зеркало из https://github.com/mozilla/gecko-dev.git
368 строки
10 KiB
JavaScript
368 строки
10 KiB
JavaScript
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
"use strict";
|
|
|
|
const {
|
|
immutableUpdate,
|
|
} = require("resource://devtools/shared/ThreadSafeDevToolsUtils.js");
|
|
const {
|
|
Visitor,
|
|
walk,
|
|
} = require("resource://devtools/shared/heapsnapshot/CensusUtils.js");
|
|
const {
|
|
deduplicatePaths,
|
|
} = require("resource://devtools/shared/heapsnapshot/shortest-paths");
|
|
|
|
const DEFAULT_MAX_DEPTH = 4;
|
|
const DEFAULT_MAX_SIBLINGS = 15;
|
|
const DEFAULT_MAX_NUM_PATHS = 5;
|
|
|
|
/**
|
|
* A single node in a dominator tree.
|
|
*
|
|
* @param {NodeId} nodeId
|
|
* @param {NodeSize} retainedSize
|
|
*/
|
|
function DominatorTreeNode(nodeId, label, shallowSize, retainedSize) {
|
|
// The id of this node.
|
|
this.nodeId = nodeId;
|
|
|
|
// The label structure generated by describing the given node.
|
|
this.label = label;
|
|
|
|
// The shallow size of this node.
|
|
this.shallowSize = shallowSize;
|
|
|
|
// The retained size of this node.
|
|
this.retainedSize = retainedSize;
|
|
|
|
// The id of this node's parent or undefined if this node is the root.
|
|
this.parentId = undefined;
|
|
|
|
// An array of immediately dominated child `DominatorTreeNode`s, or undefined.
|
|
this.children = undefined;
|
|
|
|
// An object of the form returned by `deduplicatePaths`, encoding the set of
|
|
// the N shortest retaining paths for this node as a graph.
|
|
this.shortestPaths = undefined;
|
|
|
|
// True iff the `children` property does not contain every immediately
|
|
// dominated node.
|
|
//
|
|
// * If children is an array and this property is true: the array does not
|
|
// contain the complete set of immediately dominated children.
|
|
// * If children is an array and this property is false: the array contains
|
|
// the complete set of immediately dominated children.
|
|
// * If children is undefined and this property is true: there exist
|
|
// immediately dominated children for this node, but they have not been
|
|
// loaded yet.
|
|
// * If children is undefined and this property is false: this node does not
|
|
// dominate any others and therefore has no children.
|
|
this.moreChildrenAvailable = true;
|
|
}
|
|
|
|
DominatorTreeNode.prototype = null;
|
|
|
|
module.exports = DominatorTreeNode;
|
|
|
|
/**
|
|
* Add `child` to the `parent`'s set of children.
|
|
*
|
|
* @param {DominatorTreeNode} parent
|
|
* @param {DominatorTreeNode} child
|
|
*/
|
|
DominatorTreeNode.addChild = function(parent, child) {
|
|
if (parent.children === undefined) {
|
|
parent.children = [];
|
|
}
|
|
|
|
parent.children.push(child);
|
|
child.parentId = parent.nodeId;
|
|
};
|
|
|
|
/**
|
|
* A Visitor that is used to generate a label for a node in the heap snapshot
|
|
* and get its shallow size as well while we are at it.
|
|
*/
|
|
function LabelAndShallowSizeVisitor() {
|
|
// As we walk the description, we accumulate edges in this array.
|
|
this._labelPieces = [];
|
|
|
|
// Once we reach the non-zero count leaf node in the description, we move the
|
|
// labelPieces here to signify that we no longer need to accumulate edges.
|
|
this._label = undefined;
|
|
|
|
// Once we reach the non-zero count leaf node in the description, we grab the
|
|
// shallow size and place it here.
|
|
this._shallowSize = 0;
|
|
}
|
|
|
|
DominatorTreeNode.LabelAndShallowSizeVisitor = LabelAndShallowSizeVisitor;
|
|
|
|
LabelAndShallowSizeVisitor.prototype = Object.create(Visitor);
|
|
|
|
/**
|
|
* @overrides Visitor.prototype.enter
|
|
*/
|
|
LabelAndShallowSizeVisitor.prototype.enter = function(breakdown, report, edge) {
|
|
if (this._labelPieces && edge) {
|
|
this._labelPieces.push(edge);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @overrides Visitor.prototype.exit
|
|
*/
|
|
LabelAndShallowSizeVisitor.prototype.exit = function(breakdown, report, edge) {
|
|
if (this._labelPieces && edge) {
|
|
this._labelPieces.pop();
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @overrides Visitor.prototype.count
|
|
*/
|
|
LabelAndShallowSizeVisitor.prototype.count = function(breakdown, report, edge) {
|
|
if (report.count === 0) {
|
|
return;
|
|
}
|
|
|
|
this._label = this._labelPieces;
|
|
this._labelPieces = undefined;
|
|
|
|
this._shallowSize = report.bytes;
|
|
};
|
|
|
|
/**
|
|
* Get the generated label structure accumulated by this visitor.
