.SizeTo(gfxSize(0.0, 0.0));
return;
}
aCtx->Save();
gfxRect dirty = ThebesRect(bgAreaGfx).Intersect(aClipState.mDirtyRectGfx);
aCtx->NewPath();
aCtx->Rectangle(dirty, true);
aCtx->Clip();
if (aClipState.mHasAdditionalBGClipArea) {
gfxRect bgAdditionalAreaGfx = nsLayoutUtils::RectToGfxRect(
aClipState.mAdditionalBGClipArea, aAppUnitsPerPixel);
bgAdditionalAreaGfx.Round();
bgAdditionalAreaGfx.Condition();
aCtx->NewPath();
aCtx->Rectangle(bgAdditionalAreaGfx, true);
aCtx->Clip();
}
RefPtr<Path> roundedRect =
MakePathForRoundedRect(*drawTarget, bgAreaGfx, aClipState.mClippedRadii);
aCtx->SetPath(roundedRect);
aCtx->Fill();
aCtx->Restore();
}
nscolor
nsCSSRendering::DetermineBackgroundColor(nsPresContext* aPresContext,
nsStyleContext* aStyleContext,
nsIFrame* aFrame,
bool& aDrawBackgroundImage,
bool& aDrawBackgroundColor)
{
aDrawBackgroundImage = true;
aDrawBackgroundColor = true;
const nsStyleVisibility* visibility = aStyleContext->StyleVisibility();
if (visibility->mColorAdjust != NS_STYLE_COLOR_ADJUST_EXACT &&
aFrame->HonorPrintBackgroundSettings()) {
aDrawBackgroundImage = aPresContext->GetBackgroundImageDraw();
aDrawBackgroundColor = aPresContext->GetBackgroundColorDraw();
}
const nsStyleBackground *bg = aStyleContext->StyleBackground();
nscolor bgColor;
if (aDrawBackgroundColor) {
bgColor =
aStyleContext->GetVisitedDependentColor(eCSSProperty_background_color);
if (NS_GET_A(bgColor) == 0) {
aDrawBackgroundColor = false;
}
} else {
// If GetBackgroundColorDraw() is false, we are still expected to
// draw color in the background of any frame that's not completely
// transparent, but we are expected to use white instead of whatever
// color was specified.
bgColor = NS_RGB(255, 255, 255);
if (aDrawBackgroundImage || !bg->IsTransparent()) {
aDrawBackgroundColor = true;
} else {
bgColor = NS_RGBA(0,0,0,0);
}
}
// We can skip painting the background color if a background image is opaque.
nsStyleImageLayers::Repeat repeat = bg->BottomLayer().mRepeat;
bool xFullRepeat = repeat.mXRepeat == NS_STYLE_IMAGELAYER_REPEAT_REPEAT ||
repeat.mXRepeat == NS_STYLE_IMAGELAYER_REPEAT_ROUND;
bool yFullRepeat = repeat.mYRepeat == NS_STYLE_IMAGELAYER_REPEAT_REPEAT ||
repeat.mYRepeat == NS_STYLE_IMAGELAYER_REPEAT_ROUND;
if (aDrawBackgroundColor &&
xFullRepeat && yFullRepeat &&
bg->BottomLayer().mImage.IsOpaque() &&
bg->BottomLayer().mBlendMode == NS_STYLE_BLEND_NORMAL) {
aDrawBackgroundColor = false;
}
return bgColor;
}
static gfxFloat
ConvertGradientValueToPixels(const nsStyleCoord& aCoord,
gfxFloat aFillLength,
int32_t aAppUnitsPerPixel)
{
switch (aCoord.GetUnit()) {
case eStyleUnit_Percent:
return aCoord.GetPercentValue() * aFillLength;
case eStyleUnit_Coord:
return NSAppUnitsToFloatPixels(aCoord.GetCoordValue(), aAppUnitsPerPixel);
case eStyleUnit_Calc: {
const nsStyleCoord::Calc *calc = aCoord.GetCalcValue();
return calc->mPercent * aFillLength +
NSAppUnitsToFloatPixels(calc->mLength, aAppUnitsPerPixel);
}
default:
NS_WARNING("Unexpected coord unit");
return 0;
}
}
// Given a box with size aBoxSize and origin (0,0), and an angle aAngle,
// and a starting point for the gradient line aStart, find the endpoint of
// the gradient line --- the intersection of the gradient line with a line
// perpendicular to aAngle that passes through the farthest corner in the
// direction aAngle.
static gfxPoint
ComputeGradientLineEndFromAngle(const gfxPoint& aStart,
double aAngle,
const gfxSize& aBoxSize)
{
double dx = cos(-aAngle);
double dy = sin(-aAngle);
gfxPoint farthestCorner(dx > 0 ? aBoxSize.width : 0,
dy > 0 ? aBoxSize.height : 0);
gfxPoint delta = farthestCorner - aStart;
double u = delta.x*dy - delta.y*dx;
return farthestCorner + gfxPoint(-u*dy, u*dx);
}
// Compute the start and end points of the gradient line for a linear gradient.
static void
ComputeLinearGradientLine(nsPresContext* aPresContext,
nsStyleGradient* aGradient,
const gfxSize& aBoxSize,
gfxPoint* aLineStart,
gfxPoint* aLineEnd)
{
if (aGradient->mBgPosX.GetUnit() == eStyleUnit_None) {
double angle;
if (aGradient->mAngle.IsAngleValue()) {
angle = aGradient->mAngle.GetAngleValueInRadians();
if (!aGradient->mLegacySyntax) {
angle = M_PI_2 - angle;
}
} else {
angle = -M_PI_2; // defaults to vertical gradient starting from top
}
gfxPoint center(aBoxSize.width/2, aBoxSize.height/2);
*aLineEnd = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
*aLineStart = gfxPoint(aBoxSize.width, aBoxSize.height) - *aLineEnd;
} else if (!aGradient->mLegacySyntax) {
float xSign = aGradient->mBgPosX.GetPercentValue() * 2 - 1;
float ySign = 1 - aGradient->mBgPosY.GetPercentValue() * 2;
double angle = atan2(ySign * aBoxSize.width, xSign * aBoxSize.height);
gfxPoint center(aBoxSize.width/2, aBoxSize.height/2);
*aLineEnd = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
*aLineStart = gfxPoint(aBoxSize.width, aBoxSize.height) - *aLineEnd;
} else {
int32_t appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
*aLineStart = gfxPoint(
ConvertGradientValueToPixels(aGradient->mBgPosX, aBoxSize.width,
appUnitsPerPixel),
ConvertGradientValueToPixels(aGradient->mBgPosY, aBoxSize.height,
appUnitsPerPixel));
if (aGradient->mAngle.IsAngleValue()) {
MOZ_ASSERT(aGradient->mLegacySyntax);
double angle = aGradient->mAngle.GetAngleValueInRadians();
*aLineEnd = ComputeGradientLineEndFromAngle(*aLineStart, angle, aBoxSize);
} else {
// No angle, the line end is just the reflection of the start point
// through the center of the box
*aLineEnd = gfxPoint(aBoxSize.width, aBoxSize.height) - *aLineStart;
}
}
}
// Compute the start and end points of the gradient line for a radial gradient.
// Also returns the horizontal and vertical radii defining the circle or
// ellipse to use.
static void
ComputeRadialGradientLine(nsPresContext* aPresContext,
nsStyleGradient* aGradient,
const gfxSize& aBoxSize,
gfxPoint* aLineStart,
gfxPoint* aLineEnd,
double* aRadiusX,
double* aRadiusY)
{
if (aGradient->mBgPosX.GetUnit() == eStyleUnit_None) {
// Default line start point is the center of the box
*aLineStart = gfxPoint(aBoxSize.width/2, aBoxSize.height/2);
} else {
int32_t appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
*aLineStart = gfxPoint(
ConvertGradientValueToPixels(aGradient->mBgPosX, aBoxSize.width,
appUnitsPerPixel),
ConvertGradientValueToPixels(aGradient->mBgPosY, aBoxSize.height,
appUnitsPerPixel));
}
// Compute gradient shape: the x and y radii of an ellipse.
double radiusX, radiusY;
double leftDistance = Abs(aLineStart->x);
double rightDistance = Abs(aBoxSize.width - aLineStart->x);
double topDistance = Abs(aLineStart->y);
double bottomDistance = Abs(aBoxSize.height - aLineStart->y);
switch (aGradient->mSize) {
case NS_STYLE_GRADIENT_SIZE_CLOSEST_SIDE:
radiusX = std::min(leftDistance, rightDistance);
radiusY = std::min(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = std::min(radiusX, radiusY);
}
break;
case NS_STYLE_GRADIENT_SIZE_CLOSEST_CORNER: {
// Compute x and y distances to nearest corner
double offsetX = std::min(leftDistance, rightDistance);
double offsetY = std::min(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = NS_hypot(offsetX, offsetY);
} else {
// maintain aspect ratio
radiusX = offsetX*M_SQRT2;
radiusY = offsetY*M_SQRT2;
}
break;
}
case NS_STYLE_GRADIENT_SIZE_FARTHEST_SIDE:
radiusX = std::max(leftDistance, rightDistance);
radiusY = std::max(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = std::max(radiusX, radiusY);
}
break;
case NS_STYLE_GRADIENT_SIZE_FARTHEST_CORNER: {
// Compute x and y distances to nearest corner
double offsetX = std::max(leftDistance, rightDistance);
double offsetY = std::max(topDistance, bottomDistance);
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_CIRCULAR) {
radiusX = radiusY = NS_hypot(offsetX, offsetY);
} else {
// maintain aspect ratio
radiusX = offsetX*M_SQRT2;
radiusY = offsetY*M_SQRT2;
}
break;
}
case NS_STYLE_GRADIENT_SIZE_EXPLICIT_SIZE: {
int32_t appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel();
radiusX = ConvertGradientValueToPixels(aGradient->mRadiusX,
aBoxSize.width, appUnitsPerPixel);
radiusY = ConvertGradientValueToPixels(aGradient->mRadiusY,
aBoxSize.height, appUnitsPerPixel);
break;
}
default:
radiusX = radiusY = 0;
MOZ_ASSERT(false, "unknown radial gradient sizing method");
}
*aRadiusX = radiusX;
*aRadiusY = radiusY;
double angle;
if (aGradient->mAngle.IsAngleValue()) {
angle = aGradient->mAngle.GetAngleValueInRadians();
} else {
// Default angle is 0deg
angle = 0.0;
}
// The gradient line end point is where the gradient line intersects
// the ellipse.
*aLineEnd = *aLineStart + gfxPoint(radiusX*cos(-angle), radiusY*sin(-angle));
}
static float Interpolate(float aF1, float aF2, float aFrac)
{
return aF1 + aFrac * (aF2 - aF1);
}
// Returns aFrac*aC2 + (1 - aFrac)*C1. The interpolation is done
// in unpremultiplied space, which is what SVG gradients and cairo
// gradients expect.
static Color
InterpolateColor(const Color& aC1, const Color& aC2, float aFrac)
{
double other = 1 - aFrac;
return Color(aC2.r*aFrac + aC1.r*other,
aC2.g*aFrac + aC1.g*other,
aC2.b*aFrac + aC1.b*other,
aC2.a*aFrac + aC1.a*other);
}
static nscoord
FindTileStart(nscoord aDirtyCoord, nscoord aTilePos, nscoord aTileDim)
{
NS_ASSERTION(aTileDim > 0, "Non-positive tile dimension");
double multiples = floor(double(aDirtyCoord - aTilePos)/aTileDim);
return NSToCoordRound(multiples*aTileDim + aTilePos);
}
static gfxFloat
LinearGradientStopPositionForPoint(const gfxPoint& aGradientStart,
const gfxPoint& aGradientEnd,
const gfxPoint& aPoint)
{
gfxPoint d = aGradientEnd - aGradientStart;
gfxPoint p = aPoint - aGradientStart;
/**
* Compute a parameter t such that a line perpendicular to the
* d vector, passing through aGradientStart + d*t, also
* passes through aPoint.
*
* t is given by
* (p.x - d.x*t)*d.x + (p.y - d.y*t)*d.y = 0
*
* Solving for t we get
* numerator = d.x*p.x + d.y*p.y
* denominator = d.x^2 + d.y^2
* t = numerator/denominator
*
* In nsCSSRendering::PaintGradient we know the length of d
* is not zero.
*/
double numerator = d.x * p.x + d.y * p.y;
double denominator = d.x * d.x + d.y * d.y;
return numerator / denominator;
}
static bool
RectIsBeyondLinearGradientEdge(const gfxRect& aRect,
const gfxMatrix& aPatternMatrix,
const nsTArray<ColorStop>& aStops,
const gfxPoint& aGradientStart,
const gfxPoint& aGradientEnd,
Color* aOutEdgeColor)
{
gfxFloat topLeft = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.TopLeft()));
gfxFloat topRight = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.TopRight()));
gfxFloat bottomLeft = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.BottomLeft()));
gfxFloat bottomRight = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd, aPatternMatrix.Transform(aRect.BottomRight()));
const ColorStop& firstStop = aStops[0];
if (topLeft < firstStop.mPosition && topRight < firstStop.mPosition &&
bottomLeft < firstStop.mPosition && bottomRight < firstStop.mPosition) {
*aOutEdgeColor = firstStop.mColor;
return true;
}
const ColorStop& lastStop = aStops.LastElement();
if (topLeft >= lastStop.mPosition && topRight >= lastStop.mPosition &&
bottomLeft >= lastStop.mPosition && bottomRight >= lastStop.mPosition) {
*aOutEdgeColor = lastStop.mColor;
return true;
}
return false;
}
static void ResolveMidpoints(nsTArray<ColorStop>& stops)
{
for (size_t x = 1; x < stops.Length() - 1;) {
if (!stops[x].mIsMidpoint) {
x++;
continue;
}
Color color1 = stops[x-1].mColor;
Color color2 = stops[x+1].mColor;
float offset1 = stops[x-1].mPosition;
float offset2 = stops[x+1].mPosition;
float offset = stops[x].mPosition;
// check if everything coincides. If so, ignore the midpoint.
if (offset - offset1 == offset2 - offset) {
stops.RemoveElementAt(x);
continue;
}
// Check if we coincide with the left colorstop.
if (offset1 == offset) {
// Morph the midpoint to a regular stop with the color of the next
// color stop.
stops[x].mColor = color2;
stops[x].mIsMidpoint = false;
continue;
}
// Check if we coincide with the right colorstop.
if (offset2 == offset) {
// Morph the midpoint to a regular stop with the color of the previous
// color stop.
stops[x].mColor = color1;
stops[x].mIsMidpoint = false;
continue;
}
float midpoint = (offset - offset1) / (offset2 - offset1);
ColorStop newStops[9];
if (midpoint > .5f) {
for (size_t y = 0; y < 7; y++) {
newStops[y].mPosition = offset1 + (offset - offset1) * (7 + y) / 13;
}
newStops[7].mPosition = offset + (offset2 - offset) / 3;
newStops[8].mPosition = offset + (offset2 - offset) * 2 / 3;
} else {
newStops[0].mPosition = offset1 + (offset - offset1) / 3;
newStops[1].mPosition = offset1 + (offset - offset1) * 2 / 3;
for (size_t y = 0; y < 7; y++) {
newStops[y+2].mPosition = offset + (offset2 - offset) * y / 13;
}
}
// calculate colors
for (size_t y = 0; y < 9; y++) {
// Calculate the intermediate color stops per the formula of the CSS images
// spec. http://dev.w3.org/csswg/css-images/#color-stop-syntax
// 9 points were chosen since it is the minimum number of stops that always
// give the smoothest appearace regardless of midpoint position and difference
// in luminance of the end points.
float relativeOffset = (newStops[y].mPosition - offset1) / (offset2 - offset1);
float multiplier = powf(relativeOffset, logf(.5f) / logf(midpoint));
gfx::Float red = color1.r + multiplier * (color2.r - color1.r);
gfx::Float green = color1.g + multiplier * (color2.g - color1.g);
gfx::Float blue = color1.b + multiplier * (color2.b - color1.b);
gfx::Float alpha = color1.a + multiplier * (color2.a - color1.a);
newStops[y].mColor = Color(red, green, blue, alpha);
}
stops.ReplaceElementsAt(x, 1, newStops, 9);
x += 9;
}
}
static Color
Premultiply(const Color& aColor)
{
gfx::Float a = aColor.a;
return Color(aColor.r * a, aColor.g * a, aColor.b * a, a);
}
static Color
Unpremultiply(const Color& aColor)
{
gfx::Float a = aColor.a;
return (a > 0.f)
? Color(aColor.r / a, aColor.g / a, aColor.b / a, a)
: aColor;
}
static Color
TransparentColor(Color aColor) {
aColor.a = 0;
return aColor;
}
// Adjusts and adds color stops in such a way that drawing the gradient with
// unpremultiplied interpolation looks nearly the same as if it were drawn with
// premultiplied interpolation.
static const float kAlphaIncrementPerGradientStep = 0.1f;
static void
ResolvePremultipliedAlpha(nsTArray<ColorStop>& aStops)
{
for (size_t x = 1; x < aStops.Length(); x++) {
const ColorStop leftStop = aStops[x - 1];
const ColorStop rightStop = aStops[x];
// if the left and right stop have the same alpha value, we don't need
// to do anything
if (leftStop.mColor.a == rightStop.mColor.a) {
continue;
}
// Is the stop on the left 100% transparent? If so, have it adopt the color
// of the right stop
if (leftStop.mColor.a == 0) {
aStops[x - 1].mColor = TransparentColor(rightStop.mColor);
continue;
}
// Is the stop on the right completely transparent?
// If so, duplicate it and assign it the color on the left.
if (rightStop.mColor.a == 0) {
ColorStop newStop = rightStop;
newStop.mColor = TransparentColor(leftStop.mColor);
aStops.InsertElementAt(x, newStop);
x++;
continue;
}
// Now handle cases where one or both of the stops are partially transparent.
if (leftStop.mColor.a != 1.0f || rightStop.mColor.a != 1.0f) {
Color premulLeftColor = Premultiply(leftStop.mColor);
Color premulRightColor = Premultiply(rightStop.mColor);
// Calculate how many extra steps. We do a step per 10% transparency.
size_t stepCount = NSToIntFloor(fabsf(leftStop.mColor.a - rightStop.mColor.a) / kAlphaIncrementPerGradientStep);
for (size_t y = 1; y < stepCount; y++) {
float frac = static_cast<float>(y) / stepCount;
ColorStop newStop(Interpolate(leftStop.mPosition, rightStop.mPosition, frac), false,
Unpremultiply(InterpolateColor(premulLeftColor, premulRightColor, frac)));
aStops.InsertElementAt(x, newStop);
x++;
}
}
}
}
static ColorStop
InterpolateColorStop(const ColorStop& aFirst, const ColorStop& aSecond,
double aPosition, const Color& aDefault)
{
MOZ_ASSERT(aFirst.mPosition <= aPosition);
MOZ_ASSERT(aPosition <= aSecond.mPosition);
double delta = aSecond.mPosition - aFirst.mPosition;
if (delta < 1e-6) {
return ColorStop(aPosition, false, aDefault);
}
return ColorStop(aPosition, false,
Unpremultiply(InterpolateColor(Premultiply(aFirst.mColor),
Premultiply(aSecond.mColor),
(aPosition - aFirst.mPosition) / delta)));
}
// Clamp and extend the given ColorStop array in-place to fit exactly into the
// range [0, 1].
static void
ClampColorStops(nsTArray<ColorStop>& aStops)
{
MOZ_ASSERT(aStops.Length() > 0);
// If all stops are outside the range, then get rid of everything and replace
// with a single colour.
if (aStops.Length() < 2 || aStops[0].mPosition > 1 ||
aStops.LastElement().mPosition < 0) {
Color c = aStops[0].mPosition > 1 ? aStops[0].mColor : aStops.LastElement().mColor;
aStops.Clear();
aStops.AppendElement(ColorStop(0, false, c));
return;
}
// Create the 0 and 1 points if they fall in the range of |aStops|, and discard
// all stops outside the range [0, 1].
