gecko-dev/mfbt/Vector.h

1189 строки
32 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* A type/length-parametrized vector class. */
#ifndef mozilla_Vector_h
#define mozilla_Vector_h
#include "mozilla/AllocPolicy.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/NullPtr.h"
#include "mozilla/ReentrancyGuard.h"
#include "mozilla/TemplateLib.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Util.h"
/* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4345)
#endif
namespace mozilla {
template<typename T, size_t N, class AllocPolicy, class ThisVector>
class VectorBase;
namespace detail {
/*
* Check that the given capacity wastes the minimal amount of space if
* allocated on the heap. This means that cap*sizeof(T) is as close to a
* power-of-two as possible. growStorageBy() is responsible for ensuring
* this.
*/
template<typename T>
static bool CapacityHasExcessSpace(size_t cap)
{
size_t size = cap * sizeof(T);
return RoundUpPow2(size) - size >= sizeof(T);
}
/*
* This template class provides a default implementation for vector operations
* when the element type is not known to be a POD, as judged by IsPod.
*/
template<typename T, size_t N, class AP, class ThisVector, bool IsPod>
struct VectorImpl
{
/* Destroys constructed objects in the range [begin, end). */
static inline void destroy(T* begin, T* end) {
for (T* p = begin; p < end; ++p)
p->~T();
}
/* Constructs objects in the uninitialized range [begin, end). */
static inline void initialize(T* begin, T* end) {
for (T* p = begin; p < end; ++p)
new(p) T();
}
/*
* Copy-constructs objects in the uninitialized range
* [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
*/
template<typename U>
static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) {
for (const U* p = srcbeg; p < srcend; ++p, ++dst)
new(dst) T(*p);
}
/*
* Move-constructs objects in the uninitialized range
* [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
*/
template<typename U>
static inline void moveConstruct(T* dst, const U* srcbeg, const U* srcend) {
for (const U* p = srcbeg; p < srcend; ++p, ++dst)
new(dst) T(Move(*p));
}
/*
* Copy-constructs objects in the uninitialized range [dst, dst+n) from the
* same object u.
*/
template<typename U>
static inline void copyConstructN(T* dst, size_t n, const U& u) {
for (T* end = dst + n; dst < end; ++dst)
new(dst) T(u);
}
/*
* Grows the given buffer to have capacity newCap, preserving the objects
* constructed in the range [begin, end) and updating v. Assumes that (1)
* newCap has not overflowed, and (2) multiplying newCap by sizeof(T) will
* not overflow.
*/
static inline bool
growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) {
MOZ_ASSERT(!v.usingInlineStorage());
MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap));
T* newbuf = reinterpret_cast<T*>(v.malloc_(newCap * sizeof(T)));
if (!newbuf)
return false;
T* dst = newbuf;
T* src = v.beginNoCheck();
for (; src < v.endNoCheck(); ++dst, ++src)
new(dst) T(Move(*src));
VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck());
v.free_(v.mBegin);
v.mBegin = newbuf;
/* v.mLength is unchanged. */
v.mCapacity = newCap;
return true;
}
};
/*
* This partial template specialization provides a default implementation for
* vector operations when the element type is known to be a POD, as judged by
* IsPod.
*/
template<typename T, size_t N, class AP, class ThisVector>
struct VectorImpl<T, N, AP, ThisVector, true>
{
static inline void destroy(T*, T*) {}
static inline void initialize(T* begin, T* end) {
/*
* You would think that memset would be a big win (or even break even)
* when we know T is a POD. But currently it's not. This is probably
* because |append| tends to be given small ranges and memset requires
* a function call that doesn't get inlined.
*
* memset(begin, 0, sizeof(T) * (end-begin));
*/
for (T* p = begin; p < end; ++p)
new(p) T();
}
template<typename U>
static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) {
/*
* See above memset comment. Also, notice that copyConstruct is
* currently templated (T != U), so memcpy won't work without
* requiring T == U.