|
|
*
|
|
* @returns {Object}
|
|
*/
|
|
LabelAndShallowSizeVisitor.prototype.label = function() {
|
|
return this._label;
|
|
};
|
|
|
|
/**
|
|
* Get the shallow size of the node this visitor visited.
|
|
*
|
|
* @returns {Number}
|
|
*/
|
|
LabelAndShallowSizeVisitor.prototype.shallowSize = function() {
|
|
return this._shallowSize;
|
|
};
|
|
|
|
/**
|
|
* Generate a label structure for the node with the given id and grab its
|
|
* shallow size.
|
|
*
|
|
* What is a "label" structure? HeapSnapshot.describeNode essentially takes a
|
|
* census of a single node rather than the whole heap graph. The resulting
|
|
* report has only one count leaf that is non-zero. The label structure is the
|
|
* path in this report from the root to the non-zero count leaf.
|
|
*
|
|
* @param {Number} nodeId
|
|
* @param {HeapSnapshot} snapshot
|
|
* @param {Object} breakdown
|
|
*
|
|
* @returns {Object}
|
|
* An object with the following properties:
|
|
* - {Number} shallowSize
|
|
* - {Object} label
|
|
*/
|
|
DominatorTreeNode.getLabelAndShallowSize = function(
|
|
nodeId,
|
|
snapshot,
|
|
breakdown
|
|
) {
|
|
const description = snapshot.describeNode(breakdown, nodeId);
|
|
|
|
const visitor = new LabelAndShallowSizeVisitor();
|
|
walk(breakdown, description, visitor);
|
|
|
|
return {
|
|
label: visitor.label(),
|
|
shallowSize: visitor.shallowSize(),
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Do a partial traversal of the given dominator tree and convert it into a tree
|
|
* of `DominatorTreeNode`s. Dominator trees have a node for every node in the
|
|
* snapshot's heap graph, so we must not allocate a JS object for every node. It
|
|
* would be way too many and the node count is effectively unbounded.
|
|
*
|
|
* Go no deeper down the tree than `maxDepth` and only consider at most
|
|
* `maxSiblings` within any single node's children.
|
|
*
|
|
* @param {DominatorTree} dominatorTree
|
|
* @param {HeapSnapshot} snapshot
|
|
* @param {Object} breakdown
|
|
* @param {Number} maxDepth
|
|
* @param {Number} maxSiblings
|
|
*
|
|
* @returns {DominatorTreeNode}
|
|
*/
|
|
DominatorTreeNode.partialTraversal = function(
|
|
dominatorTree,
|
|
snapshot,
|
|
breakdown,
|
|
maxDepth = DEFAULT_MAX_DEPTH,
|
|
maxSiblings = DEFAULT_MAX_SIBLINGS
|
|
) {
|
|
function dfs(nodeId, depth) {
|
|
const { label, shallowSize } = DominatorTreeNode.getLabelAndShallowSize(
|
|
nodeId,
|
|
snapshot,
|
|
breakdown
|
|
);
|
|
const retainedSize = dominatorTree.getRetainedSize(nodeId);
|
|
const node = new DominatorTreeNode(
|
|
nodeId,
|
|
label,
|
|
shallowSize,
|
|
retainedSize
|
|
);
|
|
const childNodeIds = dominatorTree.getImmediatelyDominated(nodeId);
|
|
|
|
const newDepth = depth + 1;
|
|
if (newDepth < maxDepth) {
|
|
const endIdx = Math.min(childNodeIds.length, maxSiblings);
|
|
for (let i = 0; i < endIdx; i++) {
|
|
DominatorTreeNode.addChild(node, dfs(childNodeIds[i], newDepth));
|
|
}
|
|
node.moreChildrenAvailable = endIdx < childNodeIds.length;
|
|
} else {
|
|
node.moreChildrenAvailable = childNodeIds.length > 0;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
return dfs(dominatorTree.root, 0);
|
|
};
|
|
|
|
/**
|
|
* Insert more children into the given (partially complete) dominator tree.