// XXX: If we have stops positioned at 0 or 1, we only keep the innermost of
// those stops. This should be fine for the current user(s) of this function.
for (size_t i = aStops.Length() - 1; i > 0; i--) {
if (aStops[i - 1].mPosition < 1 && aStops[i].mPosition >= 1) {
// Add a point to position 1.
aStops[i] = InterpolateColorStop(aStops[i - 1], aStops[i],
/* aPosition = */ 1,
aStops[i - 1].mColor);
// Remove all the elements whose position is greater than 1.
aStops.RemoveElementsAt(i + 1, aStops.Length() - (i + 1));
}
if (aStops[i - 1].mPosition <= 0 && aStops[i].mPosition > 0) {
// Add a point to position 0.
aStops[i - 1] = InterpolateColorStop(aStops[i - 1], aStops[i],
/* aPosition = */ 0,
aStops[i].mColor);
// Remove all of the preceding stops -- they are all negative.
aStops.RemoveElementsAt(0, i - 1);
break;
}
}
MOZ_ASSERT(aStops[0].mPosition >= -1e6);
MOZ_ASSERT(aStops.LastElement().mPosition - 1 <= 1e6);
// The end points won't exist yet if they don't fall in the original range of
// |aStops|. Create them if needed.
if (aStops[0].mPosition > 0) {
aStops.InsertElementAt(0, ColorStop(0, false, aStops[0].mColor));
}
if (aStops.LastElement().mPosition < 1) {
aStops.AppendElement(ColorStop(1, false, aStops.LastElement().mColor));
}
}
void
nsCSSRendering::PaintGradient(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsStyleGradient* aGradient,
const nsRect& aDirtyRect,
const nsRect& aDest,
const nsRect& aFillArea,
const nsSize& aRepeatSize,
const CSSIntRect& aSrc,
const nsSize& aIntrinsicSize)
{
PROFILER_LABEL("nsCSSRendering", "PaintGradient",
js::ProfileEntry::Category::GRAPHICS);
Telemetry::AutoTimer<Telemetry::GRADIENT_DURATION, Telemetry::Microsecond> gradientTimer;
if (aDest.IsEmpty() || aFillArea.IsEmpty()) {
return;
}
gfxContext *ctx = aRenderingContext.ThebesContext();
nscoord appUnitsPerDevPixel = aPresContext->AppUnitsPerDevPixel();
gfxSize srcSize = gfxSize(gfxFloat(aIntrinsicSize.width)/appUnitsPerDevPixel,
gfxFloat(aIntrinsicSize.height)/appUnitsPerDevPixel);
bool cellContainsFill = aDest.Contains(aFillArea);
// Compute "gradient line" start and end relative to the intrinsic size of
// the gradient.
gfxPoint lineStart, lineEnd;
double radiusX = 0, radiusY = 0; // for radial gradients only
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_LINEAR) {
ComputeLinearGradientLine(aPresContext, aGradient, srcSize,
&lineStart, &lineEnd);
} else {
ComputeRadialGradientLine(aPresContext, aGradient, srcSize,
&lineStart, &lineEnd, &radiusX, &radiusY);
}
// Avoid sending Infs or Nans to downwind draw targets.
if (!lineStart.IsFinite() || !lineEnd.IsFinite()) {
lineStart = lineEnd = gfxPoint(0, 0);
}
gfxFloat lineLength = NS_hypot(lineEnd.x - lineStart.x,
lineEnd.y - lineStart.y);
MOZ_ASSERT(aGradient->mStops.Length() >= 2,
"The parser should reject gradients with less than two stops");
// Build color stop array and compute stop positions
nsTArray<ColorStop> stops;
// If there is a run of stops before stop i that did not have specified
// positions, then this is the index of the first stop in that run, otherwise
// it's -1.
int32_t firstUnsetPosition = -1;
for (uint32_t i = 0; i < aGradient->mStops.Length(); ++i) {
const nsStyleGradientStop& stop = aGradient->mStops[i];
double position;
switch (stop.mLocation.GetUnit()) {
case eStyleUnit_None:
if (i == 0) {
// First stop defaults to position 0.0
position = 0.0;
} else if (i == aGradient->mStops.Length() - 1) {
// Last stop defaults to position 1.0
position = 1.0;
} else {
// Other stops with no specified position get their position assigned
// later by interpolation, see below.
// Remeber where the run of stops with no specified position starts,
// if it starts here.
if (firstUnsetPosition < 0) {
firstUnsetPosition = i;
}
stops.AppendElement(ColorStop(0, stop.mIsInterpolationHint,
Color::FromABGR(stop.mColor)));
continue;
}
break;
case eStyleUnit_Percent:
position = stop.mLocation.GetPercentValue();
break;
case eStyleUnit_Coord:
position = lineLength < 1e-6 ? 0.0 :
stop.mLocation.GetCoordValue() / appUnitsPerDevPixel / lineLength;
break;
case eStyleUnit_Calc:
nsStyleCoord::Calc *calc;
calc = stop.mLocation.GetCalcValue();
position = calc->mPercent +
((lineLength < 1e-6) ? 0.0 :
(NSAppUnitsToFloatPixels(calc->mLength, appUnitsPerDevPixel) / lineLength));
break;
default:
MOZ_ASSERT(false, "Unknown stop position type");
}
if (i > 0) {
// Prevent decreasing stop positions by advancing this position
// to the previous stop position, if necessary
position = std::max(position, stops[i - 1].mPosition);
}
stops.AppendElement(ColorStop(position, stop.mIsInterpolationHint,
Color::FromABGR(stop.mColor)));
if (firstUnsetPosition > 0) {
// Interpolate positions for all stops that didn't have a specified position
double p = stops[firstUnsetPosition - 1].mPosition;
double d = (stops[i].mPosition - p)/(i - firstUnsetPosition + 1);
for (uint32_t j = firstUnsetPosition; j < i; ++j) {
p += d;
stops[j].mPosition = p;
}
firstUnsetPosition = -1;
}
}
// If a non-repeating linear gradient is axis-aligned and there are no gaps
// between tiles, we can optimise away most of the work by converting to a
// repeating linear gradient and filling the whole destination rect at once.
bool forceRepeatToCoverTiles =
aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_LINEAR &&
(lineStart.x == lineEnd.x) != (lineStart.y == lineEnd.y) &&
aRepeatSize.width == aDest.width && aRepeatSize.height == aDest.height &&
!aGradient->mRepeating && !aSrc.IsEmpty() && !cellContainsFill;
gfxMatrix matrix;
if (forceRepeatToCoverTiles) {
// Length of the source rectangle along the gradient axis.
double rectLen;
// The position of the start of the rectangle along the gradient.
double offset;
// The gradient line is "backwards". Flip the line upside down to make
// things easier, and then rotate the matrix to turn everything back the
// right way up.
if (lineStart.x > lineEnd.x || lineStart.y > lineEnd.y) {
std::swap(lineStart, lineEnd);
matrix.Scale(-1, -1);
}
// Fit the gradient line exactly into the source rect.
// aSrc is relative to aIntrinsincSize.
// srcRectDev will be relative to srcSize, so in the same coordinate space
// as lineStart / lineEnd.
gfxRect srcRectDev = nsLayoutUtils::RectToGfxRect(
CSSPixel::ToAppUnits(aSrc), appUnitsPerDevPixel);
if (lineStart.x != lineEnd.x) {
rectLen = srcRectDev.width;
offset = (srcRectDev.x - lineStart.x) / lineLength;
lineStart.x = srcRectDev.x;
lineEnd.x = srcRectDev.XMost();
} else {
rectLen = srcRectDev.height;
offset = (srcRectDev.y - lineStart.y) / lineLength;
lineStart.y = srcRectDev.y;
lineEnd.y = srcRectDev.YMost();
}
// Adjust gradient stop positions for the new gradient line.
double scale = lineLength / rectLen;
for (size_t i = 0; i < stops.Length(); i++) {
stops[i].mPosition = (stops[i].mPosition - offset) * fabs(scale);
}
// Clamp or extrapolate gradient stops to exactly [0, 1].
ClampColorStops(stops);
lineLength = rectLen;
}
// Eliminate negative-position stops if the gradient is radial.
double firstStop = stops[0].mPosition;
if (aGradient->mShape != NS_STYLE_GRADIENT_SHAPE_LINEAR && firstStop < 0.0) {
if (aGradient->mRepeating) {
// Choose an instance of the repeated pattern that gives us all positive
// stop-offsets.
double lastStop = stops[stops.Length() - 1].mPosition;
double stopDelta = lastStop - firstStop;
// If all the stops are in approximately the same place then logic below
// will kick in that makes us draw just the last stop color, so don't
// try to do anything in that case. We certainly need to avoid
// dividing by zero.
if (stopDelta >= 1e-6) {
double instanceCount = ceil(-firstStop/stopDelta);
// Advance stops by instanceCount multiples of the period of the
// repeating gradient.
double offset = instanceCount*stopDelta;
for (uint32_t i = 0; i < stops.Length(); i++) {
stops[i].mPosition += offset;
}
}
} else {
// Move negative-position stops to position 0.0. We may also need
// to set the color of the stop to the color the gradient should have
// at the center of the ellipse.
for (uint32_t i = 0; i < stops.Length(); i++) {
double pos = stops[i].mPosition;
if (pos < 0.0) {
stops[i].mPosition = 0.0;
// If this is the last stop, we don't need to adjust the color,
// it will fill the entire area.
if (i < stops.Length() - 1) {
double nextPos = stops[i + 1].mPosition;
// If nextPos is approximately equal to pos, then we don't
// need to adjust the color of this stop because it's
// not going to be displayed.
// If nextPos is negative, we don't need to adjust the color of
// this stop since it's not going to be displayed because
// nextPos will also be moved to 0.0.
if (nextPos >= 0.0 && nextPos - pos >= 1e-6) {
// Compute how far the new position 0.0 is along the interval
// between pos and nextPos.
// XXX Color interpolation (in cairo, too) should use the
// CSS 'color-interpolation' property!
float frac = float((0.0 - pos)/(nextPos - pos));
stops[i].mColor =
InterpolateColor(stops[i].mColor, stops[i + 1].mColor, frac);
}
}
}
}
}
firstStop = stops[0].mPosition;
MOZ_ASSERT(firstStop >= 0.0, "Failed to fix stop offsets");
}
if (aGradient->mShape != NS_STYLE_GRADIENT_SHAPE_LINEAR && !aGradient->mRepeating) {
// Direct2D can only handle a particular class of radial gradients because
// of the way the it specifies gradients. Setting firstStop to 0, when we
// can, will help us stay on the fast path. Currently we don't do this
// for repeating gradients but we could by adjusting the stop collection
// to start at 0
firstStop = 0;
}
double lastStop = stops[stops.Length() - 1].mPosition;
// Cairo gradients must have stop positions in the range [0, 1]. So,
// stop positions will be normalized below by subtracting firstStop and then
// multiplying by stopScale.
double stopScale;
double stopOrigin = firstStop;
double stopEnd = lastStop;
double stopDelta = lastStop - firstStop;
bool zeroRadius = aGradient->mShape != NS_STYLE_GRADIENT_SHAPE_LINEAR &&
(radiusX < 1e-6 || radiusY < 1e-6);
if (stopDelta < 1e-6 || lineLength < 1e-6 || zeroRadius) {
// Stops are all at the same place. Map all stops to 0.0.
// For repeating radial gradients, or for any radial gradients with
// a zero radius, we need to fill with the last stop color, so just set
// both radii to 0.
if (aGradient->mRepeating || zeroRadius) {
radiusX = radiusY = 0.0;
}
stopDelta = 0.0;
lastStop = firstStop;
}
// Don't normalize non-repeating or degenerate gradients below 0..1
// This keeps the gradient line as large as the box and doesn't
// lets us avoiding having to get padding correct for stops
// at 0 and 1
if (!aGradient->mRepeating || stopDelta == 0.0) {
stopOrigin = std::min(stopOrigin, 0.0);
stopEnd = std::max(stopEnd, 1.0);
}
stopScale = 1.0/(stopEnd - stopOrigin);
// Create the gradient pattern.
RefPtr<gfxPattern> gradientPattern;
gfxPoint gradientStart;
gfxPoint gradientEnd;
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_LINEAR) {
// Compute the actual gradient line ends we need to pass to cairo after
// stops have been normalized.
gradientStart = lineStart + (lineEnd - lineStart)*stopOrigin;
gradientEnd = lineStart + (lineEnd - lineStart)*stopEnd;
gfxPoint gradientStopStart = lineStart + (lineEnd - lineStart)*firstStop;
gfxPoint gradientStopEnd = lineStart + (lineEnd - lineStart)*lastStop;
if (stopDelta == 0.0) {
// Stops are all at the same place. For repeating gradients, this will
// just paint the last stop color. We don't need to do anything.
// For non-repeating gradients, this should render as two colors, one
// on each "side" of the gradient line segment, which is a point. All
// our stops will be at 0.0; we just need to set the direction vector
// correctly.
gradientEnd = gradientStart + (lineEnd - lineStart);
gradientStopEnd = gradientStopStart + (lineEnd - lineStart);
}
gradientPattern = new gfxPattern(gradientStart.x, gradientStart.y,
gradientEnd.x, gradientEnd.y);
} else {
NS_ASSERTION(firstStop >= 0.0,
"Negative stops not allowed for radial gradients");
// To form an ellipse, we'll stretch a circle vertically, if necessary.
// So our radii are based on radiusX.
double innerRadius = radiusX*stopOrigin;
double outerRadius = radiusX*stopEnd;
if (stopDelta == 0.0) {
// Stops are all at the same place. See above (except we now have
// the inside vs. outside of an ellipse).
outerRadius = innerRadius + 1;
}
gradientPattern = new gfxPattern(lineStart.x, lineStart.y, innerRadius,
lineStart.x, lineStart.y, outerRadius);
if (radiusX != radiusY) {
// Stretch the circles into ellipses vertically by setting a transform
// in the pattern.
// Recall that this is the transform from user space to pattern space.
// So to stretch the ellipse by factor of P vertically, we scale
// user coordinates by 1/P.
matrix.Translate(lineStart);
matrix.Scale(1.0, radiusX/radiusY);
matrix.Translate(-lineStart);
}
}
// Use a pattern transform to take account of source and dest rects
matrix.Translate(gfxPoint(aPresContext->CSSPixelsToDevPixels(aSrc.x),
aPresContext->CSSPixelsToDevPixels(aSrc.y)));
matrix.Scale(gfxFloat(aPresContext->CSSPixelsToAppUnits(aSrc.width))/aDest.width,
gfxFloat(aPresContext->CSSPixelsToAppUnits(aSrc.height))/aDest.height);
gradientPattern->SetMatrix(matrix);
if (gradientPattern->CairoStatus())
return;
if (stopDelta == 0.0) {
// Non-repeating gradient with all stops in same place -> just add
// first stop and last stop, both at position 0.
// Repeating gradient with all stops in the same place, or radial
// gradient with radius of 0 -> just paint the last stop color.
// We use firstStop offset to keep |stops| with same units (will later normalize to 0).
Color firstColor(stops[0].mColor);
Color lastColor(stops.LastElement().mColor);
stops.Clear();
if (!aGradient->mRepeating && !zeroRadius) {
stops.AppendElement(ColorStop(firstStop, false, firstColor));
}
stops.AppendElement(ColorStop(firstStop, false, lastColor));
}
ResolveMidpoints(stops);
ResolvePremultipliedAlpha(stops);
bool isRepeat = aGradient->mRepeating || forceRepeatToCoverTiles;
// Now set normalized color stops in pattern.
// Offscreen gradient surface cache (not a tile):
// On some backends (e.g. D2D), the GradientStops object holds an offscreen surface
// which is a lookup table used to evaluate the gradient. This surface can use
// much memory (ram and/or GPU ram) and can be expensive to create. So we cache it.
// The cache key correlates 1:1 with the arguments for CreateGradientStops (also the implied backend type)
// Note that GradientStop is a simple struct with a stop value (while GradientStops has the surface).
nsTArray<gfx::GradientStop> rawStops(stops.Length());
rawStops.SetLength(stops.Length());
for(uint32_t i = 0; i < stops.Length(); i++) {
rawStops[i].color = stops[i].mColor;
rawStops[i].offset = stopScale * (stops[i].mPosition - stopOrigin);
}
RefPtr<mozilla::gfx::GradientStops> gs =
gfxGradientCache::GetOrCreateGradientStops(ctx->GetDrawTarget(),
rawStops,
isRepeat ? gfx::ExtendMode::REPEAT : gfx::ExtendMode::CLAMP);
gradientPattern->SetColorStops(gs);
// Paint gradient tiles. This isn't terribly efficient, but doing it this
// way is simple and sure to get pixel-snapping right. We could speed things
// up by drawing tiles into temporary surfaces and copying those to the
// destination, but after pixel-snapping tiles may not all be the same size.
nsRect dirty;
if (!dirty.IntersectRect(aDirtyRect, aFillArea))
return;
gfxRect areaToFill =
nsLayoutUtils::RectToGfxRect(aFillArea, appUnitsPerDevPixel);
gfxRect dirtyAreaToFill = nsLayoutUtils::RectToGfxRect(dirty, appUnitsPerDevPixel);
dirtyAreaToFill.RoundOut();
gfxMatrix ctm = ctx->CurrentMatrix();
bool isCTMPreservingAxisAlignedRectangles = ctm.PreservesAxisAlignedRectangles();
// xStart/yStart are the top-left corner of the top-left tile.
nscoord xStart = FindTileStart(dirty.x, aDest.x, aRepeatSize.width);
nscoord yStart = FindTileStart(dirty.y, aDest.y, aRepeatSize.height);
nscoord xEnd = forceRepeatToCoverTiles ? xStart + aDest.width : dirty.XMost();
nscoord yEnd = forceRepeatToCoverTiles ? yStart + aDest.height : dirty.YMost();
// x and y are the top-left corner of the tile to draw
for (nscoord y = yStart; y < yEnd; y += aRepeatSize.height) {
for (nscoord x = xStart; x < xEnd; x += aRepeatSize.width) {
// The coordinates of the tile
gfxRect tileRect = nsLayoutUtils::RectToGfxRect(
nsRect(x, y, aDest.width, aDest.height),
appUnitsPerDevPixel);
// The actual area to fill with this tile is the intersection of this
// tile with the overall area we're supposed to be filling
gfxRect fillRect =
forceRepeatToCoverTiles ? areaToFill : tileRect.Intersect(areaToFill);
// Try snapping the fill rect. Snap its top-left and bottom-right
// independently to preserve the orientation.
gfxPoint snappedFillRectTopLeft = fillRect.TopLeft();
gfxPoint snappedFillRectTopRight = fillRect.TopRight();
gfxPoint snappedFillRectBottomRight = fillRect.BottomRight();
// Snap three points instead of just two to ensure we choose the
// correct orientation if there's a reflection.
if (isCTMPreservingAxisAlignedRectangles &&
ctx->UserToDevicePixelSnapped(snappedFillRectTopLeft, true) &&
ctx->UserToDevicePixelSnapped(snappedFillRectBottomRight, true) &&
ctx->UserToDevicePixelSnapped(snappedFillRectTopRight, true)) {
if (snappedFillRectTopLeft.x == snappedFillRectBottomRight.x ||
snappedFillRectTopLeft.y == snappedFillRectBottomRight.y) {
// Nothing to draw; avoid scaling by zero and other weirdness that
// could put the context in an error state.
continue;
}
// Set the context's transform to the transform that maps fillRect to
// snappedFillRect. The part of the gradient that was going to
// exactly fill fillRect will fill snappedFillRect instead.
gfxMatrix transform = gfxUtils::TransformRectToRect(fillRect,
snappedFillRectTopLeft, snappedFillRectTopRight,
snappedFillRectBottomRight);
ctx->SetMatrix(transform);
}
ctx->NewPath();
ctx->Rectangle(fillRect);
gfxRect dirtyFillRect = fillRect.Intersect(dirtyAreaToFill);
gfxRect fillRectRelativeToTile = dirtyFillRect - tileRect.TopLeft();
Color edgeColor;
if (aGradient->mShape == NS_STYLE_GRADIENT_SHAPE_LINEAR && !isRepeat &&
RectIsBeyondLinearGradientEdge(fillRectRelativeToTile, matrix, stops,
gradientStart, gradientEnd, &edgeColor)) {
ctx->SetColor(edgeColor);
} else {
ctx->SetMatrix(
ctx->CurrentMatrix().Copy().Translate(tileRect.TopLeft()));
ctx->SetPattern(gradientPattern);
}
ctx->Fill();
ctx->SetMatrix(ctm);
}
}
}
static CompositionOp
DetermineCompositionOp(const nsCSSRendering::PaintBGParams& aParams,
const nsStyleImageLayers& aLayers,
uint32_t aLayerIndex)
{
if (aParams.layer >= 0) {
// When drawing a single layer, use the specified composition op.
return aParams.compositionOp;
}
const nsStyleImageLayers::Layer& layer = aLayers.mLayers[aLayerIndex];
// When drawing all layers, get the compositon op from each image layer.
if (aParams.paintFlags & nsCSSRendering::PAINTBG_MASK_IMAGE) {
// Always using OP_OVER mode while drawing the bottom mask layer.
if (aLayerIndex == (aLayers.mImageCount - 1)) {
return CompositionOp::OP_OVER;
}
return nsCSSRendering::GetGFXCompositeMode(layer.mComposite);
}
return nsCSSRendering::GetGFXBlendMode(layer.mBlendMode);
}
DrawResult
nsCSSRendering::PaintBackgroundWithSC(const PaintBGParams& aParams,
nsStyleContext *aBackgroundSC,
const nsStyleBorder& aBorder)
{
NS_PRECONDITION(aParams.frame,
"Frame is expected to be provided to PaintBackground");
// If we're drawing all layers, aCompositonOp is ignored, so make sure that
// it was left at its default value.