*
* memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg));
*/
for (const U* p = srcbeg; p < srcend; ++p, ++dst)
*dst = *p;
}
template<typename U>
static inline void moveConstruct(T* dst, const U* srcbeg, const U* srcend) {
copyConstruct(dst, srcbeg, srcend);
}
static inline void copyConstructN(T* dst, size_t n, const T& t) {
for (T* end = dst + n; dst < end; ++dst)
*dst = t;
}
static inline bool
growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) {
MOZ_ASSERT(!v.usingInlineStorage());
MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap));
size_t oldSize = sizeof(T) * v.mCapacity;
size_t newSize = sizeof(T) * newCap;
T* newbuf = reinterpret_cast<T*>(v.realloc_(v.mBegin, oldSize, newSize));
if (!newbuf)
return false;
v.mBegin = newbuf;
/* v.mLength is unchanged. */
v.mCapacity = newCap;
return true;
}
};
} // namespace detail
/*
* A CRTP base class for vector-like classes. Unless you really really want
* your own vector class -- and you almost certainly don't -- you should use
* mozilla::Vector instead!
*
* See mozilla::Vector for interface requirements.
*/
template<typename T, size_t N, class AllocPolicy, class ThisVector>
class VectorBase : private AllocPolicy
{
/* utilities */
static const bool sElemIsPod = IsPod<T>::value;
typedef detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod> Impl;
friend struct detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod>;
bool growStorageBy(size_t incr);
bool convertToHeapStorage(size_t newCap);
/* magic constants */
static const int sMaxInlineBytes = 1024;
/* compute constants */
/*
* Consider element size to be 1 for buffer sizing if there are 0 inline
* elements. This allows us to compile when the definition of the element
* type is not visible here.
*
* Explicit specialization is only allowed at namespace scope, so in order
* to keep everything here, we use a dummy template parameter with partial
* specialization.
*/
template<int M, int Dummy>
struct ElemSize
{
static const size_t value = sizeof(T);
};
template<int Dummy>
struct ElemSize<0, Dummy>
{
static const size_t value = 1;
};
static const size_t sInlineCapacity =
tl::Min<N, sMaxInlineBytes / ElemSize<N, 0>::value>::value;
/* Calculate inline buffer size; avoid 0-sized array. */
static const size_t sInlineBytes =
tl::Max<1, sInlineCapacity * ElemSize<N, 0>::value>::value;
/* member data */
/*
* Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
* mBegin + mLength) hold valid constructed T objects. The range [mBegin +
* mLength, mBegin + mCapacity) holds uninitialized memory. The range
* [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
* previously allocated by a call to reserve().
*/
T* mBegin;
/* Number of elements in the vector. */
size_t mLength;
/* Max number of elements storable in the vector without resizing. */
size_t mCapacity;
#ifdef DEBUG
/* Max elements of reserved or used space in this vector. */
size_t mReserved;
#endif
/* Memory used for inline storage. */
AlignedStorage<sInlineBytes> storage;
#ifdef DEBUG
friend class ReentrancyGuard;
bool entered;
#endif
/* private accessors */
bool usingInlineStorage() const {
return mBegin == const_cast<VectorBase*>(this)->inlineStorage();
}
T* inlineStorage() {
return static_cast<T*>(storage.addr());
}
T* beginNoCheck() const {
return mBegin;
}
T* endNoCheck() {
return mBegin + mLength;
}
const T* endNoCheck() const {
return mBegin + mLength;
}
#ifdef DEBUG
size_t reserved() const {
MOZ_ASSERT(mReserved <= mCapacity);
MOZ_ASSERT(mLength <= mReserved);
return mReserved;
}
#endif
/* Append operations guaranteed to succeed due to pre-reserved space. */
template<typename U> void internalAppend(const U& u);
template<typename U, size_t O, class BP, class UV>