|
|
*
|
|
* The tree is updated in an immutable and persistent manner: a new tree is
|
|
* returned, but all unmodified subtrees (which is most) are shared with the
|
|
* original tree. Only the modified nodes are re-allocated.
|
|
*
|
|
* @param {DominatorTreeNode} tree
|
|
* @param {Array<NodeId>} path
|
|
* @param {Array<DominatorTreeNode>} newChildren
|
|
* @param {Boolean} moreChildrenAvailable
|
|
*
|
|
* @returns {DominatorTreeNode}
|
|
*/
|
|
DominatorTreeNode.insert = function(
|
|
nodeTree,
|
|
path,
|
|
newChildren,
|
|
moreChildrenAvailable
|
|
) {
|
|
function insert(tree, i) {
|
|
if (tree.nodeId !== path[i]) {
|
|
return tree;
|
|
}
|
|
|
|
if (i == path.length - 1) {
|
|
return immutableUpdate(tree, {
|
|
children: (tree.children || []).concat(newChildren),
|
|
moreChildrenAvailable,
|
|
});
|
|
}
|
|
|
|
return tree.children
|
|
? immutableUpdate(tree, {
|
|
children: tree.children.map(c => insert(c, i + 1)),
|
|
})
|
|
: tree;
|
|
}
|
|
|
|
return insert(nodeTree, 0);
|
|
};
|
|
|
|
/**
|
|
* Get the new canonical node with the given `id` in `tree` that exists along
|
|
* `path`. If there is no such node along `path`, return null.
|
|
*
|
|
* This is useful if we have a reference to a now-outdated DominatorTreeNode due
|
|
* to a recent call to DominatorTreeNode.insert and want to get the up-to-date
|
|
* version. We don't have to walk the whole tree: if there is an updated version
|
|
* of the node then it *must* be along the path.
|
|
*
|
|
* @param {NodeId} id
|
|
* @param {DominatorTreeNode} tree
|
|
* @param {Array<NodeId>} path
|
|
*
|
|
* @returns {DominatorTreeNode|null}
|
|
*/
|
|
DominatorTreeNode.getNodeByIdAlongPath = function(id, tree, path) {
|
|
function find(node, i) {
|
|
if (!node || node.nodeId !== path[i]) {
|
|
return null;
|
|
}
|
|
|
|
if (node.nodeId === id) {
|
|
return node;
|
|
}
|
|
|
|
if (i === path.length - 1 || !node.children) {
|
|
return null;
|
|
}
|
|
|
|
const nextId = path[i + 1];
|
|
return find(node.children.find(c => c.nodeId === nextId), i + 1);
|
|
}
|
|
|
|
return find(tree, 0);
|
|
};
|
|
|
|
/**
|
|
* Find the shortest retaining paths for the given set of DominatorTreeNodes,
|
|
* and populate each node's `shortestPaths` property with them in place.
|
|
*
|
|
* @param {HeapSnapshot} snapshot
|
|
* @param {Object} breakdown
|
|
* @param {NodeId} start
|
|
* @param {Array<DominatorTreeNode>} treeNodes
|
|
* @param {Number} maxNumPaths
|
|
*/
|
|
DominatorTreeNode.attachShortestPaths = function(
|
|
snapshot,
|
|
breakdown,
|
|
start,
|
|
treeNodes,
|
|
maxNumPaths = DEFAULT_MAX_NUM_PATHS
|
|
) {
|
|
const idToTreeNode = new Map();
|
|
const targets = [];
|
|
for (const node of treeNodes) {
|
|
const id = node.nodeId;
|
|
idToTreeNode.set(id, node);
|
|
targets.push(id);
|
|
}
|
|
|
|
const shortestPaths = snapshot.computeShortestPaths(
|
|
start,
|
|
targets,
|
|
maxNumPaths
|
|
);
|
|
|
|
for (const [target, paths] of shortestPaths) {
|
|
const deduped = deduplicatePaths(target, paths);
|
|
deduped.nodes = deduped.nodes.map(id => {
|
|
const { label } = DominatorTreeNode.getLabelAndShallowSize(
|
|
id,
|
|
snapshot,
|
|
breakdown
|
|
);
|
|
return { id, label };
|
|
});
|
|
|
|
idToTreeNode.get(target).shortestPaths = deduped;
|
|
}
|
|
};
|