MOZ_ASSERT_IF(aParams.layer == -1,
aParams.compositionOp == CompositionOp::OP_OVER);
DrawResult result = DrawResult::SUCCESS;
// Check to see if we have an appearance defined. If so, we let the theme
// renderer draw the background and bail out.
// XXXzw this ignores aParams.bgClipRect.
const nsStyleDisplay* displayData = aParams.frame->StyleDisplay();
if (displayData->mAppearance) {
nsITheme *theme = aParams.presCtx.GetTheme();
if (theme && theme->ThemeSupportsWidget(&aParams.presCtx,
aParams.frame,
displayData->mAppearance)) {
nsRect drawing(aParams.borderArea);
theme->GetWidgetOverflow(aParams.presCtx.DeviceContext(),
aParams.frame, displayData->mAppearance,
&drawing);
drawing.IntersectRect(drawing, aParams.dirtyRect);
theme->DrawWidgetBackground(&aParams.renderingCtx, aParams.frame,
displayData->mAppearance, aParams.borderArea,
drawing);
return DrawResult::SUCCESS;
}
}
// For canvas frames (in the CSS sense) we draw the background color using
// a solid color item that gets added in nsLayoutUtils::PaintFrame,
// or nsSubDocumentFrame::BuildDisplayList (bug 488242). (The solid
// color may be moved into nsDisplayCanvasBackground by
// nsPresShell::AddCanvasBackgroundColorItem, and painted by
// nsDisplayCanvasBackground directly.) Either way we don't need to
// paint the background color here.
bool isCanvasFrame = IsCanvasFrame(aParams.frame);
// Determine whether we are drawing background images and/or
// background colors.
bool drawBackgroundImage;
bool drawBackgroundColor;
nscolor bgColor = DetermineBackgroundColor(&aParams.presCtx,
aBackgroundSC,
aParams.frame,
drawBackgroundImage,
drawBackgroundColor);
bool paintMask = (aParams.paintFlags & PAINTBG_MASK_IMAGE);
const nsStyleImageLayers& layers = paintMask ?
aBackgroundSC->StyleSVGReset()->mMask :
aBackgroundSC->StyleBackground()->mImage;
// If we're drawing a specific layer, we don't want to draw the
// background color.
if ((drawBackgroundColor && aParams.layer >= 0) || paintMask) {
drawBackgroundColor = false;
}
// At this point, drawBackgroundImage and drawBackgroundColor are
// true if and only if we are actually supposed to paint an image or
// color into aDirtyRect, respectively.
if (!drawBackgroundImage && !drawBackgroundColor)
return DrawResult::SUCCESS;
// Compute the outermost boundary of the area that might be painted.
// Same coordinate space as aParams.borderArea & aParams.bgClipRect.
Sides skipSides = aParams.frame->GetSkipSides();
nsRect paintBorderArea =
::BoxDecorationRectForBackground(aParams.frame, aParams.borderArea,
skipSides, &aBorder);
nsRect clipBorderArea =
::BoxDecorationRectForBorder(aParams.frame, aParams.borderArea,
skipSides, &aBorder);
// The 'bgClipArea' (used only by the image tiling logic, far below)
// is the caller-provided aParams.bgClipRect if any, or else the area
// determined by the value of 'background-clip' in
// SetupCurrentBackgroundClip. (Arguably it should be the
// intersection, but that breaks the table painter -- in particular,
// taking the intersection breaks reftests/bugs/403249-1[ab].)
gfxContext* ctx = aParams.renderingCtx.ThebesContext();
nscoord appUnitsPerPixel = aParams.presCtx.AppUnitsPerDevPixel();
ImageLayerClipState clipState;
if (aParams.bgClipRect) {
clipState.mBGClipArea = *aParams.bgClipRect;
clipState.mCustomClip = true;
clipState.mHasRoundedCorners = false;
SetupDirtyRects(clipState.mBGClipArea, aParams.dirtyRect, appUnitsPerPixel,
&clipState.mDirtyRect, &clipState.mDirtyRectGfx);
} else {
GetImageLayerClip(layers.BottomLayer(),
aParams.frame, aBorder, aParams.borderArea,
aParams.dirtyRect,
(aParams.paintFlags & PAINTBG_WILL_PAINT_BORDER),
appUnitsPerPixel,
&clipState);
}
// If we might be using a background color, go ahead and set it now.
if (drawBackgroundColor && !isCanvasFrame)
ctx->SetColor(Color::FromABGR(bgColor));
// NOTE: no Save() yet, we do that later by calling autoSR.EnsureSaved(ctx)
// in the cases we need it.
gfxContextAutoSaveRestore autoSR;
// If there is no background image, draw a color. (If there is
// neither a background image nor a color, we wouldn't have gotten
// this far.)
if (!drawBackgroundImage) {
if (!isCanvasFrame) {
DrawBackgroundColor(clipState, ctx, appUnitsPerPixel);
}
return DrawResult::SUCCESS;
}
if (layers.mImageCount < 1) {
// Return if there are no background layers, all work from this point
// onwards happens iteratively on these.
return DrawResult::SUCCESS;
}
// Validate the layer range before we start iterating.
int32_t startLayer = aParams.layer;
int32_t nLayers = 1;
if (startLayer < 0) {
startLayer = (int32_t)layers.mImageCount - 1;
nLayers = layers.mImageCount;
}
// Ensure we get invalidated for loads of the image. We need to do
// this here because this might be the only code that knows about the
// association of the style data with the frame.
if (aBackgroundSC != aParams.frame->StyleContext()) {
NS_FOR_VISIBLE_IMAGE_LAYERS_BACK_TO_FRONT_WITH_RANGE(i, layers, startLayer, nLayers) {
aParams.frame->AssociateImage(layers.mLayers[i].mImage,
&aParams.presCtx);
}
}
// The background color is rendered over the entire dirty area,
// even if the image isn't.
if (drawBackgroundColor && !isCanvasFrame) {
DrawBackgroundColor(clipState, ctx, appUnitsPerPixel);
}
if (drawBackgroundImage) {
bool clipSet = false;
uint8_t currentBackgroundClip = NS_STYLE_IMAGELAYER_CLIP_BORDER;
NS_FOR_VISIBLE_IMAGE_LAYERS_BACK_TO_FRONT_WITH_RANGE(i, layers, layers.mImageCount - 1,
nLayers + (layers.mImageCount -
startLayer - 1)) {
const nsStyleImageLayers::Layer& layer = layers.mLayers[i];
if (!aParams.bgClipRect) {
if (currentBackgroundClip != layer.mClip || !clipSet) {
currentBackgroundClip = layer.mClip;
// If clipSet is false that means this is the bottom layer and we
// already called GetImageLayerClip above and it stored its results
// in clipState.
if (clipSet) {
autoSR.Restore(); // reset the previous one
GetImageLayerClip(layer, aParams.frame,
aBorder, aParams.borderArea, aParams.dirtyRect,
(aParams.paintFlags & PAINTBG_WILL_PAINT_BORDER),
appUnitsPerPixel, &clipState);
}
SetupImageLayerClip(clipState, ctx, appUnitsPerPixel, &autoSR);
clipSet = true;
if (!clipBorderArea.IsEqualEdges(aParams.borderArea)) {
// We're drawing the background for the joined continuation boxes
// so we need to clip that to the slice that we want for this
// frame.
gfxRect clip =
nsLayoutUtils::RectToGfxRect(aParams.borderArea, appUnitsPerPixel);
autoSR.EnsureSaved(ctx);
ctx->NewPath();
ctx->SnappedRectangle(clip);
ctx->Clip();
}
}
}
if ((aParams.layer < 0 || i == (uint32_t)startLayer) &&
!clipState.mDirtyRectGfx.IsEmpty()) {
CompositionOp co = DetermineCompositionOp(aParams, layers, i);
nsBackgroundLayerState state =
PrepareImageLayer(&aParams.presCtx, aParams.frame,
aParams.paintFlags, paintBorderArea, clipState.mBGClipArea,
layer, nullptr);
result &= state.mImageRenderer.PrepareResult();
if (!state.mFillArea.IsEmpty()) {
if (co != CompositionOp::OP_OVER) {
NS_ASSERTION(ctx->CurrentOp() == CompositionOp::OP_OVER,
"It is assumed the initial op is OP_OVER, when it is "
"restored later");
ctx->SetOp(co);
}
result &=
state.mImageRenderer.DrawBackground(&aParams.presCtx,
aParams.renderingCtx,
state.mDestArea, state.mFillArea,
state.mAnchor + paintBorderArea.TopLeft(),
clipState.mDirtyRect,
state.mRepeatSize);
if (co != CompositionOp::OP_OVER) {
ctx->SetOp(CompositionOp::OP_OVER);
}
}
}
}
}
return result;
}
nsRect
nsCSSRendering::ComputeImageLayerPositioningArea(nsPresContext* aPresContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsStyleImageLayers::Layer& aLayer,
nsIFrame** aAttachedToFrame,
bool* aOutIsTransformedFixed)
{
// Compute background origin area relative to aBorderArea now as we may need
// it to compute the effective image size for a CSS gradient.
nsRect bgPositioningArea;
nsIAtom* frameType = aForFrame->GetType();
nsIFrame* geometryFrame = aForFrame;
if (MOZ_UNLIKELY(frameType == nsGkAtoms::scrollFrame &&
NS_STYLE_IMAGELAYER_ATTACHMENT_LOCAL == aLayer.mAttachment)) {
nsIScrollableFrame* scrollableFrame = do_QueryFrame(aForFrame);
bgPositioningArea = nsRect(
scrollableFrame->GetScrolledFrame()->GetPosition()
// For the dir=rtl case:
+ scrollableFrame->GetScrollRange().TopLeft(),
scrollableFrame->GetScrolledRect().Size());
// The ScrolledRects size does not include the borders or scrollbars,
// reverse the handling of background-origin
// compared to the common case below.
if (aLayer.mOrigin == NS_STYLE_IMAGELAYER_ORIGIN_BORDER) {
nsMargin border = geometryFrame->GetUsedBorder();
border.ApplySkipSides(geometryFrame->GetSkipSides());
bgPositioningArea.Inflate(border);
bgPositioningArea.Inflate(scrollableFrame->GetActualScrollbarSizes());
} else if (aLayer.mOrigin != NS_STYLE_IMAGELAYER_ORIGIN_PADDING) {
nsMargin padding = geometryFrame->GetUsedPadding();
padding.ApplySkipSides(geometryFrame->GetSkipSides());
bgPositioningArea.Deflate(padding);
NS_ASSERTION(aLayer.mOrigin == NS_STYLE_IMAGELAYER_ORIGIN_CONTENT,
"unknown background-origin value");
}
*aAttachedToFrame = aForFrame;
return bgPositioningArea;
}
if (MOZ_UNLIKELY(frameType == nsGkAtoms::canvasFrame)) {
geometryFrame = aForFrame->PrincipalChildList().FirstChild();
// geometryFrame might be null if this canvas is a page created
// as an overflow container (e.g. the in-flow content has already
// finished and this page only displays the continuations of
// absolutely positioned content).
if (geometryFrame) {
bgPositioningArea = geometryFrame->GetRect();
}
} else {
bgPositioningArea = nsRect(nsPoint(0,0), aBorderArea.Size());
}
// Background images are tiled over the 'background-clip' area
// but the origin of the tiling is based on the 'background-origin' area
// XXX: Bug 1303623 will bring in new origin value, we should iterate from
// NS_STYLE_IMAGELAYER_ORIGIN_MARGIN instead of
// NS_STYLE_IMAGELAYER_ORIGIN_BORDER.
if (aLayer.mOrigin != NS_STYLE_IMAGELAYER_ORIGIN_BORDER && geometryFrame) {
nsMargin border = geometryFrame->GetUsedBorder();
if (aLayer.mOrigin != NS_STYLE_IMAGELAYER_ORIGIN_PADDING) {
border += geometryFrame->GetUsedPadding();
NS_ASSERTION(aLayer.mOrigin == NS_STYLE_IMAGELAYER_ORIGIN_CONTENT,
"unknown background-origin value");
}
bgPositioningArea.Deflate(border);
}
nsIFrame* attachedToFrame = aForFrame;
if (NS_STYLE_IMAGELAYER_ATTACHMENT_FIXED == aLayer.mAttachment) {
// If it's a fixed background attachment, then the image is placed
// relative to the viewport, which is the area of the root frame
// in a screen context or the page content frame in a print context.
attachedToFrame = aPresContext->PresShell()->FrameManager()->GetRootFrame();
NS_ASSERTION(attachedToFrame, "no root frame");
nsIFrame* pageContentFrame = nullptr;
if (aPresContext->IsPaginated()) {
pageContentFrame =
nsLayoutUtils::GetClosestFrameOfType(aForFrame, nsGkAtoms::pageContentFrame);
if (pageContentFrame) {
attachedToFrame = pageContentFrame;
}
// else this is an embedded shell and its root frame is what we want
}
// If the background is affected by a transform, treat is as if it
// wasn't fixed.
if (nsLayoutUtils::IsTransformed(aForFrame, attachedToFrame)) {
attachedToFrame = aForFrame;
*aOutIsTransformedFixed = true;
} else {
// Set the background positioning area to the viewport's area
// (relative to aForFrame)
bgPositioningArea =
nsRect(-aForFrame->GetOffsetTo(attachedToFrame), attachedToFrame->GetSize());
if (!pageContentFrame) {
// Subtract the size of scrollbars.
nsIScrollableFrame* scrollableFrame =
aPresContext->PresShell()->GetRootScrollFrameAsScrollable();
if (scrollableFrame) {
nsMargin scrollbars = scrollableFrame->GetActualScrollbarSizes();
bgPositioningArea.Deflate(scrollbars);
}
}
}
}
*aAttachedToFrame = attachedToFrame;
return bgPositioningArea;
}
// Implementation of the formula for computation of background-repeat round
// See http://dev.w3.org/csswg/css3-background/#the-background-size
// This function returns the adjusted size of the background image.
static nscoord
ComputeRoundedSize(nscoord aCurrentSize, nscoord aPositioningSize)
{
float repeatCount = NS_roundf(float(aPositioningSize) / float(aCurrentSize));
if (repeatCount < 1.0f) {
return aPositioningSize;
}
return nscoord(NS_lround(float(aPositioningSize) / repeatCount));
}
// Apply the CSS image sizing algorithm as it applies to background images.
// See http://www.w3.org/TR/css3-background/#the-background-size .
// aIntrinsicSize is the size that the background image 'would like to be'.
// It can be found by calling nsImageRenderer::ComputeIntrinsicSize.
static nsSize
ComputeDrawnSizeForBackground(const CSSSizeOrRatio& aIntrinsicSize,
const nsSize& aBgPositioningArea,
const nsStyleImageLayers::Size& aLayerSize,
uint8_t aXRepeat, uint8_t aYRepeat)
{
nsSize imageSize;
// Size is dictated by cover or contain rules.
if (aLayerSize.mWidthType == nsStyleImageLayers::Size::eContain ||
aLayerSize.mWidthType == nsStyleImageLayers::Size::eCover) {
nsImageRenderer::FitType fitType =
aLayerSize.mWidthType == nsStyleImageLayers::Size::eCover
? nsImageRenderer::COVER
: nsImageRenderer::CONTAIN;
imageSize = nsImageRenderer::ComputeConstrainedSize(aBgPositioningArea,
aIntrinsicSize.mRatio,
fitType);
} else {
// No cover/contain constraint, use default algorithm.
CSSSizeOrRatio specifiedSize;
if (aLayerSize.mWidthType == nsStyleImageLayers::Size::eLengthPercentage) {
specifiedSize.SetWidth(
aLayerSize.ResolveWidthLengthPercentage(aBgPositioningArea));
}
if (aLayerSize.mHeightType == nsStyleImageLayers::Size::eLengthPercentage) {
specifiedSize.SetHeight(
aLayerSize.ResolveHeightLengthPercentage(aBgPositioningArea));
}
imageSize = nsImageRenderer::ComputeConcreteSize(specifiedSize,
aIntrinsicSize,
aBgPositioningArea);
}
// See https://www.w3.org/TR/css3-background/#background-size .
// "If 'background-repeat' is 'round' for one (or both) dimensions, there is a second
// step. The UA must scale the image in that dimension (or both dimensions) so that
// it fits a whole number of times in the background positioning area."