void internalAppendAll(const VectorBase<U, O, BP, UV>& u);
void internalAppendN(const T& t, size_t n);
template<typename U> void internalAppend(const U* begin, size_t length);
public:
static const size_t sMaxInlineStorage = N;
typedef T ElementType;
VectorBase(AllocPolicy = AllocPolicy());
VectorBase(MoveRef<ThisVector>); /* Move constructor. */
ThisVector& operator=(MoveRef<ThisVector>); /* Move assignment. */
~VectorBase();
/* accessors */
const AllocPolicy& allocPolicy() const {
return *this;
}
AllocPolicy& allocPolicy() {
return *this;
}
enum { InlineLength = N };
size_t length() const {
return mLength;
}
bool empty() const {
return mLength == 0;
}
size_t capacity() const {
return mCapacity;
}
T* begin() {
MOZ_ASSERT(!entered);
return mBegin;
}
const T* begin() const {
MOZ_ASSERT(!entered);
return mBegin;
}
T* end() {
MOZ_ASSERT(!entered);
return mBegin + mLength;
}
const T* end() const {
MOZ_ASSERT(!entered);
return mBegin + mLength;
}
T& operator[](size_t i) {
MOZ_ASSERT(!entered);
MOZ_ASSERT(i < mLength);
return begin()[i];
}
const T& operator[](size_t i) const {
MOZ_ASSERT(!entered);
MOZ_ASSERT(i < mLength);
return begin()[i];
}
T& back() {
MOZ_ASSERT(!entered);
MOZ_ASSERT(!empty());
return *(end() - 1);
}
const T& back() const {
MOZ_ASSERT(!entered);
MOZ_ASSERT(!empty());
return *(end() - 1);
}
class Range
{
friend class VectorBase;
T* cur_;
T* end_;
Range(T* cur, T* end) : cur_(cur), end_(end) {}
public:
Range() {}
bool empty() const { return cur_ == end_; }
size_t remain() const { return end_ - cur_; }
T& front() const { return *cur_; }
void popFront() { MOZ_ASSERT(!empty()); ++cur_; }
T popCopyFront() { MOZ_ASSERT(!empty()); return *cur_++; }
};
Range all() {
return Range(begin(), end());
}
/* mutators */
/**
* Given that the vector is empty and has no inline storage, grow to
* |capacity|.
*/
bool initCapacity(size_t request);
/**
* If reserve(length() + N) succeeds, the N next appends are guaranteed to
* succeed.
*/
bool reserve(size_t request);
/**
* Destroy elements in the range [end() - incr, end()). Does not deallocate
* or unreserve storage for those elements.
*/
void shrinkBy(size_t incr);
/** Grow the vector by incr elements. */
bool growBy(size_t incr);
/** Call shrinkBy or growBy based on whether newSize > length(). */
bool resize(size_t newLength);
/**
* Increase the length of the vector, but don't initialize the new elements
* -- leave them as uninitialized memory.
*/
bool growByUninitialized(size_t incr);
bool resizeUninitialized(size_t newLength);
/** Shorthand for shrinkBy(length()). */
void clear();
/** Clears and releases any heap-allocated storage. */
void clearAndFree();
/**
* If true, appending |needed| elements won't reallocate elements storage.
* This *doesn't* mean that infallibleAppend may be used! You still must
* reserve the extra space, even if this method indicates that appends won't
* need to reallocate elements storage.
*/
bool canAppendWithoutRealloc(size_t needed) const;
/**
* Potentially fallible append operations.
*
* The function templates that take an unspecified type U require a const T&
* or a MoveRef<T>. The MoveRef<T> variants move their operands into the
* vector, instead of copying them. If they fail, the operand is left
* unmoved.
*/
template<typename U> bool append(const U& u);
template<typename U, size_t O, class BP, class UV>
bool appendAll(const VectorBase<U, O, BP, UV>& u);
bool appendN(const T& t, size_t n);
template<typename U> bool append(const U* begin, const U* end);
template<typename U> bool append(const U* begin, size_t length);
/*
* Guaranteed-infallible append operations for use upon vectors whose
* memory has been pre-reserved. Don't use this if you haven't reserved the
* memory!