// "If 'background-repeat' is 'round' for one dimension only and if 'background-size'
// is 'auto' for the other dimension, then there is a third step: that other dimension
// is scaled so that the original aspect ratio is restored."
bool isRepeatRoundInBothDimensions = aXRepeat == NS_STYLE_IMAGELAYER_REPEAT_ROUND &&
aYRepeat == NS_STYLE_IMAGELAYER_REPEAT_ROUND;
// Calculate the rounded size only if the background-size computation
// returned a correct size for the image.
if (imageSize.width && aXRepeat == NS_STYLE_IMAGELAYER_REPEAT_ROUND) {
imageSize.width = ComputeRoundedSize(imageSize.width, aBgPositioningArea.width);
if (!isRepeatRoundInBothDimensions &&
aLayerSize.mHeightType == nsStyleImageLayers::Size::DimensionType::eAuto) {
// Restore intrinsic rato
if (aIntrinsicSize.mRatio.width) {
float scale = float(aIntrinsicSize.mRatio.height) / aIntrinsicSize.mRatio.width;
imageSize.height = NSCoordSaturatingNonnegativeMultiply(imageSize.width, scale);
}
}
}
// Calculate the rounded size only if the background-size computation
// returned a correct size for the image.
if (imageSize.height && aYRepeat == NS_STYLE_IMAGELAYER_REPEAT_ROUND) {
imageSize.height = ComputeRoundedSize(imageSize.height, aBgPositioningArea.height);
if (!isRepeatRoundInBothDimensions &&
aLayerSize.mWidthType == nsStyleImageLayers::Size::DimensionType::eAuto) {
// Restore intrinsic rato
if (aIntrinsicSize.mRatio.height) {
float scale = float(aIntrinsicSize.mRatio.width) / aIntrinsicSize.mRatio.height;
imageSize.width = NSCoordSaturatingNonnegativeMultiply(imageSize.height, scale);
}
}
}
return imageSize;
}
/* ComputeSpacedRepeatSize
* aImageDimension: the image width/height
* aAvailableSpace: the background positioning area width/height
* aRepeat: determine whether the image is repeated
* Returns the image size plus gap size of app units for use as spacing
*/
static nscoord
ComputeSpacedRepeatSize(nscoord aImageDimension,
nscoord aAvailableSpace,
bool& aRepeat) {
float ratio = static_cast<float>(aAvailableSpace) / aImageDimension;
if (ratio < 2.0f) { // If you can't repeat at least twice, then don't repeat.
aRepeat = false;
return aImageDimension;
} else {
aRepeat = true;
return (aAvailableSpace - aImageDimension) / (NSToIntFloor(ratio) - 1);
}
}
/* ComputeBorderSpacedRepeatSize
* aImageDimension: the image width/height
* aAvailableSpace: the background positioning area width/height
* aSpace: the space between each image
* Returns the image size plus gap size of app units for use as spacing
*/
static nscoord
ComputeBorderSpacedRepeatSize(nscoord aImageDimension,
nscoord aAvailableSpace,
nscoord& aSpace)
{
int32_t count = aAvailableSpace / aImageDimension;
aSpace = (aAvailableSpace - aImageDimension * count) / (count + 1);
return aSpace + aImageDimension;
}
nsBackgroundLayerState
nsCSSRendering::PrepareImageLayer(nsPresContext* aPresContext,
nsIFrame* aForFrame,
uint32_t aFlags,
const nsRect& aBorderArea,
const nsRect& aBGClipRect,
const nsStyleImageLayers::Layer& aLayer,
bool* aOutIsTransformedFixed)
{
/*
* The properties we need to keep in mind when drawing style image
* layers are:
*
* background-image/ mask-image
* background-repeat/ mask-repeat
* background-attachment
* background-position/ mask-position
* background-clip/ mask-clip
* background-origin/ mask-origin
* background-size/ mask-size
* background-blend-mode
* box-decoration-break
* mask-mode
* mask-composite
*
* (background-color applies to the entire element and not to individual
* layers, so it is irrelevant to this method.)
*
* These properties have the following dependencies upon each other when
* determining rendering:
*
* background-image/ mask-image
* no dependencies
* background-repeat/ mask-repeat
* no dependencies
* background-attachment
* no dependencies
* background-position/ mask-position
* depends upon background-size/mask-size (for the image's scaled size)
* and background-break (for the background positioning area)
* background-clip/ mask-clip
* no dependencies
* background-origin/ mask-origin
* depends upon background-attachment (only in the case where that value
* is 'fixed')
* background-size/ mask-size
* depends upon box-decoration-break (for the background positioning area
* for resolving percentages), background-image (for the image's intrinsic
* size), background-repeat (if that value is 'round'), and
* background-origin (for the background painting area, when
* background-repeat is 'round')
* background-blend-mode
* no dependencies
* mask-mode
* no dependencies
* mask-composite
* no dependencies
* box-decoration-break
* no dependencies
*
* As a result of only-if dependencies we don't strictly do a topological
* sort of the above properties when processing, but it's pretty close to one:
*
* background-clip/mask-clip (by caller)
* background-image/ mask-image
* box-decoration-break, background-origin/ mask origin
* background-attachment (postfix for background-origin if 'fixed')
* background-size/ mask-size
* background-position/ mask-position
* background-repeat/ mask-repeat
*/
uint32_t irFlags = 0;
if (aFlags & nsCSSRendering::PAINTBG_SYNC_DECODE_IMAGES) {
irFlags |= nsImageRenderer::FLAG_SYNC_DECODE_IMAGES;
}
if (aFlags & nsCSSRendering::PAINTBG_TO_WINDOW) {
irFlags |= nsImageRenderer::FLAG_PAINTING_TO_WINDOW;
}
nsBackgroundLayerState state(aForFrame, &aLayer.mImage, irFlags);
if (!state.mImageRenderer.PrepareImage()) {
// There's no image or it's not ready to be painted.
if (aOutIsTransformedFixed) {
*aOutIsTransformedFixed = false;
}
return state;
}
// The frame to which the background is attached
nsIFrame* attachedToFrame = aForFrame;
// Is the background marked 'fixed', but affected by a transform?
bool transformedFixed = false;
// Compute background origin area relative to aBorderArea now as we may need
// it to compute the effective image size for a CSS gradient.
nsRect bgPositioningArea =
ComputeImageLayerPositioningArea(aPresContext, aForFrame, aBorderArea,
aLayer, &attachedToFrame, &transformedFixed);
if (aOutIsTransformedFixed) {
*aOutIsTransformedFixed = transformedFixed;
}
// For background-attachment:fixed backgrounds, we'll limit the area
// where the background can be drawn to the viewport.
nsRect bgClipRect = aBGClipRect;
// Compute the anchor point.
//
// relative to aBorderArea.TopLeft() (which is where the top-left
// of aForFrame's border-box will be rendered)
nsPoint imageTopLeft;
if (NS_STYLE_IMAGELAYER_ATTACHMENT_FIXED == aLayer.mAttachment && !transformedFixed) {
if (aFlags & nsCSSRendering::PAINTBG_TO_WINDOW) {
// Clip background-attachment:fixed backgrounds to the viewport, if we're
// painting to the screen and not transformed. This avoids triggering
// tiling in common cases, without affecting output since drawing is
// always clipped to the viewport when we draw to the screen. (But it's
// not a pure optimization since it can affect the values of pixels at the
// edge of the viewport --- whether they're sampled from a putative "next
// tile" or not.)
bgClipRect.IntersectRect(bgClipRect, bgPositioningArea + aBorderArea.TopLeft());
}
}
int repeatX = aLayer.mRepeat.mXRepeat;
int repeatY = aLayer.mRepeat.mYRepeat;
// Scale the image as specified for background-size and background-repeat.
// Also as required for proper background positioning when background-position
// is defined with percentages.
CSSSizeOrRatio intrinsicSize = state.mImageRenderer.ComputeIntrinsicSize();
nsSize bgPositionSize = bgPositioningArea.Size();
nsSize imageSize = ComputeDrawnSizeForBackground(intrinsicSize,
bgPositionSize,
aLayer.mSize,
repeatX,
repeatY);
if (imageSize.width <= 0 || imageSize.height <= 0)
return state;
state.mImageRenderer.SetPreferredSize(intrinsicSize,
imageSize);
// Compute the position of the background now that the background's size is
// determined.
nsImageRenderer::ComputeObjectAnchorPoint(aLayer.mPosition,
bgPositionSize, imageSize,
&imageTopLeft, &state.mAnchor);
state.mRepeatSize = imageSize;
if (repeatX == NS_STYLE_IMAGELAYER_REPEAT_SPACE) {
bool isRepeat;
state.mRepeatSize.width = ComputeSpacedRepeatSize(imageSize.width,
bgPositionSize.width,
isRepeat);
if (isRepeat) {
imageTopLeft.x = 0;
state.mAnchor.x = 0;
} else {
repeatX = NS_STYLE_IMAGELAYER_REPEAT_NO_REPEAT;
}
}
if (repeatY == NS_STYLE_IMAGELAYER_REPEAT_SPACE) {
bool isRepeat;
state.mRepeatSize.height = ComputeSpacedRepeatSize(imageSize.height,
bgPositionSize.height,
isRepeat);
if (isRepeat) {
imageTopLeft.y = 0;
state.mAnchor.y = 0;
} else {
repeatY = NS_STYLE_IMAGELAYER_REPEAT_NO_REPEAT;
}
}
imageTopLeft += bgPositioningArea.TopLeft();
state.mAnchor += bgPositioningArea.TopLeft();
state.mDestArea = nsRect(imageTopLeft + aBorderArea.TopLeft(), imageSize);
state.mFillArea = state.mDestArea;
ExtendMode repeatMode = ExtendMode::CLAMP;
if (repeatX == NS_STYLE_IMAGELAYER_REPEAT_REPEAT ||
repeatX == NS_STYLE_IMAGELAYER_REPEAT_ROUND ||
repeatX == NS_STYLE_IMAGELAYER_REPEAT_SPACE) {
state.mFillArea.x = bgClipRect.x;
state.mFillArea.width = bgClipRect.width;
repeatMode = ExtendMode::REPEAT_X;
}
if (repeatY == NS_STYLE_IMAGELAYER_REPEAT_REPEAT ||
repeatY == NS_STYLE_IMAGELAYER_REPEAT_ROUND ||
repeatY == NS_STYLE_IMAGELAYER_REPEAT_SPACE) {
state.mFillArea.y = bgClipRect.y;
state.mFillArea.height = bgClipRect.height;
/***
* We're repeating on the X axis already,
* so if we have to repeat in the Y axis,
* we really need to repeat in both directions.
*/
if (repeatMode == ExtendMode::REPEAT_X) {
repeatMode = ExtendMode::REPEAT;
} else {
repeatMode = ExtendMode::REPEAT_Y;
}
}
state.mImageRenderer.SetExtendMode(repeatMode);
state.mImageRenderer.SetMaskOp(aLayer.mMaskMode);
state.mFillArea.IntersectRect(state.mFillArea, bgClipRect);
return state;
}
nsRect
nsCSSRendering::GetBackgroundLayerRect(nsPresContext* aPresContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsRect& aClipRect,
const nsStyleImageLayers::Layer& aLayer,
uint32_t aFlags)
{
Sides skipSides = aForFrame->GetSkipSides();
nsRect borderArea =
::BoxDecorationRectForBackground(aForFrame, aBorderArea, skipSides);
nsBackgroundLayerState state =
PrepareImageLayer(aPresContext, aForFrame, aFlags, borderArea,
aClipRect, aLayer);
return state.mFillArea;
}
static DrawResult
DrawBorderImage(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aBorderArea,
const nsStyleBorder& aStyleBorder,
const nsRect& aDirtyRect,
Sides aSkipSides,
PaintBorderFlags aFlags)
{
NS_PRECONDITION(aStyleBorder.IsBorderImageLoaded(),
"drawing border image that isn't successfully loaded");
if (aDirtyRect.IsEmpty()) {
return DrawResult::SUCCESS;
}
uint32_t irFlags = 0;
if (aFlags & PaintBorderFlags::SYNC_DECODE_IMAGES) {
irFlags |= nsImageRenderer::FLAG_SYNC_DECODE_IMAGES;
}
nsImageRenderer renderer(aForFrame, &aStyleBorder.mBorderImageSource, irFlags);
// Ensure we get invalidated for loads and animations of the image.
// We need to do this here because this might be the only code that
// knows about the association of the style data with the frame.
// XXX We shouldn't really... since if anybody is passing in a
// different style, they'll potentially have the wrong size for the
// border too.
aForFrame->AssociateImage(aStyleBorder.mBorderImageSource, aPresContext);
if (!renderer.PrepareImage()) {
return renderer.PrepareResult();
}
// NOTE: no Save() yet, we do that later by calling autoSR.EnsureSaved()
// in case we need it.
gfxContextAutoSaveRestore autoSR;
// Determine the border image area, which by default corresponds to the
// border box but can be modified by 'border-image-outset'.
// Note that 'border-radius' do not apply to 'border-image' borders per
// <http://dev.w3.org/csswg/css-backgrounds/#corner-clipping>.
nsRect borderImgArea;
nsMargin borderWidths(aStyleBorder.GetComputedBorder());
nsMargin imageOutset(aStyleBorder.GetImageOutset());
if (::IsBoxDecorationSlice(aStyleBorder) && !aSkipSides.IsEmpty()) {
borderImgArea = ::BoxDecorationRectForBorder(aForFrame, aBorderArea,
aSkipSides, &aStyleBorder);
if (borderImgArea.IsEqualEdges(aBorderArea)) {
// No need for a clip, just skip the sides we don't want.
borderWidths.ApplySkipSides(aSkipSides);
imageOutset.ApplySkipSides(aSkipSides);
borderImgArea.Inflate(imageOutset);
} else {
// We're drawing borders around the joined continuation boxes so we need
// to clip that to the slice that we want for this frame.
borderImgArea.Inflate(imageOutset);
imageOutset.ApplySkipSides(aSkipSides);
nsRect clip = aBorderArea;
clip.Inflate(imageOutset);
autoSR.EnsureSaved(aRenderingContext.ThebesContext());
aRenderingContext.ThebesContext()->
Clip(NSRectToSnappedRect(clip,
aForFrame->PresContext()->AppUnitsPerDevPixel(),
*aRenderingContext.GetDrawTarget()));
}
} else {
borderImgArea = aBorderArea;
borderImgArea.Inflate(imageOutset);
}
// Calculate the image size used to compute slice points.
CSSSizeOrRatio intrinsicSize = renderer.ComputeIntrinsicSize();
nsSize imageSize = nsImageRenderer::ComputeConcreteSize(CSSSizeOrRatio(),
intrinsicSize,
borderImgArea.Size());
renderer.SetPreferredSize(intrinsicSize, imageSize);
// Compute the used values of 'border-image-slice' and 'border-image-width';
// we do them together because the latter can depend on the former.
nsMargin slice;
nsMargin border;
NS_FOR_CSS_SIDES(s) {
nsStyleCoord coord = aStyleBorder.mBorderImageSlice.Get(s);
int32_t imgDimension = NS_SIDE_IS_VERTICAL(s)
? imageSize.width : imageSize.height;
nscoord borderDimension = NS_SIDE_IS_VERTICAL(s)
? borderImgArea.width : borderImgArea.height;
double value;
switch (coord.GetUnit()) {
case eStyleUnit_Percent:
value = coord.GetPercentValue() * imgDimension;
break;
case eStyleUnit_Factor:
value = nsPresContext::CSSPixelsToAppUnits(
NS_lround(coord.GetFactorValue()));
break;
default:
NS_NOTREACHED("unexpected CSS unit for image slice");
value = 0;
break;
}
if (value < 0)
value = 0;
if (value > imgDimension)
value = imgDimension;
slice.Side(s) = value;
coord = aStyleBorder.mBorderImageWidth.Get(s);
switch (coord.GetUnit()) {
case eStyleUnit_Coord: // absolute dimension
value = coord.GetCoordValue();
break;
case eStyleUnit_Percent:
value = coord.GetPercentValue() * borderDimension;
break;
case eStyleUnit_Factor:
value = coord.GetFactorValue() * borderWidths.Side(s);
break;
case eStyleUnit_Auto: // same as the slice value, in CSS pixels
value = slice.Side(s);
break;
default:
NS_NOTREACHED("unexpected CSS unit for border image area division");
value = 0;
break;
}
// NSToCoordRoundWithClamp rounds towards infinity, but that's OK
// because we expect value to be non-negative.
MOZ_ASSERT(value >= 0);
border.Side(s) = NSToCoordRoundWithClamp(value);
MOZ_ASSERT(border.Side(s) >= 0);
}
// "If two opposite border-image-width offsets are large enough that they
// overlap, their used values are proportionately reduced until they no
// longer overlap."
uint32_t combinedBorderWidth = uint32_t(border.left) +
uint32_t(border.right);
double scaleX = combinedBorderWidth > uint32_t(borderImgArea.width)
? borderImgArea.width / double(combinedBorderWidth)
: 1.0;
uint32_t combinedBorderHeight = uint32_t(border.top) +
uint32_t(border.bottom);
double scaleY = combinedBorderHeight > uint32_t(borderImgArea.height)
? borderImgArea.height / double(combinedBorderHeight)
: 1.0;
double scale = std::min(scaleX, scaleY);
if (scale < 1.0) {
border.left *= scale;
border.right *= scale;
border.top *= scale;
border.bottom *= scale;
NS_ASSERTION(border.left + border.right <= borderImgArea.width &&
border.top + border.bottom <= borderImgArea.height,
"rounding error in width reduction???");
}
// These helper tables recharacterize the 'slice' and 'width' margins
// in a more convenient form: they are the x/y/width/height coords
// required for various bands of the border, and they have been transformed
// to be relative to the innerRect (for 'slice') or the page (for 'border').
enum {
LEFT, MIDDLE, RIGHT,
TOP = LEFT, BOTTOM = RIGHT
};
const nscoord borderX[3] = {
borderImgArea.x + 0,
borderImgArea.x + border.left,
borderImgArea.x + borderImgArea.width - border.right,
};
const nscoord borderY[3] = {
borderImgArea.y + 0,
borderImgArea.y + border.top,
borderImgArea.y + borderImgArea.height - border.bottom,
};
const nscoord borderWidth[3] = {
border.left,
borderImgArea.width - border.left - border.right,
border.right,
};
const nscoord borderHeight[3] = {
border.top,
borderImgArea.height - border.top - border.bottom,
border.bottom,
};
const int32_t sliceX[3] = {
0,
slice.left,
imageSize.width - slice.right,
};
const int32_t sliceY[3] = {
0,
slice.top,
imageSize.height - slice.bottom,
};
const int32_t sliceWidth[3] = {
slice.left,
std::max(imageSize.width - slice.left - slice.right, 0),
slice.right,
};
const int32_t sliceHeight[3] = {
slice.top,
std::max(imageSize.height - slice.top - slice.bottom, 0),
slice.bottom,
};
DrawResult result = DrawResult::SUCCESS;
// intrinsicSize.CanComputeConcreteSize() return false means we can not
// read intrinsic size from aStyleBorder.mBorderImageSource.
// In this condition, we pass imageSize(a resolved size comes from
// default sizing algorithm) to renderer as the viewport size.
Maybe<nsSize> svgViewportSize = intrinsicSize.CanComputeConcreteSize() ?
Nothing() : Some(imageSize);
bool hasIntrinsicRatio = intrinsicSize.HasRatio();
renderer.PurgeCacheForViewportChange(svgViewportSize, hasIntrinsicRatio);
for (int i = LEFT; i <= RIGHT; i++) {
for (int j = TOP; j <= BOTTOM; j++) {
uint8_t fillStyleH, fillStyleV;
nsSize unitSize;
if (i == MIDDLE && j == MIDDLE) {
// Discard the middle portion unless set to fill.
if (NS_STYLE_BORDER_IMAGE_SLICE_NOFILL ==
aStyleBorder.mBorderImageFill) {
continue;
}
NS_ASSERTION(NS_STYLE_BORDER_IMAGE_SLICE_FILL ==
aStyleBorder.mBorderImageFill,
"Unexpected border image fill");
// css-background:
// The middle image's width is scaled by the same factor as the
// top image unless that factor is zero or infinity, in which
// case the scaling factor of the bottom is substituted, and
// failing that, the width is not scaled. The height of the
// middle image is scaled by the same factor as the left image
// unless that factor is zero or infinity, in which case the
// scaling factor of the right image is substituted, and failing
// that, the height is not scaled.
gfxFloat hFactor, vFactor;
if (0 < border.left && 0 < slice.left)
vFactor = gfxFloat(border.left)/slice.left;
else if (0 < border.right && 0 < slice.right)
vFactor = gfxFloat(border.right)/slice.right;
else
vFactor = 1;
if (0 < border.top && 0 < slice.top)
hFactor = gfxFloat(border.top)/slice.top;
else if (0 < border.bottom && 0 < slice.bottom)
hFactor = gfxFloat(border.bottom)/slice.bottom;
else
hFactor = 1;
unitSize.width = sliceWidth[i]*hFactor;
unitSize.height = sliceHeight[j]*vFactor;
fillStyleH = aStyleBorder.mBorderImageRepeatH;
fillStyleV = aStyleBorder.mBorderImageRepeatV;
} else if (i == MIDDLE) { // top, bottom
// Sides are always stretched to the thickness of their border,
// and stretched proportionately on the other axis.
gfxFloat factor;
if (0 < borderHeight[j] && 0 < sliceHeight[j])
factor = gfxFloat(borderHeight[j])/sliceHeight[j];
else
factor = 1;
unitSize.width = sliceWidth[i]*factor;
unitSize.height = borderHeight[j];
fillStyleH = aStyleBorder.mBorderImageRepeatH;
fillStyleV = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
} else if (j == MIDDLE) { // left, right
gfxFloat factor;
if (0 < borderWidth[i] && 0 < sliceWidth[i])
factor = gfxFloat(borderWidth[i])/sliceWidth[i];
else
factor = 1;
unitSize.width = borderWidth[i];
unitSize.height = sliceHeight[j]*factor;
fillStyleH = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
fillStyleV = aStyleBorder.mBorderImageRepeatV;
} else {
// Corners are always stretched to fit the corner.
unitSize.width = borderWidth[i];
unitSize.height = borderHeight[j];
fillStyleH = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
fillStyleV = NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH;
}
nsRect destArea(borderX[i], borderY[j], borderWidth[i], borderHeight[j]);
nsRect subArea(sliceX[i], sliceY[j], sliceWidth[i], sliceHeight[j]);
if (subArea.IsEmpty())
continue;
nsIntRect intSubArea = subArea.ToOutsidePixels(nsPresContext::AppUnitsPerCSSPixel());
result &=
renderer.DrawBorderImageComponent(aPresContext,
aRenderingContext, aDirtyRect,
destArea, CSSIntRect(intSubArea.x,
intSubArea.y,
intSubArea.width,
intSubArea.height),
fillStyleH, fillStyleV,
unitSize, j * (RIGHT + 1) + i,
svgViewportSize, hasIntrinsicRatio);
}
}
return result;
}
// Begin table border-collapsing section
// These functions were written to not disrupt the normal ones and yet satisfy some additional requirements
// At some point, all functions should be unified to include the additional functionality that these provide
static nscoord
RoundIntToPixel(nscoord aValue,
nscoord aTwipsPerPixel,
bool aRoundDown = false)
{
if (aTwipsPerPixel <= 0)
// We must be rendering to a device that has a resolution greater than Twips!
// In that case, aValue is as accurate as it's going to get.
return aValue;
nscoord halfPixel = NSToCoordRound(aTwipsPerPixel / 2.0f);
nscoord extra = aValue % aTwipsPerPixel;
nscoord finalValue = (!aRoundDown && (extra >= halfPixel)) ? aValue + (aTwipsPerPixel - extra) : aValue - extra;
return finalValue;
}
static nscoord
RoundFloatToPixel(float aValue,
nscoord aTwipsPerPixel,
bool aRoundDown = false)
{
return RoundIntToPixel(NSToCoordRound(aValue), aTwipsPerPixel, aRoundDown);
}
static void SetPoly(const Rect& aRect, Point* poly)
{
poly[0].x = aRect.x;
poly[0].y = aRect.y;
poly[1].x = aRect.x + aRect.width;
poly[1].y = aRect.y;
poly[2].x = aRect.x + aRect.width;
poly[2].y = aRect.y + aRect.height;
poly[3].x = aRect.x;
poly[3].y = aRect.y + aRect.height;
}
static void
DrawDashedSegment(DrawTarget& aDrawTarget,
nsRect aRect,
nscoord aDashLength,
nscolor aColor,
int32_t aAppUnitsPerDevPixel,
nscoord aTwipsPerPixel,
bool aHorizontal)
{
ColorPattern color(ToDeviceColor(aColor));
DrawOptions drawOptions(1.f, CompositionOp::OP_OVER, AntialiasMode::NONE);
StrokeOptions strokeOptions;
Float dash[2];
dash[0] = Float(aDashLength) / aAppUnitsPerDevPixel;
dash[1] = dash[0];
strokeOptions.mDashPattern = dash;
strokeOptions.mDashLength = MOZ_ARRAY_LENGTH(dash);
if (aHorizontal) {
nsPoint left = (aRect.TopLeft() + aRect.BottomLeft()) / 2;
nsPoint right = (aRect.TopRight() + aRect.BottomRight()) / 2;
strokeOptions.mLineWidth = Float(aRect.height) / aAppUnitsPerDevPixel;
StrokeLineWithSnapping(left, right,
aAppUnitsPerDevPixel, aDrawTarget,
color, strokeOptions, drawOptions);
} else {
nsPoint top = (aRect.TopLeft() + aRect.TopRight()) / 2;
nsPoint bottom = (aRect.BottomLeft() + aRect.BottomRight()) / 2;
strokeOptions.mLineWidth = Float(aRect.width) / aAppUnitsPerDevPixel;
StrokeLineWithSnapping(top, bottom,
aAppUnitsPerDevPixel, aDrawTarget,
color, strokeOptions, drawOptions);
}
}
static void
DrawSolidBorderSegment(DrawTarget& aDrawTarget,
nsRect aRect,
nscolor aColor,
int32_t aAppUnitsPerDevPixel,
nscoord aTwipsPerPixel,
uint8_t aStartBevelSide = 0,
nscoord aStartBevelOffset = 0,
uint8_t aEndBevelSide = 0,
nscoord aEndBevelOffset = 0)
{
ColorPattern color(ToDeviceColor(aColor));
DrawOptions drawOptions(1.f, CompositionOp::OP_OVER, AntialiasMode::NONE);
// We don't need to bevel single pixel borders
if ((aRect.width == aTwipsPerPixel) || (aRect.height == aTwipsPerPixel) ||
((0 == aStartBevelOffset) && (0 == aEndBevelOffset))) {
// simple rectangle
aDrawTarget.FillRect(NSRectToSnappedRect(aRect, aAppUnitsPerDevPixel,
aDrawTarget),
color, drawOptions);
}
else {
// polygon with beveling
Point poly[4];
SetPoly(NSRectToSnappedRect(aRect, aAppUnitsPerDevPixel, aDrawTarget),
poly);
Float startBevelOffset =
NSAppUnitsToFloatPixels(aStartBevelOffset, aAppUnitsPerDevPixel);
switch(aStartBevelSide) {
case eSideTop:
poly[0].x += startBevelOffset;
break;
case eSideBottom:
poly[3].x += startBevelOffset;
break;
case eSideRight:
poly[1].y += startBevelOffset;
break;
case eSideLeft:
poly[0].y += startBevelOffset;
}
Float endBevelOffset =
NSAppUnitsToFloatPixels(aEndBevelOffset, aAppUnitsPerDevPixel);
switch(aEndBevelSide) {
case eSideTop:
poly[1].x -= endBevelOffset;
break;
case eSideBottom:
poly[2].x -= endBevelOffset;
break;
case eSideRight:
poly[2].y -= endBevelOffset;
break;
case eSideLeft:
poly[3].y -= endBevelOffset;
}
RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
builder->MoveTo(poly[0]);
builder->LineTo(poly[1]);
builder->LineTo(poly[2]);
builder->LineTo(poly[3]);
builder->Close();
RefPtr<Path> path = builder->Finish();
aDrawTarget.Fill(path, color, drawOptions);
}
}
static void
GetDashInfo(nscoord aBorderLength,
nscoord aDashLength,
nscoord aTwipsPerPixel,
int32_t& aNumDashSpaces,
nscoord& aStartDashLength,
nscoord& aEndDashLength)
{
aNumDashSpaces = 0;
if (aStartDashLength + aDashLength + aEndDashLength >= aBorderLength) {
aStartDashLength = aBorderLength;
aEndDashLength = 0;
}
else {
aNumDashSpaces = (aBorderLength - aDashLength)/ (2 * aDashLength); // round down
nscoord extra = aBorderLength - aStartDashLength - aEndDashLength - (((2 * aNumDashSpaces) - 1) * aDashLength);
if (extra > 0) {
nscoord half = RoundIntToPixel(extra / 2, aTwipsPerPixel);
aStartDashLength += half;
aEndDashLength += (extra - half);
}
}
}
void
nsCSSRendering::DrawTableBorderSegment(DrawTarget& aDrawTarget,
uint8_t aBorderStyle,
nscolor aBorderColor,
const nsStyleBackground* aBGColor,
const nsRect& aBorder,
int32_t aAppUnitsPerDevPixel,
int32_t aAppUnitsPerCSSPixel,
uint8_t aStartBevelSide,
nscoord aStartBevelOffset,
uint8_t aEndBevelSide,
nscoord aEndBevelOffset)
{
bool horizontal = ((eSideTop == aStartBevelSide) || (eSideBottom == aStartBevelSide));
nscoord twipsPerPixel = NSIntPixelsToAppUnits(1, aAppUnitsPerCSSPixel);
uint8_t ridgeGroove = NS_STYLE_BORDER_STYLE_RIDGE;
if ((twipsPerPixel >= aBorder.width) || (twipsPerPixel >= aBorder.height) ||
(NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) || (NS_STYLE_BORDER_STYLE_DOTTED == aBorderStyle)) {
// no beveling for 1 pixel border, dash or dot
aStartBevelOffset = 0;
aEndBevelOffset = 0;
}
switch (aBorderStyle) {
case NS_STYLE_BORDER_STYLE_NONE:
case NS_STYLE_BORDER_STYLE_HIDDEN:
//NS_ASSERTION(false, "style of none or hidden");
break;
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
{
nscoord dashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) ? DASH_LENGTH : DOT_LENGTH;
// make the dash length proportional to the border thickness
dashLength *= (horizontal) ? aBorder.height : aBorder.width;
// make the min dash length for the ends 1/2 the dash length
nscoord minDashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle)
? RoundFloatToPixel(((float)dashLength) / 2.0f, twipsPerPixel) : dashLength;
minDashLength = std::max(minDashLength, twipsPerPixel);
nscoord numDashSpaces = 0;
nscoord startDashLength = minDashLength;
nscoord endDashLength = minDashLength;
if (horizontal) {
GetDashInfo(aBorder.width, dashLength, twipsPerPixel, numDashSpaces,
startDashLength, endDashLength);
nsRect rect(aBorder.x, aBorder.y, startDashLength, aBorder.height);
DrawSolidBorderSegment(aDrawTarget, rect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel);
rect.x += startDashLength + dashLength;
rect.width = aBorder.width
- (startDashLength + endDashLength + dashLength);
DrawDashedSegment(aDrawTarget, rect, dashLength, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel, horizontal);
rect.x += rect.width;
rect.width = endDashLength;
DrawSolidBorderSegment(aDrawTarget, rect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel);
}
else {
GetDashInfo(aBorder.height, dashLength, twipsPerPixel, numDashSpaces,
startDashLength, endDashLength);
nsRect rect(aBorder.x, aBorder.y, aBorder.width, startDashLength);
DrawSolidBorderSegment(aDrawTarget, rect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel);
rect.y += rect.height + dashLength;
rect.height = aBorder.height
- (startDashLength + endDashLength + dashLength);
DrawDashedSegment(aDrawTarget, rect, dashLength, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel, horizontal);
rect.y += rect.height;
rect.height = endDashLength;
DrawSolidBorderSegment(aDrawTarget, rect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel);
}
}
break;
case NS_STYLE_BORDER_STYLE_GROOVE:
ridgeGroove = NS_STYLE_BORDER_STYLE_GROOVE; // and fall through to ridge
MOZ_FALLTHROUGH;
case NS_STYLE_BORDER_STYLE_RIDGE:
if ((horizontal && (twipsPerPixel >= aBorder.height)) ||
(!horizontal && (twipsPerPixel >= aBorder.width))) {
// a one pixel border
DrawSolidBorderSegment(aDrawTarget, aBorder, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, aStartBevelOffset,
aEndBevelSide, aEndBevelOffset);
}
else {
nscoord startBevel = (aStartBevelOffset > 0)
? RoundFloatToPixel(0.5f * (float)aStartBevelOffset, twipsPerPixel, true) : 0;
nscoord endBevel = (aEndBevelOffset > 0)
? RoundFloatToPixel(0.5f * (float)aEndBevelOffset, twipsPerPixel, true) : 0;
mozilla::Side ridgeGrooveSide = (horizontal) ? eSideTop : eSideLeft;
// FIXME: In theory, this should use the visited-dependent
// background color, but I don't care.
nscolor bevelColor = MakeBevelColor(ridgeGrooveSide, ridgeGroove,
aBGColor->mBackgroundColor,
aBorderColor);
nsRect rect(aBorder);
nscoord half;
if (horizontal) { // top, bottom
half = RoundFloatToPixel(0.5f * (float)aBorder.height, twipsPerPixel);
rect.height = half;
if (eSideTop == aStartBevelSide) {
rect.x += startBevel;
rect.width -= startBevel;
}
if (eSideTop == aEndBevelSide) {
rect.width -= endBevel;
}
DrawSolidBorderSegment(aDrawTarget, rect, bevelColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
}
else { // left, right
half = RoundFloatToPixel(0.5f * (float)aBorder.width, twipsPerPixel);
rect.width = half;
if (eSideLeft == aStartBevelSide) {
rect.y += startBevel;
rect.height -= startBevel;
}
if (eSideLeft == aEndBevelSide) {
rect.height -= endBevel;
}
DrawSolidBorderSegment(aDrawTarget, rect, bevelColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
}
rect = aBorder;
ridgeGrooveSide = (eSideTop == ridgeGrooveSide) ? eSideBottom : eSideRight;
// FIXME: In theory, this should use the visited-dependent
// background color, but I don't care.
bevelColor = MakeBevelColor(ridgeGrooveSide, ridgeGroove,
aBGColor->mBackgroundColor, aBorderColor);
if (horizontal) {
rect.y = rect.y + half;
rect.height = aBorder.height - half;
if (eSideBottom == aStartBevelSide) {
rect.x += startBevel;
rect.width -= startBevel;
}
if (eSideBottom == aEndBevelSide) {
rect.width -= endBevel;
}
DrawSolidBorderSegment(aDrawTarget, rect, bevelColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
}
else {
rect.x = rect.x + half;
rect.width = aBorder.width - half;
if (eSideRight == aStartBevelSide) {
rect.y += aStartBevelOffset - startBevel;
rect.height -= startBevel;
}
if (eSideRight == aEndBevelSide) {
rect.height -= endBevel;
}
DrawSolidBorderSegment(aDrawTarget, rect, bevelColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
}
}
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
// We can only do "double" borders if the thickness of the border
// is more than 2px. Otherwise, we fall through to painting a
// solid border.
if ((aBorder.width > 2*twipsPerPixel || horizontal) &&
(aBorder.height > 2*twipsPerPixel || !horizontal)) {
nscoord startBevel = (aStartBevelOffset > 0)
? RoundFloatToPixel(0.333333f * (float)aStartBevelOffset, twipsPerPixel) : 0;
nscoord endBevel = (aEndBevelOffset > 0)
? RoundFloatToPixel(0.333333f * (float)aEndBevelOffset, twipsPerPixel) : 0;
if (horizontal) { // top, bottom
nscoord thirdHeight = RoundFloatToPixel(0.333333f * (float)aBorder.height, twipsPerPixel);
// draw the top line or rect
nsRect topRect(aBorder.x, aBorder.y, aBorder.width, thirdHeight);
if (eSideTop == aStartBevelSide) {
topRect.x += aStartBevelOffset - startBevel;
topRect.width -= aStartBevelOffset - startBevel;
}
if (eSideTop == aEndBevelSide) {
topRect.width -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aDrawTarget, topRect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
// draw the botom line or rect
nscoord heightOffset = aBorder.height - thirdHeight;
nsRect bottomRect(aBorder.x, aBorder.y + heightOffset, aBorder.width, aBorder.height - heightOffset);
if (eSideBottom == aStartBevelSide) {
bottomRect.x += aStartBevelOffset - startBevel;
bottomRect.width -= aStartBevelOffset - startBevel;
}
if (eSideBottom == aEndBevelSide) {
bottomRect.width -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aDrawTarget, bottomRect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
}
else { // left, right
nscoord thirdWidth = RoundFloatToPixel(0.333333f * (float)aBorder.width, twipsPerPixel);
nsRect leftRect(aBorder.x, aBorder.y, thirdWidth, aBorder.height);
if (eSideLeft == aStartBevelSide) {
leftRect.y += aStartBevelOffset - startBevel;
leftRect.height -= aStartBevelOffset - startBevel;
}
if (eSideLeft == aEndBevelSide) {
leftRect.height -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aDrawTarget, leftRect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
nscoord widthOffset = aBorder.width - thirdWidth;
nsRect rightRect(aBorder.x + widthOffset, aBorder.y, aBorder.width - widthOffset, aBorder.height);
if (eSideRight == aStartBevelSide) {
rightRect.y += aStartBevelOffset - startBevel;
rightRect.height -= aStartBevelOffset - startBevel;
}
if (eSideRight == aEndBevelSide) {
rightRect.height -= aEndBevelOffset - endBevel;
}
DrawSolidBorderSegment(aDrawTarget, rightRect, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel,
aStartBevelSide, startBevel, aEndBevelSide,
endBevel);
}
break;
}
// else fall through to solid
MOZ_FALLTHROUGH;
case NS_STYLE_BORDER_STYLE_SOLID:
DrawSolidBorderSegment(aDrawTarget, aBorder, aBorderColor,
aAppUnitsPerDevPixel, twipsPerPixel, aStartBevelSide,
aStartBevelOffset, aEndBevelSide, aEndBevelOffset);
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_INSET:
NS_ASSERTION(false, "inset, outset should have been converted to groove, ridge");
break;
case NS_STYLE_BORDER_STYLE_AUTO:
NS_ASSERTION(false, "Unexpected 'auto' table border");
break;
}
}
// End table border-collapsing section
Rect
nsCSSRendering::ExpandPaintingRectForDecorationLine(
nsIFrame* aFrame,
const uint8_t aStyle,
const Rect& aClippedRect,
const Float aICoordInFrame,
const Float aCycleLength,
bool aVertical)
{
switch (aStyle) {
case NS_STYLE_TEXT_DECORATION_STYLE_DOTTED:
case NS_STYLE_TEXT_DECORATION_STYLE_DASHED:
case NS_STYLE_TEXT_DECORATION_STYLE_WAVY:
break;
default:
NS_ERROR("Invalid style was specified");
return aClippedRect;
}
nsBlockFrame* block = nullptr;
// Note that when we paint the decoration lines in relative positioned
// box, we should paint them like all of the boxes are positioned as static.