*/
template<typename U> void infallibleAppend(const U& u) {
internalAppend(u);
}
void infallibleAppendN(const T& t, size_t n) {
internalAppendN(t, n);
}
template<typename U> void infallibleAppend(const U* aBegin, const U* aEnd) {
internalAppend(aBegin, PointerRangeSize(aBegin, aEnd));
}
template<typename U> void infallibleAppend(const U* aBegin, size_t aLength) {
internalAppend(aBegin, aLength);
}
void popBack();
T popCopy();
/**
* Transfers ownership of the internal buffer used by this vector to the
* caller. (It's the caller's responsibility to properly deallocate this
* buffer, in accordance with this vector's AllocPolicy.) After this call,
* the vector is empty. Since the returned buffer may need to be allocated
* (if the elements are currently stored in-place), the call can fail,
* returning nullptr.
*
* N.B. Although a T*, only the range [0, length()) is constructed.
*/
T* extractRawBuffer();
/**
* Transfer ownership of an array of objects into the vector. The caller
* must have allocated the array in accordance with this vector's
* AllocPolicy.
*
* N.B. This call assumes that there are no uninitialized elements in the
* passed array.
*/
void replaceRawBuffer(T* p, size_t length);
/**
* Places |val| at position |p|, shifting existing elements from |p| onward
* one position higher. On success, |p| should not be reused because it'll
* be a dangling pointer if reallocation of the vector storage occurred; the
* return value should be used instead. On failure, nullptr is returned.
*
* Example usage:
*
* if (!(p = vec.insert(p, val)))
* <handle failure>
* <keep working with p>
*
* This is inherently a linear-time operation. Be careful!
*/
T* insert(T* p, const T& val);
/**
* Removes the element |t|, which must fall in the bounds [begin, end),
* shifting existing elements from |t + 1| onward one position lower.
*/
void erase(T* t);
/**
* Measure the size of the vector's heap-allocated storage.
*/
size_t sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const;
/**
* Like sizeOfExcludingThis, but also measures the size of the vector
* object (which must be heap-allocated) itself.
*/
size_t sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const;
void swap(ThisVector& other);
private:
VectorBase(const ThisVector&) MOZ_DELETE;
void operator=(const ThisVector&) MOZ_DELETE;
};
/* This does the re-entrancy check plus several other sanity checks. */
#define MOZ_REENTRANCY_GUARD_ET_AL \
ReentrancyGuard g(*this); \
MOZ_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \
MOZ_ASSERT(reserved() <= mCapacity); \
MOZ_ASSERT(mLength <= reserved()); \
MOZ_ASSERT(mLength <= mCapacity)
/* Vector Implementation */
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE
VectorBase<T, N, AP, TV>::VectorBase(AP ap)
: AP(ap),
mBegin(static_cast<T*>(storage.addr())),
mLength(0),
mCapacity(sInlineCapacity)
#ifdef DEBUG
, mReserved(sInlineCapacity),
entered(false)
#endif
{}
/* Move constructor. */
template<typename T, size_t N, class AllocPolicy, class TV>
MOZ_ALWAYS_INLINE
VectorBase<T, N, AllocPolicy, TV>::VectorBase(MoveRef<TV> rhs)
: AllocPolicy(rhs)
#ifdef DEBUG
, entered(false)
#endif
{
mLength = rhs->mLength;
mCapacity = rhs->mCapacity;
#ifdef DEBUG
mReserved = rhs->mReserved;
#endif
if (rhs->usingInlineStorage()) {
/* We can't move the buffer over in this case, so copy elements. */
mBegin = static_cast<T*>(storage.addr());
Impl::moveConstruct(mBegin, rhs->beginNoCheck(), rhs->endNoCheck());
/*
* Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are.
* The elements in its in-line storage still need to be destroyed.
*/
} else {
/*
* Take src's buffer, and turn src into an empty vector using
* in-line storage.