nscoord framePosInBlockAppUnits = 0;
for (nsIFrame* f = aFrame; f; f = f->GetParent()) {
block = do_QueryFrame(f);
if (block) {
break;
}
framePosInBlockAppUnits += aVertical ?
f->GetNormalPosition().y : f->GetNormalPosition().x;
}
NS_ENSURE_TRUE(block, aClippedRect);
nsPresContext *pc = aFrame->PresContext();
Float framePosInBlock = Float(pc->AppUnitsToGfxUnits(framePosInBlockAppUnits));
int32_t rectPosInBlock =
int32_t(NS_round(framePosInBlock + aICoordInFrame));
int32_t extraStartEdge =
rectPosInBlock - (rectPosInBlock / int32_t(aCycleLength) * aCycleLength);
Rect rect(aClippedRect);
if (aVertical) {
rect.y -= extraStartEdge;
rect.height += extraStartEdge;
} else {
rect.x -= extraStartEdge;
rect.width += extraStartEdge;
}
return rect;
}
void
nsCSSRendering::PaintDecorationLine(nsIFrame* aFrame, DrawTarget& aDrawTarget,
const PaintDecorationLineParams& aParams)
{
NS_ASSERTION(aParams.style != NS_STYLE_TEXT_DECORATION_STYLE_NONE,
"aStyle is none");
Rect rect = ToRect(GetTextDecorationRectInternal(aParams.pt, aParams));
if (rect.IsEmpty() || !rect.Intersects(aParams.dirtyRect)) {
return;
}
if (aParams.decoration != NS_STYLE_TEXT_DECORATION_LINE_UNDERLINE &&
aParams.decoration != NS_STYLE_TEXT_DECORATION_LINE_OVERLINE &&
aParams.decoration != NS_STYLE_TEXT_DECORATION_LINE_LINE_THROUGH) {
NS_ERROR("Invalid decoration value!");
return;
}
Float lineThickness = std::max(NS_round(aParams.lineSize.height), 1.0);
ColorPattern color(ToDeviceColor(aParams.color));
StrokeOptions strokeOptions(lineThickness);
DrawOptions drawOptions;
Float dash[2];
AutoPopClips autoPopClips(&aDrawTarget);
switch (aParams.style) {
case NS_STYLE_TEXT_DECORATION_STYLE_SOLID:
case NS_STYLE_TEXT_DECORATION_STYLE_DOUBLE:
break;
case NS_STYLE_TEXT_DECORATION_STYLE_DASHED: {
autoPopClips.PushClipRect(rect);
Float dashWidth = lineThickness * DOT_LENGTH * DASH_LENGTH;
dash[0] = dashWidth;
dash[1] = dashWidth;
strokeOptions.mDashPattern = dash;
strokeOptions.mDashLength = MOZ_ARRAY_LENGTH(dash);
strokeOptions.mLineCap = CapStyle::BUTT;
rect = ExpandPaintingRectForDecorationLine(aFrame, aParams.style,
rect, aParams.icoordInFrame,
dashWidth * 2,
aParams.vertical);
// We should continue to draw the last dash even if it is not in the rect.
rect.width += dashWidth;
break;
}
case NS_STYLE_TEXT_DECORATION_STYLE_DOTTED: {
autoPopClips.PushClipRect(rect);
Float dashWidth = lineThickness * DOT_LENGTH;
if (lineThickness > 2.0) {
dash[0] = 0.f;
dash[1] = dashWidth * 2.f;
strokeOptions.mLineCap = CapStyle::ROUND;
} else {
dash[0] = dashWidth;
dash[1] = dashWidth;
}
strokeOptions.mDashPattern = dash;
strokeOptions.mDashLength = MOZ_ARRAY_LENGTH(dash);
rect = ExpandPaintingRectForDecorationLine(aFrame, aParams.style,
rect, aParams.icoordInFrame,
dashWidth * 2,
aParams.vertical);
// We should continue to draw the last dot even if it is not in the rect.
rect.width += dashWidth;
break;
}
case NS_STYLE_TEXT_DECORATION_STYLE_WAVY:
autoPopClips.PushClipRect(rect);
if (lineThickness > 2.0) {
drawOptions.mAntialiasMode = AntialiasMode::SUBPIXEL;
} else {
// Don't use anti-aliasing here. Because looks like lighter color wavy
// line at this case. And probably, users don't think the
// non-anti-aliased wavy line is not pretty.
drawOptions.mAntialiasMode = AntialiasMode::NONE;
}
break;
default:
NS_ERROR("Invalid style value!");
return;
}
// The block-direction position should be set to the middle of the line.
if (aParams.vertical) {
rect.x += lineThickness / 2;
} else {
rect.y += lineThickness / 2;
}
switch (aParams.style) {
case NS_STYLE_TEXT_DECORATION_STYLE_SOLID:
case NS_STYLE_TEXT_DECORATION_STYLE_DOTTED:
case NS_STYLE_TEXT_DECORATION_STYLE_DASHED: {
Point p1 = rect.TopLeft();
Point p2 = aParams.vertical ? rect.BottomLeft() : rect.TopRight();
aDrawTarget.StrokeLine(p1, p2, color, strokeOptions, drawOptions);
return;
}
case NS_STYLE_TEXT_DECORATION_STYLE_DOUBLE: {
/**
* We are drawing double line as:
*
* +-------------------------------------------+
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineThickness
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* | |
* | |
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineThickness
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* +-------------------------------------------+
*/
Point p1 = rect.TopLeft();
Point p2 = aParams.vertical ? rect.BottomLeft() : rect.TopRight();
aDrawTarget.StrokeLine(p1, p2, color, strokeOptions, drawOptions);
if (aParams.vertical) {
rect.width -= lineThickness;
} else {
rect.height -= lineThickness;
}
p1 = aParams.vertical ? rect.TopRight() : rect.BottomLeft();
p2 = rect.BottomRight();
aDrawTarget.StrokeLine(p1, p2, color, strokeOptions, drawOptions);
return;
}
case NS_STYLE_TEXT_DECORATION_STYLE_WAVY: {
/**
* We are drawing wavy line as:
*
* P: Path, X: Painted pixel
*
* +---------------------------------------+
* XX|X XXXXXX XXXXXX |
* PP|PX XPPPPPPX XPPPPPPX | ^
* XX|XPX XPXXXXXXPX XPXXXXXXPX| |
* | XPX XPX XPX XPX XP|X |adv
* | XPXXXXXXPX XPXXXXXXPX X|PX |
* | XPPPPPPX XPPPPPPX |XPX v
* | XXXXXX XXXXXX | XX
* +---------------------------------------+
* <---><---> ^
* adv flatLengthAtVertex rightMost
*
* 1. Always starts from top-left of the drawing area, however, we need
* to draw the line from outside of the rect. Because the start
* point of the line is not good style if we draw from inside it.
* 2. First, draw horizontal line from outside the rect to top-left of
* the rect;
* 3. Goes down to bottom of the area at 45 degrees.
* 4. Slides to right horizontaly, see |flatLengthAtVertex|.
* 5. Goes up to top of the area at 45 degrees.
* 6. Slides to right horizontaly.
* 7. Repeat from 2 until reached to right-most edge of the area.
*
* In the vertical case, swap horizontal and vertical coordinates and
* directions in the above description.
*/
Float& rectICoord = aParams.vertical ? rect.y : rect.x;
Float& rectISize = aParams.vertical ? rect.height : rect.width;
const Float rectBSize = aParams.vertical ? rect.width : rect.height;
const Float adv = rectBSize - lineThickness;
const Float flatLengthAtVertex =
std::max((lineThickness - 1.0) * 2.0, 1.0);
// Align the start of wavy lines to the nearest ancestor block.
const Float cycleLength = 2 * (adv + flatLengthAtVertex);
rect = ExpandPaintingRectForDecorationLine(aFrame, aParams.style, rect,
aParams.icoordInFrame,
cycleLength, aParams.vertical);
// figure out if we can trim whole cycles from the left and right edges
// of the line, to try and avoid creating an unnecessarily long and
// complex path
const Float dirtyRectICoord = aParams.vertical ? aParams.dirtyRect.y
: aParams.dirtyRect.x;
int32_t skipCycles = floor((dirtyRectICoord - rectICoord) / cycleLength);
if (skipCycles > 0) {
rectICoord += skipCycles * cycleLength;
rectISize -= skipCycles * cycleLength;
}
rectICoord += lineThickness / 2.0;
Point pt(rect.TopLeft());
Float& ptICoord = aParams.vertical ? pt.y : pt.x;
Float& ptBCoord = aParams.vertical ? pt.x : pt.y;
if (aParams.vertical) {
ptBCoord += adv + lineThickness / 2.0;
}
Float iCoordLimit = ptICoord + rectISize + lineThickness;
const Float dirtyRectIMost = aParams.vertical ?
aParams.dirtyRect.YMost() : aParams.dirtyRect.XMost();
skipCycles = floor((iCoordLimit - dirtyRectIMost) / cycleLength);
if (skipCycles > 0) {
iCoordLimit -= skipCycles * cycleLength;
}
RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
RefPtr<Path> path;
ptICoord -= lineThickness;
builder->MoveTo(pt); // 1
ptICoord = rectICoord;
builder->LineTo(pt); // 2
// In vertical mode, to go "down" relative to the text we need to
// decrease the block coordinate, whereas in horizontal we increase
// it. So the sense of this flag is effectively inverted.
bool goDown = aParams.vertical ? false : true;
uint32_t iter = 0;
while (ptICoord < iCoordLimit) {
if (++iter > 1000) {
// stroke the current path and start again, to avoid pathological
// behavior in cairo with huge numbers of path segments
path = builder->Finish();
aDrawTarget.Stroke(path, color, strokeOptions, drawOptions);
builder = aDrawTarget.CreatePathBuilder();
builder->MoveTo(pt);
iter = 0;
}
ptICoord += adv;
ptBCoord += goDown ? adv : -adv;
builder->LineTo(pt); // 3 and 5
ptICoord += flatLengthAtVertex;
builder->LineTo(pt); // 4 and 6
goDown = !goDown;
}
path = builder->Finish();
aDrawTarget.Stroke(path, color, strokeOptions, drawOptions);
return;
}
default:
NS_ERROR("Invalid style value!");
}
}
Rect
nsCSSRendering::DecorationLineToPath(const PaintDecorationLineParams& aParams)
{
NS_ASSERTION(aParams.style != NS_STYLE_TEXT_DECORATION_STYLE_NONE,
"aStyle is none");
Rect path; // To benefit from RVO, we return this from all return points
Rect rect = ToRect(GetTextDecorationRectInternal(aParams.pt, aParams));
if (rect.IsEmpty() || !rect.Intersects(aParams.dirtyRect)) {
return path;
}
if (aParams.decoration != NS_STYLE_TEXT_DECORATION_LINE_UNDERLINE &&
aParams.decoration != NS_STYLE_TEXT_DECORATION_LINE_OVERLINE &&
aParams.decoration != NS_STYLE_TEXT_DECORATION_LINE_LINE_THROUGH) {
NS_ERROR("Invalid decoration value!");
return path;
}
if (aParams.style != NS_STYLE_TEXT_DECORATION_STYLE_SOLID) {
// For the moment, we support only solid text decorations.
return path;
}
Float lineThickness = std::max(NS_round(aParams.lineSize.height), 1.0);
// The block-direction position should be set to the middle of the line.
if (aParams.vertical) {
rect.x += lineThickness / 2;
path = Rect(rect.TopLeft() - Point(lineThickness / 2, 0.0),
Size(lineThickness, rect.Height()));
} else {
rect.y += lineThickness / 2;
path = Rect(rect.TopLeft() - Point(0.0, lineThickness / 2),
Size(rect.Width(), lineThickness));
}
return path;
}
nsRect
nsCSSRendering::GetTextDecorationRect(nsPresContext* aPresContext,
const DecorationRectParams& aParams)
{
NS_ASSERTION(aPresContext, "aPresContext is null");
NS_ASSERTION(aParams.style != NS_STYLE_TEXT_DECORATION_STYLE_NONE,
"aStyle is none");
gfxRect rect = GetTextDecorationRectInternal(Point(0, 0), aParams);
// The rect values are already rounded to nearest device pixels.
nsRect r;
r.x = aPresContext->GfxUnitsToAppUnits(rect.X());
r.y = aPresContext->GfxUnitsToAppUnits(rect.Y());
r.width = aPresContext->GfxUnitsToAppUnits(rect.Width());
r.height = aPresContext->GfxUnitsToAppUnits(rect.Height());
return r;
}
gfxRect
nsCSSRendering::GetTextDecorationRectInternal(const Point& aPt,
const DecorationRectParams& aParams)
{
NS_ASSERTION(aParams.style <= NS_STYLE_TEXT_DECORATION_STYLE_WAVY,
"Invalid aStyle value");
if (aParams.style == NS_STYLE_TEXT_DECORATION_STYLE_NONE)
return gfxRect(0, 0, 0, 0);
bool canLiftUnderline = aParams.descentLimit >= 0.0;
gfxFloat iCoord = aParams.vertical ? aPt.y : aPt.x;
gfxFloat bCoord = aParams.vertical ? aPt.x : aPt.y;
// 'left' and 'right' are relative to the line, so for vertical writing modes
// they will actually become top and bottom of the rendered line.
// Similarly, aLineSize.width and .height are actually length and thickness
// of the line, which runs horizontally or vertically according to aVertical.
const gfxFloat left = floor(iCoord + 0.5),
right = floor(iCoord + aParams.lineSize.width + 0.5);
// We compute |r| as if for a horizontal text run, and then swap vertical
// and horizontal coordinates at the end if vertical was requested.
gfxRect r(left, 0, right - left, 0);
gfxFloat lineThickness = NS_round(aParams.lineSize.height);
lineThickness = std::max(lineThickness, 1.0);
gfxFloat ascent = NS_round(aParams.ascent);
gfxFloat descentLimit = floor(aParams.descentLimit);
gfxFloat suggestedMaxRectHeight = std::max(std::min(ascent, descentLimit), 1.0);
r.height = lineThickness;
if (aParams.style == NS_STYLE_TEXT_DECORATION_STYLE_DOUBLE) {
/**
* We will draw double line as:
*
* +-------------------------------------------+
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineThickness
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* | | ^
* | | | gap
* | | v
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| ^
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| | lineThickness
* |XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| v
* +-------------------------------------------+
*/
gfxFloat gap = NS_round(lineThickness / 2.0);
gap = std::max(gap, 1.0);
r.height = lineThickness * 2.0 + gap;
if (canLiftUnderline) {
if (r.Height() > suggestedMaxRectHeight) {
// Don't shrink the line height, because the thickness has some meaning.
// We can just shrink the gap at this time.
r.height = std::max(suggestedMaxRectHeight, lineThickness * 2.0 + 1.0);
}
}
} else if (aParams.style == NS_STYLE_TEXT_DECORATION_STYLE_WAVY) {
/**
* We will draw wavy line as:
*
* +-------------------------------------------+
* |XXXXX XXXXXX XXXXXX | ^
* |XXXXXX XXXXXXXX XXXXXXXX | | lineThickness
* |XXXXXXX XXXXXXXXXX XXXXXXXXXX| v
* | XXX XXX XXX XXX XX|
* | XXXXXXXXXX XXXXXXXXXX X|
* | XXXXXXXX XXXXXXXX |
* | XXXXXX XXXXXX |
* +-------------------------------------------+
*/
r.height = lineThickness > 2.0 ? lineThickness * 4.0 : lineThickness * 3.0;
if (canLiftUnderline) {
if (r.Height() > suggestedMaxRectHeight) {
// Don't shrink the line height even if there is not enough space,
// because the thickness has some meaning. E.g., the 1px wavy line and
// 2px wavy line can be used for different meaning in IME selections
// at same time.
r.height = std::max(suggestedMaxRectHeight, lineThickness * 2.0);
}
}
}
gfxFloat baseline = floor(bCoord + aParams.ascent + 0.5);
gfxFloat offset = 0.0;
switch (aParams.decoration) {
case NS_STYLE_TEXT_DECORATION_LINE_UNDERLINE:
offset = aParams.offset;
if (canLiftUnderline) {
if (descentLimit < -offset + r.Height()) {
// If we can ignore the offset and the decoration line is overflowing,
// we should align the bottom edge of the decoration line rect if it's
// possible. Otherwise, we should lift up the top edge of the rect as
// far as possible.
gfxFloat offsetBottomAligned = -descentLimit + r.Height();
gfxFloat offsetTopAligned = 0.0;
offset = std::min(offsetBottomAligned, offsetTopAligned);
}
}
break;
case NS_STYLE_TEXT_DECORATION_LINE_OVERLINE:
offset = aParams.offset - lineThickness + r.Height();
break;
case NS_STYLE_TEXT_DECORATION_LINE_LINE_THROUGH: {
gfxFloat extra = floor(r.Height() / 2.0 + 0.5);
extra = std::max(extra, lineThickness);
offset = aParams.offset - lineThickness + extra;
break;
}
default:
NS_ERROR("Invalid decoration value!");
}
if (aParams.vertical) {
r.y = baseline + floor(offset + 0.5);
Swap(r.x, r.y);
Swap(r.width, r.height);
} else {
r.y = baseline - floor(offset + 0.5);
}
return r;
}
// ------------------
// ImageRenderer
// ------------------
nsImageRenderer::nsImageRenderer(nsIFrame* aForFrame,
const nsStyleImage* aImage,
uint32_t aFlags)
: mForFrame(aForFrame)
, mImage(aImage)
, mType(aImage->GetType())
, mImageContainer(nullptr)
, mGradientData(nullptr)
, mPaintServerFrame(nullptr)
, mPrepareResult(DrawResult::NOT_READY)
, mSize(0, 0)
, mFlags(aFlags)
, mExtendMode(ExtendMode::CLAMP)
, mMaskOp(NS_STYLE_MASK_MODE_MATCH_SOURCE)
{
}
nsImageRenderer::~nsImageRenderer()
{
}
static bool
ShouldTreatAsCompleteDueToSyncDecode(const nsStyleImage* aImage,
uint32_t aFlags)
{
if (!(aFlags & nsImageRenderer::FLAG_SYNC_DECODE_IMAGES)) {
return false;
}
if (aImage->GetType() != eStyleImageType_Image) {
return false;
}
imgRequestProxy* req = aImage->GetImageData();
if (!req) {
return false;
}
uint32_t status = 0;
if (NS_FAILED(req->GetImageStatus(&status))) {
return false;
}
if (status & imgIRequest::STATUS_ERROR) {
// The image is "complete" since it's a corrupt image. If we created an
// imgIContainer at all, return true.
nsCOMPtr<imgIContainer> image;
req->GetImage(getter_AddRefs(image));
return bool(image);
}
if (!(status & imgIRequest::STATUS_LOAD_COMPLETE)) {
// We must have loaded all of the image's data and the size must be
// available, or else sync decoding won't be able to decode the image.
return false;
}
return true;
}
bool
nsImageRenderer::PrepareImage()
{
if (mImage->IsEmpty()) {
mPrepareResult = DrawResult::BAD_IMAGE;
return false;
}
if (!mImage->IsComplete()) {
// Make sure the image is actually decoding.
mImage->StartDecoding();
// Check again to see if we finished.
// We cannot prepare the image for rendering if it is not fully loaded.
// Special case: If we requested a sync decode and the image has loaded, push
// on through because the Draw() will do a sync decode then.
if (!mImage->IsComplete() &&
!ShouldTreatAsCompleteDueToSyncDecode(mImage, mFlags)) {
mPrepareResult = DrawResult::NOT_READY;
return false;
}
}
switch (mType) {
case eStyleImageType_Image: {
MOZ_ASSERT(mImage->GetImageData(),
"must have image data, since we checked IsEmpty above");
nsCOMPtr<imgIContainer> srcImage;
DebugOnly<nsresult> rv =
mImage->GetImageData()->GetImage(getter_AddRefs(srcImage));
MOZ_ASSERT(NS_SUCCEEDED(rv) && srcImage,
"If GetImage() is failing, mImage->IsComplete() "
"should have returned false");
if (!mImage->GetCropRect()) {
mImageContainer.swap(srcImage);
} else {
nsIntRect actualCropRect;
bool isEntireImage;
bool success =
mImage->ComputeActualCropRect(actualCropRect, &isEntireImage);
NS_ASSERTION(success, "ComputeActualCropRect() should not fail here");
if (!success || actualCropRect.IsEmpty()) {
// The cropped image has zero size
mPrepareResult = DrawResult::BAD_IMAGE;
return false;
}
if (isEntireImage) {
// The cropped image is identical to the source image
mImageContainer.swap(srcImage);
} else {
nsCOMPtr<imgIContainer> subImage = ImageOps::Clip(srcImage,
actualCropRect,
Nothing());
mImageContainer.swap(subImage);
}
}
mPrepareResult = DrawResult::SUCCESS;
break;
}
case eStyleImageType_Gradient:
mGradientData = mImage->GetGradientData();
mPrepareResult = DrawResult::SUCCESS;
break;
case eStyleImageType_Element:
{
nsAutoString elementId =
NS_LITERAL_STRING("#") + nsDependentString(mImage->GetElementId());
nsCOMPtr<nsIURI> targetURI;
nsCOMPtr<nsIURI> base = mForFrame->GetContent()->GetBaseURI();
nsContentUtils::NewURIWithDocumentCharset(getter_AddRefs(targetURI), elementId,
mForFrame->GetContent()->GetUncomposedDoc(), base);
nsSVGPaintingProperty* property = nsSVGEffects::GetPaintingPropertyForURI(
targetURI, mForFrame->FirstContinuation(),
nsSVGEffects::BackgroundImageProperty());
if (!property) {
mPrepareResult = DrawResult::BAD_IMAGE;
return false;
}
// If the referenced element is an <img>, <canvas>, or <video> element,
// prefer SurfaceFromElement as it's more reliable.
mImageElementSurface =
nsLayoutUtils::SurfaceFromElement(property->GetReferencedElement());
if (!mImageElementSurface.GetSourceSurface()) {
mPaintServerFrame = property->GetReferencedFrame();
if (!mPaintServerFrame) {
mPrepareResult = DrawResult::BAD_IMAGE;
return false;
}
}
mPrepareResult = DrawResult::SUCCESS;
break;
}
case eStyleImageType_Null:
default:
break;
}
return IsReady();
}
nsSize
CSSSizeOrRatio::ComputeConcreteSize() const
{
NS_ASSERTION(CanComputeConcreteSize(), "Cannot compute");
if (mHasWidth && mHasHeight) {
return nsSize(mWidth, mHeight);
}
if (mHasWidth) {
nscoord height = NSCoordSaturatingNonnegativeMultiply(
mWidth,
double(mRatio.height) / mRatio.width);
return nsSize(mWidth, height);
}
MOZ_ASSERT(mHasHeight);
nscoord width = NSCoordSaturatingNonnegativeMultiply(
mHeight,
double(mRatio.width) / mRatio.height);
return nsSize(width, mHeight);
}
CSSSizeOrRatio
nsImageRenderer::ComputeIntrinsicSize()
{
NS_ASSERTION(IsReady(), "Ensure PrepareImage() has returned true "
"before calling me");
CSSSizeOrRatio result;
switch (mType) {
case eStyleImageType_Image:
{
bool haveWidth, haveHeight;
CSSIntSize imageIntSize;
nsLayoutUtils::ComputeSizeForDrawing(mImageContainer, imageIntSize,
result.mRatio, haveWidth, haveHeight);
if (haveWidth) {
result.SetWidth(nsPresContext::CSSPixelsToAppUnits(imageIntSize.width));
}
if (haveHeight) {
result.SetHeight(nsPresContext::CSSPixelsToAppUnits(imageIntSize.height));
}
break;
}
case eStyleImageType_Element:
{
// XXX element() should have the width/height of the referenced element,
// and that element's ratio, if it matches. If it doesn't match, it
// should have no width/height or ratio. See element() in CSS images:
// <http://dev.w3.org/csswg/css-images-4/#element-notation>.
// Make sure to change nsStyleImageLayers::Size::DependsOnFrameSize
// when fixing this!
if (mPaintServerFrame) {
// SVG images have no intrinsic size
if (!mPaintServerFrame->IsFrameOfType(nsIFrame::eSVG)) {
// The intrinsic image size for a generic nsIFrame paint server is
// the union of the border-box rects of all of its continuations,
// rounded to device pixels.
int32_t appUnitsPerDevPixel =
mForFrame->PresContext()->AppUnitsPerDevPixel();
result.SetSize(
IntSizeToAppUnits(
nsSVGIntegrationUtils::GetContinuationUnionSize(mPaintServerFrame).
ToNearestPixels(appUnitsPerDevPixel),
appUnitsPerDevPixel));
}
} else {
NS_ASSERTION(mImageElementSurface.GetSourceSurface(),
"Surface should be ready.");
IntSize surfaceSize = mImageElementSurface.mSize;
result.SetSize(
nsSize(nsPresContext::CSSPixelsToAppUnits(surfaceSize.width),
nsPresContext::CSSPixelsToAppUnits(surfaceSize.height)));
}
break;
}
case eStyleImageType_Gradient:
// Per <http://dev.w3.org/csswg/css3-images/#gradients>, gradients have no
// intrinsic dimensions.
case eStyleImageType_Null:
default:
break;
}
return result;
}
/* static */ nsSize
nsImageRenderer::ComputeConcreteSize(const CSSSizeOrRatio& aSpecifiedSize,
const CSSSizeOrRatio& aIntrinsicSize,
const nsSize& aDefaultSize)
{
// The specified size is fully specified, just use that
if (aSpecifiedSize.IsConcrete()) {
return aSpecifiedSize.ComputeConcreteSize();
}
MOZ_ASSERT(!aSpecifiedSize.mHasWidth || !aSpecifiedSize.mHasHeight);
if (!aSpecifiedSize.mHasWidth && !aSpecifiedSize.mHasHeight) {
// no specified size, try using the intrinsic size
if (aIntrinsicSize.CanComputeConcreteSize()) {
return aIntrinsicSize.ComputeConcreteSize();
}
if (aIntrinsicSize.mHasWidth) {
return nsSize(aIntrinsicSize.mWidth, aDefaultSize.height);
}
if (aIntrinsicSize.mHasHeight) {
return nsSize(aDefaultSize.width, aIntrinsicSize.mHeight);
}
// couldn't use the intrinsic size either, revert to using the default size
return ComputeConstrainedSize(aDefaultSize,
aIntrinsicSize.mRatio,
CONTAIN);
}
MOZ_ASSERT(aSpecifiedSize.mHasWidth || aSpecifiedSize.mHasHeight);
// The specified height is partial, try to compute the missing part.
if (aSpecifiedSize.mHasWidth) {
nscoord height;
if (aIntrinsicSize.HasRatio()) {
height = NSCoordSaturatingNonnegativeMultiply(
aSpecifiedSize.mWidth,
double(aIntrinsicSize.mRatio.height) / aIntrinsicSize.mRatio.width);
} else if (aIntrinsicSize.mHasHeight) {
height = aIntrinsicSize.mHeight;
} else {
height = aDefaultSize.height;
}
return nsSize(aSpecifiedSize.mWidth, height);
}
MOZ_ASSERT(aSpecifiedSize.mHasHeight);
nscoord width;
if (aIntrinsicSize.HasRatio()) {
width = NSCoordSaturatingNonnegativeMultiply(
aSpecifiedSize.mHeight,
double(aIntrinsicSize.mRatio.width) / aIntrinsicSize.mRatio.height);
} else if (aIntrinsicSize.mHasWidth) {
width = aIntrinsicSize.mWidth;
} else {
width = aDefaultSize.width;
}
return nsSize(width, aSpecifiedSize.mHeight);
}
/* static */ nsSize
nsImageRenderer::ComputeConstrainedSize(const nsSize& aConstrainingSize,
const nsSize& aIntrinsicRatio,
FitType aFitType)
{
if (aIntrinsicRatio.width <= 0 && aIntrinsicRatio.height <= 0) {
return aConstrainingSize;
}
float scaleX = double(aConstrainingSize.width) / aIntrinsicRatio.width;
float scaleY = double(aConstrainingSize.height) / aIntrinsicRatio.height;
nsSize size;
if ((aFitType == CONTAIN) == (scaleX < scaleY)) {
size.width = aConstrainingSize.width;
size.height = NSCoordSaturatingNonnegativeMultiply(
aIntrinsicRatio.height, scaleX);
// If we're reducing the size by less than one css pixel, then just use the
// constraining size.
if (aFitType == CONTAIN && aConstrainingSize.height - size.height < nsPresContext::AppUnitsPerCSSPixel()) {
size.height = aConstrainingSize.height;
}
} else {
size.width = NSCoordSaturatingNonnegativeMultiply(
aIntrinsicRatio.width, scaleY);
if (aFitType == CONTAIN && aConstrainingSize.width - size.width < nsPresContext::AppUnitsPerCSSPixel()) {
size.width = aConstrainingSize.width;
}
size.height = aConstrainingSize.height;
}
return size;
}
/**
* mSize is the image's "preferred" size for this particular rendering, while
* the drawn (aka concrete) size is the actual rendered size after accounting
* for background-size etc.. The preferred size is most often the image's
* intrinsic dimensions. But for images with incomplete intrinsic dimensions,
* the preferred size varies, depending on the specified and default sizes, see
* nsImageRenderer::Compute*Size.
*
* This distinction is necessary because the components of a vector image are
* specified with respect to its preferred size for a rendering situation, not
* to its actual rendered size. For example, consider a 4px wide background
* vector image with no height which contains a left-aligned
* 2px wide black rectangle with height 100%. If the background-size width is
* auto (or 4px), the vector image will render 4px wide, and the black rectangle
* will be 2px wide. If the background-size width is 8px, the vector image will
* render 8px wide, and the black rectangle will be 4px wide -- *not* 2px wide.
* In both cases mSize.width will be 4px; but in the first case the returned
* width will be 4px, while in the second case the returned width will be 8px.
*/
void
nsImageRenderer::SetPreferredSize(const CSSSizeOrRatio& aIntrinsicSize,
const nsSize& aDefaultSize)
{
mSize.width = aIntrinsicSize.mHasWidth
? aIntrinsicSize.mWidth
: aDefaultSize.width;
mSize.height = aIntrinsicSize.mHasHeight
? aIntrinsicSize.mHeight
: aDefaultSize.height;
}
// Convert from nsImageRenderer flags to the flags we want to use for drawing in
// the imgIContainer namespace.
static uint32_t
ConvertImageRendererToDrawFlags(uint32_t aImageRendererFlags)
{
uint32_t drawFlags = imgIContainer::FLAG_NONE;
if (aImageRendererFlags & nsImageRenderer::FLAG_SYNC_DECODE_IMAGES) {
drawFlags |= imgIContainer::FLAG_SYNC_DECODE;
}
if (aImageRendererFlags & nsImageRenderer::FLAG_PAINTING_TO_WINDOW) {
drawFlags |= imgIContainer::FLAG_HIGH_QUALITY_SCALING;
}
return drawFlags;
}
/*
* SVG11: A luminanceToAlpha operation is equivalent to the following matrix operation: |
* | R' | | 0 0 0 0 0 | | R |
* | G' | | 0 0 0 0 0 | | G |
* | B' | = | 0 0 0 0 0 | * | B |
* | A' | | 0.2125 0.7154 0.0721 0 0 | | A |
* | 1 | | 0 0 0 0 1 | | 1 |
*/
static void
RGBALuminanceOperation(uint8_t *aData,
int32_t aStride,
const IntSize &aSize)
{
int32_t redFactor = 55; // 256 * 0.2125
int32_t greenFactor = 183; // 256 * 0.7154
int32_t blueFactor = 18; // 256 * 0.0721
for (int32_t y = 0; y < aSize.height; y++) {
uint32_t *pixel = (uint32_t*)(aData + aStride * y);
for (int32_t x = 0; x < aSize.width; x++) {
*pixel = (((((*pixel & 0x00FF0000) >> 16) * redFactor) +
(((*pixel & 0x0000FF00) >> 8) * greenFactor) +
((*pixel & 0x000000FF) * blueFactor)) >> 8) << 24;
pixel++;
}
}
}
DrawResult
nsImageRenderer::Draw(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
const nsRect& aDirtyRect,
const nsRect& aDest,
const nsRect& aFill,
const nsPoint& aAnchor,
const nsSize& aRepeatSize,
const CSSIntRect& aSrc)
{
if (!IsReady()) {
NS_NOTREACHED("Ensure PrepareImage() has returned true before calling me");
return DrawResult::TEMPORARY_ERROR;
}
if (aDest.IsEmpty() || aFill.IsEmpty() ||
mSize.width <= 0 || mSize.height <= 0) {
return DrawResult::SUCCESS;
}
SamplingFilter samplingFilter = nsLayoutUtils::GetSamplingFilterForFrame(mForFrame);
DrawResult result = DrawResult::SUCCESS;
RefPtr<gfxContext> ctx = aRenderingContext.ThebesContext();
IntRect tmpDTRect;
if (ctx->CurrentOp() != CompositionOp::OP_OVER || mMaskOp == NS_STYLE_MASK_MODE_LUMINANCE) {
gfxRect clipRect = ctx->GetClipExtents();
tmpDTRect = RoundedOut(ToRect(clipRect));
if (tmpDTRect.IsEmpty()) {
return DrawResult::SUCCESS;
}
RefPtr<DrawTarget> tempDT =
gfxPlatform::GetPlatform()->CreateSimilarSoftwareDrawTarget(ctx->GetDrawTarget(),
tmpDTRect.Size(),
SurfaceFormat::B8G8R8A8);
if (!tempDT || !tempDT->IsValid()) {
gfxDevCrash(LogReason::InvalidContext) << "ImageRenderer::Draw problem " << gfx::hexa(tempDT);
return DrawResult::TEMPORARY_ERROR;
}
tempDT->SetTransform(Matrix::Translation(-tmpDTRect.TopLeft()));
ctx = gfxContext::CreatePreservingTransformOrNull(tempDT);
if (!ctx) {
gfxDevCrash(LogReason::InvalidContext) << "ImageRenderer::Draw problem " << gfx::hexa(tempDT);
return DrawResult::TEMPORARY_ERROR;
}
}
switch (mType) {
case eStyleImageType_Image:
{
CSSIntSize imageSize(nsPresContext::AppUnitsToIntCSSPixels(mSize.width),
nsPresContext::AppUnitsToIntCSSPixels(mSize.height));
result =
nsLayoutUtils::DrawBackgroundImage(*ctx,
aPresContext,
mImageContainer, imageSize,
samplingFilter,
aDest, aFill, aRepeatSize,
aAnchor, aDirtyRect,
ConvertImageRendererToDrawFlags(mFlags),
mExtendMode);
break;
}
case eStyleImageType_Gradient:
{
nsCSSRendering::PaintGradient(aPresContext, aRenderingContext,
mGradientData, aDirtyRect,
aDest, aFill, aRepeatSize, aSrc, mSize);
break;
}
case eStyleImageType_Element:
{
RefPtr<gfxDrawable> drawable = DrawableForElement(aDest,
aRenderingContext);
if (!drawable) {
NS_WARNING("Could not create drawable for element");
return DrawResult::TEMPORARY_ERROR;
}
nsCOMPtr<imgIContainer> image(ImageOps::CreateFromDrawable(drawable));
result =
nsLayoutUtils::DrawImage(*ctx,
aPresContext, image,
samplingFilter, aDest, aFill, aAnchor, aDirtyRect,
ConvertImageRendererToDrawFlags(mFlags));
break;
}
case eStyleImageType_Null:
default:
break;
}
if (!tmpDTRect.IsEmpty()) {
RefPtr<SourceSurface> surf = ctx->GetDrawTarget()->Snapshot();
if (mMaskOp == NS_STYLE_MASK_MODE_LUMINANCE) {
RefPtr<DataSourceSurface> maskData = surf->GetDataSurface();
DataSourceSurface::MappedSurface map;
if (!maskData->Map(DataSourceSurface::MapType::WRITE, &map)) {
return result;
}
RGBALuminanceOperation(map.mData, map.mStride, maskData->GetSize());
maskData->Unmap();
surf = maskData;
}
DrawTarget* dt = aRenderingContext.ThebesContext()->GetDrawTarget();
dt->DrawSurface(surf, Rect(tmpDTRect.x, tmpDTRect.y, tmpDTRect.width, tmpDTRect.height),
Rect(0, 0, tmpDTRect.width, tmpDTRect.height),
DrawSurfaceOptions(SamplingFilter::POINT),
DrawOptions(1.0f, aRenderingContext.ThebesContext()->CurrentOp()));
}
return result;
}
already_AddRefed<gfxDrawable>
nsImageRenderer::DrawableForElement(const nsRect& aImageRect,
nsRenderingContext& aRenderingContext)
{
NS_ASSERTION(mType == eStyleImageType_Element,
"DrawableForElement only makes sense if backed by an element");
if (mPaintServerFrame) {
// XXX(seth): In order to not pass FLAG_SYNC_DECODE_IMAGES here,
// DrawableFromPaintServer would have to return a DrawResult indicating
// whether any images could not be painted because they weren't fully
// decoded. Even always passing FLAG_SYNC_DECODE_IMAGES won't eliminate all
// problems, as it won't help if there are image which haven't finished
// loading, but it's better than nothing.
int32_t appUnitsPerDevPixel = mForFrame->PresContext()->AppUnitsPerDevPixel();
nsRect destRect = aImageRect - aImageRect.TopLeft();
nsIntSize roundedOut = destRect.ToOutsidePixels(appUnitsPerDevPixel).Size();
IntSize imageSize(roundedOut.width, roundedOut.height);
RefPtr<gfxDrawable> drawable =
nsSVGIntegrationUtils::DrawableFromPaintServer(
mPaintServerFrame, mForFrame, mSize, imageSize,
aRenderingContext.GetDrawTarget(),
aRenderingContext.ThebesContext()->CurrentMatrix(),
nsSVGIntegrationUtils::FLAG_SYNC_DECODE_IMAGES);
return drawable.forget();
}
NS_ASSERTION(mImageElementSurface.GetSourceSurface(), "Surface should be ready.");
RefPtr<gfxDrawable> drawable = new gfxSurfaceDrawable(
mImageElementSurface.GetSourceSurface().get(),
mImageElementSurface.mSize);
return drawable.forget();
}
DrawResult
nsImageRenderer::DrawBackground(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
const nsRect& aDest,
const nsRect& aFill,
const nsPoint& aAnchor,
const nsRect& aDirty,
const nsSize& aRepeatSize)
{
if (!IsReady()) {
NS_NOTREACHED("Ensure PrepareImage() has returned true before calling me");
return DrawResult::TEMPORARY_ERROR;
}
if (aDest.IsEmpty() || aFill.IsEmpty() ||
mSize.width <= 0 || mSize.height <= 0) {
return DrawResult::SUCCESS;
}
return Draw(aPresContext, aRenderingContext,
aDirty, aDest, aFill, aAnchor, aRepeatSize,
CSSIntRect(0, 0,
nsPresContext::AppUnitsToIntCSSPixels(mSize.width),
nsPresContext::AppUnitsToIntCSSPixels(mSize.height)));
}
/**
* Compute the size and position of the master copy of the image. I.e., a single
* tile used to fill the dest rect.
* aFill The destination rect to be filled
* aHFill and aVFill are the repeat patterns for the component -
* NS_STYLE_BORDER_IMAGE_REPEAT_* - i.e., how a tiling unit is used to fill aFill
* aUnitSize The size of the source rect in dest coords.
*/
static nsRect
ComputeTile(nsRect& aFill,
uint8_t aHFill,
uint8_t aVFill,
const nsSize& aUnitSize,
nsSize& aRepeatSize)
{
nsRect tile;
switch (aHFill) {
case NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH:
tile.x = aFill.x;
tile.width = aFill.width;
aRepeatSize.width = tile.width;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_REPEAT:
tile.x = aFill.x + aFill.width/2 - aUnitSize.width/2;
tile.width = aUnitSize.width;
aRepeatSize.width = tile.width;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_ROUND:
tile.x = aFill.x;
tile.width = ComputeRoundedSize(aUnitSize.width, aFill.width);
aRepeatSize.width = tile.width;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_SPACE:
{
nscoord space;
aRepeatSize.width =
ComputeBorderSpacedRepeatSize(aUnitSize.width, aFill.width, space);
tile.x = aFill.x + space;
tile.width = aUnitSize.width;
aFill.x = tile.x;
aFill.width = aFill.width - space * 2;
}
break;
default:
NS_NOTREACHED("unrecognized border-image fill style");
}
switch (aVFill) {
case NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH:
tile.y = aFill.y;
tile.height = aFill.height;
aRepeatSize.height = tile.height;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_REPEAT:
tile.y = aFill.y + aFill.height/2 - aUnitSize.height/2;
tile.height = aUnitSize.height;
aRepeatSize.height = tile.height;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_ROUND:
tile.y = aFill.y;
tile.height = ComputeRoundedSize(aUnitSize.height, aFill.height);
aRepeatSize.height = tile.height;
break;
case NS_STYLE_BORDER_IMAGE_REPEAT_SPACE:
{
nscoord space;
aRepeatSize.height =
ComputeBorderSpacedRepeatSize(aUnitSize.height, aFill.height, space);
tile.y = aFill.y + space;
tile.height = aUnitSize.height;
aFill.y = tile.y;
aFill.height = aFill.height - space * 2;
}
break;
default:
NS_NOTREACHED("unrecognized border-image fill style");
}
return tile;
}
/**
* Returns true if the given set of arguments will require the tiles which fill
* the dest rect to be scaled from the source tile. See comment on ComputeTile
* for argument descriptions.
*/
static bool
RequiresScaling(const nsRect& aFill,
uint8_t aHFill,
uint8_t aVFill,
const nsSize& aUnitSize)
{
// If we have no tiling in either direction, we can skip the intermediate
// scaling step.
return (aHFill != NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH ||
aVFill != NS_STYLE_BORDER_IMAGE_REPEAT_STRETCH) &&
(aUnitSize.width != aFill.width ||
aUnitSize.height != aFill.height);
}
DrawResult
nsImageRenderer::DrawBorderImageComponent(nsPresContext* aPresContext,
nsRenderingContext& aRenderingContext,
const nsRect& aDirtyRect,
const nsRect& aFill,
const CSSIntRect& aSrc,
uint8_t aHFill,
uint8_t aVFill,
const nsSize& aUnitSize,
uint8_t aIndex,
const Maybe<nsSize>& aSVGViewportSize,
const bool aHasIntrinsicRatio)
{
if (!IsReady()) {
NS_NOTREACHED("Ensure PrepareImage() has returned true before calling me");
return DrawResult::BAD_ARGS;
}
if (aFill.IsEmpty() || aSrc.IsEmpty()) {
return DrawResult::SUCCESS;
}
if (mType == eStyleImageType_Image || mType == eStyleImageType_Element) {
nsCOMPtr<imgIContainer> subImage;
// To draw one portion of an image into a border component, we stretch that
// portion to match the size of that border component and then draw onto.
// However, preserveAspectRatio attribute of a SVG image may break this rule.
// To get correct rendering result, we add
// FLAG_FORCE_PRESERVEASPECTRATIO_NONE flag here, to tell mImage to ignore
// preserveAspectRatio attribute, and always do non-uniform stretch.
uint32_t drawFlags = ConvertImageRendererToDrawFlags(mFlags) |
imgIContainer::FLAG_FORCE_PRESERVEASPECTRATIO_NONE;
// For those SVG image sources which don't have fixed aspect ratio (i.e.
// without viewport size and viewBox), we should scale the source uniformly
// after the viewport size is decided by "Default Sizing Algorithm".
if (!aHasIntrinsicRatio) {
drawFlags = drawFlags | imgIContainer::FLAG_FORCE_UNIFORM_SCALING;
}
// Retrieve or create the subimage we'll draw.
nsIntRect srcRect(aSrc.x, aSrc.y, aSrc.width, aSrc.height);
if (mType == eStyleImageType_Image) {
if ((subImage = mImage->GetSubImage(aIndex)) == nullptr) {
subImage = ImageOps::Clip(mImageContainer, srcRect, aSVGViewportSize);
mImage->SetSubImage(aIndex, subImage);
}
} else {
// This path, for eStyleImageType_Element, is currently slower than it
// needs to be because we don't cache anything. (In particular, if we have
// to draw to a temporary surface inside ClippedImage, we don't cache that
// temporary surface since we immediately throw the ClippedImage we create
// here away.) However, if we did cache, we'd need to know when to
// invalidate that cache, and it's not clear that it's worth the trouble
// since using border-image with -moz-element is rare.
RefPtr<gfxDrawable> drawable = DrawableForElement(nsRect(nsPoint(), mSize),
aRenderingContext);
if (!drawable) {
NS_WARNING("Could not create drawable for element");
return DrawResult::TEMPORARY_ERROR;
}
nsCOMPtr<imgIContainer> image(ImageOps::CreateFromDrawable(drawable));
subImage = ImageOps::Clip(image, srcRect, aSVGViewportSize);
}
MOZ_ASSERT_IF(aSVGViewportSize,
subImage->GetType() == imgIContainer::TYPE_VECTOR);
SamplingFilter samplingFilter = nsLayoutUtils::GetSamplingFilterForFrame(mForFrame);
if (!RequiresScaling(aFill, aHFill, aVFill, aUnitSize)) {
return nsLayoutUtils::DrawSingleImage(*aRenderingContext.ThebesContext(),
aPresContext,
subImage,
samplingFilter,
aFill, aDirtyRect,
nullptr,
drawFlags);
}
nsSize repeatSize;
nsRect fillRect(aFill);
nsRect tile = ComputeTile(fillRect, aHFill, aVFill, aUnitSize, repeatSize);
CSSIntSize imageSize(srcRect.width, srcRect.height);
return nsLayoutUtils::DrawBackgroundImage(*aRenderingContext.ThebesContext(),
aPresContext,
subImage, imageSize, samplingFilter,
tile, fillRect, repeatSize,
tile.TopLeft(), aDirtyRect,
drawFlags,
ExtendMode::CLAMP);
}
nsSize repeatSize(aFill.Size());
nsRect fillRect(aFill);
nsRect destTile = RequiresScaling(fillRect, aHFill, aVFill, aUnitSize)
? ComputeTile(fillRect, aHFill, aVFill, aUnitSize, repeatSize)
: fillRect;
return Draw(aPresContext, aRenderingContext, aDirtyRect, destTile,
fillRect, destTile.TopLeft(), repeatSize, aSrc);
}
bool
nsImageRenderer::IsRasterImage()
{
if (mType != eStyleImageType_Image || !mImageContainer)
return false;
return mImageContainer->GetType() == imgIContainer::TYPE_RASTER;
}
bool
nsImageRenderer::IsAnimatedImage()
{
if (mType != eStyleImageType_Image || !mImageContainer)
return false;
bool animated = false;
if (NS_SUCCEEDED(mImageContainer->GetAnimated(&animated)) && animated)
return true;
return false;
}
already_AddRefed<imgIContainer>
nsImageRenderer::GetImage()
{
if (mType != eStyleImageType_Image || !mImageContainer) {
return nullptr;
}
nsCOMPtr<imgIContainer> image = mImageContainer;
return image.forget();
}
void
nsImageRenderer::PurgeCacheForViewportChange(
const Maybe<nsSize>& aSVGViewportSize, const bool aHasIntrinsicRatio)
{
// Check if we should flush the cached data - only vector images need to do
// the check since they might not have fixed ratio.
if (mImageContainer &&
mImageContainer->GetType() == imgIContainer::TYPE_VECTOR) {
mImage->PurgeCacheForViewportChange(aSVGViewportSize, aHasIntrinsicRatio);
}
}
#define MAX_BLUR_RADIUS 300
#define MAX_SPREAD_RADIUS 50
static inline gfxPoint ComputeBlurStdDev(nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel,
gfxFloat aScaleX,
gfxFloat aScaleY)
{
// http://dev.w3.org/csswg/css3-background/#box-shadow says that the
// standard deviation of the blur should be half the given blur value.
gfxFloat blurStdDev = gfxFloat(aBlurRadius) / gfxFloat(aAppUnitsPerDevPixel);
return gfxPoint(std::min((blurStdDev * aScaleX),
gfxFloat(MAX_BLUR_RADIUS)) / 2.0,
std::min((blurStdDev * aScaleY),
gfxFloat(MAX_BLUR_RADIUS)) / 2.0);
}
static inline IntSize
ComputeBlurRadius(nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel,
gfxFloat aScaleX = 1.0,
gfxFloat aScaleY = 1.0)
{
gfxPoint scaledBlurStdDev = ComputeBlurStdDev(aBlurRadius, aAppUnitsPerDevPixel,
aScaleX, aScaleY);
return
gfxAlphaBoxBlur::CalculateBlurRadius(scaledBlurStdDev);
}
// -----
// nsContextBoxBlur
// -----
gfxContext*
nsContextBoxBlur::Init(const nsRect& aRect, nscoord aSpreadRadius,
nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel,
gfxContext* aDestinationCtx,
const nsRect& aDirtyRect,
const gfxRect* aSkipRect,
uint32_t aFlags)
{
if (aRect.IsEmpty()) {
mContext = nullptr;
return nullptr;
}
IntSize blurRadius;
IntSize spreadRadius;
GetBlurAndSpreadRadius(aDestinationCtx->GetDrawTarget(), aAppUnitsPerDevPixel,
aBlurRadius, aSpreadRadius,
blurRadius, spreadRadius);
mDestinationCtx = aDestinationCtx;
// If not blurring, draw directly onto the destination device
if (blurRadius.width <= 0 && blurRadius.height <= 0 &&
spreadRadius.width <= 0 && spreadRadius.height <= 0 &&
!(aFlags & FORCE_MASK)) {
mContext = aDestinationCtx;
return mContext;
}
// Convert from app units to device pixels
gfxRect rect = nsLayoutUtils::RectToGfxRect(aRect, aAppUnitsPerDevPixel);
gfxRect dirtyRect =
nsLayoutUtils::RectToGfxRect(aDirtyRect, aAppUnitsPerDevPixel);
dirtyRect.RoundOut();
gfxMatrix transform = aDestinationCtx->CurrentMatrix();
rect = transform.TransformBounds(rect);
mPreTransformed = !transform.IsIdentity();
// Create the temporary surface for blurring
dirtyRect = transform.TransformBounds(dirtyRect);
if (aSkipRect) {
gfxRect skipRect = transform.TransformBounds(*aSkipRect);
mContext = mAlphaBoxBlur.Init(aDestinationCtx, rect, spreadRadius,
blurRadius, &dirtyRect, &skipRect);
} else {
mContext = mAlphaBoxBlur.Init(aDestinationCtx, rect, spreadRadius,
blurRadius, &dirtyRect, nullptr);
}
if (mContext) {
// we don't need to blur if skipRect is equal to rect
// and mContext will be nullptr
mContext->Multiply(transform);
}
return mContext;
}
void
nsContextBoxBlur::DoPaint()
{
if (mContext == mDestinationCtx) {
return;
}
gfxContextMatrixAutoSaveRestore saveMatrix(mDestinationCtx);
if (mPreTransformed) {
mDestinationCtx->SetMatrix(gfxMatrix());
}
mAlphaBoxBlur.Paint(mDestinationCtx);
}
gfxContext*
nsContextBoxBlur::GetContext()
{
return mContext;
}
/* static */ nsMargin
nsContextBoxBlur::GetBlurRadiusMargin(nscoord aBlurRadius,
int32_t aAppUnitsPerDevPixel)
{
IntSize blurRadius = ComputeBlurRadius(aBlurRadius, aAppUnitsPerDevPixel);
nsMargin result;
result.top = result.bottom = blurRadius.height * aAppUnitsPerDevPixel;
result.left = result.right = blurRadius.width * aAppUnitsPerDevPixel;
return result;
}
/* static */ void
nsContextBoxBlur::BlurRectangle(gfxContext* aDestinationCtx,
const nsRect& aRect,
int32_t aAppUnitsPerDevPixel,
RectCornerRadii* aCornerRadii,
nscoord aBlurRadius,
const Color& aShadowColor,
const nsRect& aDirtyRect,
const gfxRect& aSkipRect)
{
DrawTarget& aDestDrawTarget = *aDestinationCtx->GetDrawTarget();
if (aRect.IsEmpty()) {
return;
}
Rect shadowGfxRect = NSRectToRect(aRect, aAppUnitsPerDevPixel);
if (aBlurRadius <= 0) {
ColorPattern color(ToDeviceColor(aShadowColor));
if (aCornerRadii) {
RefPtr<Path> roundedRect = MakePathForRoundedRect(aDestDrawTarget,
shadowGfxRect,
*aCornerRadii);
aDestDrawTarget.Fill(roundedRect, color);
} else {
aDestDrawTarget.FillRect(shadowGfxRect, color);
}
return;
}
gfxFloat scaleX = 1;
gfxFloat scaleY = 1;
// Do blurs in device space when possible.
// Chrome/Skia always does the blurs in device space
// and will sometimes get incorrect results (e.g. rotated blurs)
gfxMatrix transform = aDestinationCtx->CurrentMatrix();
// XXX: we could probably handle negative scales but for now it's easier just to fallback
if (!transform.HasNonAxisAlignedTransform() && transform._11 > 0.0 && transform._22 > 0.0) {
scaleX = transform._11;
scaleY = transform._22;
aDestinationCtx->SetMatrix(gfxMatrix());
} else {
transform = gfxMatrix();
}
gfxPoint blurStdDev = ComputeBlurStdDev(aBlurRadius, aAppUnitsPerDevPixel, scaleX, scaleY);
gfxRect dirtyRect =
nsLayoutUtils::RectToGfxRect(aDirtyRect, aAppUnitsPerDevPixel);
dirtyRect.RoundOut();
gfxRect shadowThebesRect = transform.TransformBounds(ThebesRect(shadowGfxRect));
dirtyRect = transform.TransformBounds(dirtyRect);
gfxRect skipRect = transform.TransformBounds(aSkipRect);
if (aCornerRadii) {
aCornerRadii->Scale(scaleX, scaleY);
}
gfxAlphaBoxBlur::BlurRectangle(aDestinationCtx,
shadowThebesRect,
aCornerRadii,
blurStdDev,
aShadowColor,
dirtyRect,
skipRect);
}
/* static */ void
nsContextBoxBlur::GetBlurAndSpreadRadius(DrawTarget* aDestDrawTarget,
int32_t aAppUnitsPerDevPixel,
nscoord aBlurRadius,
nscoord aSpreadRadius,
IntSize& aOutBlurRadius,
IntSize& aOutSpreadRadius,
bool aConstrainSpreadRadius)
{
// Do blurs in device space when possible.
// Chrome/Skia always does the blurs in device space
// and will sometimes get incorrect results (e.g. rotated blurs)
Matrix transform = aDestDrawTarget->GetTransform();
// XXX: we could probably handle negative scales but for now it's easier just to fallback
gfxFloat scaleX, scaleY;
if (transform.HasNonAxisAlignedTransform() || transform._11 <= 0.0 || transform._22 <= 0.0) {
scaleX = 1;
scaleY = 1;
} else {
scaleX = transform._11;
scaleY = transform._22;
}
// compute a large or smaller blur radius
aOutBlurRadius = ComputeBlurRadius(aBlurRadius, aAppUnitsPerDevPixel, scaleX, scaleY);
aOutSpreadRadius =
IntSize(int32_t(aSpreadRadius * scaleX / aAppUnitsPerDevPixel),
int32_t(aSpreadRadius * scaleY / aAppUnitsPerDevPixel));
if (aConstrainSpreadRadius) {
aOutSpreadRadius.width = std::min(aOutSpreadRadius.width, int32_t(MAX_SPREAD_RADIUS));
aOutSpreadRadius.height = std::min(aOutSpreadRadius.height, int32_t(MAX_SPREAD_RADIUS));
}
}
/* static */ bool
nsContextBoxBlur::InsetBoxBlur(gfxContext* aDestinationCtx,
Rect aDestinationRect,
Rect aShadowClipRect,
Color& aShadowColor,
nscoord aBlurRadiusAppUnits,
nscoord aSpreadDistanceAppUnits,
int32_t aAppUnitsPerDevPixel,
bool aHasBorderRadius,
RectCornerRadii& aInnerClipRectRadii,
Rect aSkipRect, Point aShadowOffset)
{
if (aDestinationRect.IsEmpty()) {
mContext = nullptr;
return false;
}
gfxContextAutoSaveRestore autoRestore(aDestinationCtx);
IntSize blurRadius;
IntSize spreadRadius;
// Convert the blur and spread radius to device pixels
bool constrainSpreadRadius = false;
GetBlurAndSpreadRadius(aDestinationCtx->GetDrawTarget(), aAppUnitsPerDevPixel,
aBlurRadiusAppUnits, aSpreadDistanceAppUnits,
blurRadius, spreadRadius, constrainSpreadRadius);
// The blur and spread radius are scaled already, so scale all
// input data to the blur. This way, we don't have to scale the min
// inset blur to the invert of the dest context, then rescale it back
// when we draw to the destination surface.
gfxSize scale = aDestinationCtx->CurrentMatrix().ScaleFactors(true);
Matrix transform = ToMatrix(aDestinationCtx->CurrentMatrix());
// XXX: we could probably handle negative scales but for now it's easier just to fallback
if (!transform.HasNonAxisAlignedTransform() && transform._11 > 0.0 && transform._22 > 0.0) {
// If we don't have a rotation, we're pre-transforming all the rects.
aDestinationCtx->SetMatrix(gfxMatrix());
} else {
// Don't touch anything, we have a rotation.
transform = Matrix();
}
Rect transformedDestRect = transform.TransformBounds(aDestinationRect);
Rect transformedShadowClipRect = transform.TransformBounds(aShadowClipRect);
Rect transformedSkipRect = transform.TransformBounds(aSkipRect);
transformedDestRect.Round();
transformedShadowClipRect.Round();
transformedSkipRect.RoundIn();
for (size_t i = 0; i < 4; i++) {
aInnerClipRectRadii[i].width = std::floor(scale.width * aInnerClipRectRadii[i].width);
aInnerClipRectRadii[i].height = std::floor(scale.height * aInnerClipRectRadii[i].height);
}
mAlphaBoxBlur.BlurInsetBox(aDestinationCtx, transformedDestRect,
transformedShadowClipRect,
blurRadius, aShadowColor,
aHasBorderRadius ? &aInnerClipRectRadii : nullptr,
transformedSkipRect, aShadowOffset);
return true;
}