*/
mBegin = rhs->mBegin;
rhs->mBegin = static_cast<T*>(rhs->storage.addr());
rhs->mCapacity = sInlineCapacity;
rhs->mLength = 0;
#ifdef DEBUG
rhs->mReserved = sInlineCapacity;
#endif
}
}
/* Move assignment. */
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE
TV&
VectorBase<T, N, AP, TV>::operator=(MoveRef<TV> rhs)
{
TV* tv = static_cast<TV*>(this);
tv->~TV();
new(tv) TV(rhs);
return *tv;
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE
VectorBase<T, N, AP, TV>::~VectorBase()
{
MOZ_REENTRANCY_GUARD_ET_AL;
Impl::destroy(beginNoCheck(), endNoCheck());
if (!usingInlineStorage())
this->free_(beginNoCheck());
}
/*
* This function will create a new heap buffer with capacity newCap,
* move all elements in the inline buffer to this new buffer,
* and fail on OOM.
*/
template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::convertToHeapStorage(size_t newCap)
{
MOZ_ASSERT(usingInlineStorage());
/* Allocate buffer. */
MOZ_ASSERT(!detail::CapacityHasExcessSpace<T>(newCap));
T* newBuf = reinterpret_cast<T*>(this->malloc_(newCap * sizeof(T)));
if (!newBuf)
return false;
/* Copy inline elements into heap buffer. */
Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
Impl::destroy(beginNoCheck(), endNoCheck());
/* Switch in heap buffer. */
mBegin = newBuf;
/* mLength is unchanged. */
mCapacity = newCap;
return true;
}
template<typename T, size_t N, class AP, class TV>
MOZ_NEVER_INLINE bool
VectorBase<T, N, AP, TV>::growStorageBy(size_t incr)
{
MOZ_ASSERT(mLength + incr > mCapacity);
MOZ_ASSERT_IF(!usingInlineStorage(),
!detail::CapacityHasExcessSpace<T>(mCapacity));
/*
* When choosing a new capacity, its size should is as close to 2**N bytes
* as possible. 2**N-sized requests are best because they are unlikely to
* be rounded up by the allocator. Asking for a 2**N number of elements
* isn't as good, because if sizeof(T) is not a power-of-two that would
* result in a non-2**N request size.
*/
size_t newCap;
if (incr == 1) {
if (usingInlineStorage()) {
/* This case occurs in ~70--80% of the calls to this function. */
size_t newSize =
tl::RoundUpPow2<(sInlineCapacity + 1) * sizeof(T)>::value;
newCap = newSize / sizeof(T);
goto convert;
}
if (mLength == 0) {
/* This case occurs in ~0--10% of the calls to this function. */
newCap = 1;
goto grow;
}
/* This case occurs in ~15--20% of the calls to this function. */
/*
* Will mLength * 4 *sizeof(T) overflow? This condition limits a vector
* to 1GB of memory on a 32-bit system, which is a reasonable limit. It
* also ensures that
*
* static_cast<char*>(end()) - static_cast<char*>(begin())
*
* doesn't overflow ptrdiff_t (see bug 510319).
*/
if (mLength & tl::MulOverflowMask<4 * sizeof(T)>::value) {
this->reportAllocOverflow();
return false;
}
/*
* If we reach here, the existing capacity will have a size that is already
* as close to 2^N as sizeof(T) will allow. Just double the capacity, and
* then there might be space for one more element.
*/
newCap = mLength * 2;
if (detail::CapacityHasExcessSpace<T>(newCap))
newCap += 1;
} else {
/* This case occurs in ~2% of the calls to this function. */
size_t newMinCap = mLength + incr;
/* Did mLength + incr overflow? Will newCap * sizeof(T) overflow? */
if (newMinCap < mLength ||
newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value)
{
this->reportAllocOverflow();
return false;
}
size_t newMinSize = newMinCap * sizeof(T);
size_t newSize = RoundUpPow2(newMinSize);
newCap = newSize / sizeof(T);
}
if (usingInlineStorage()) {
convert:
return convertToHeapStorage(newCap);
}
grow:
return Impl::growTo(*this, newCap);
}
template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::initCapacity(size_t request)
{
MOZ_ASSERT(empty());
MOZ_ASSERT(usingInlineStorage());
if (request == 0)
return true;
T* newbuf = reinterpret_cast<T*>(this->malloc_(request * sizeof(T)));
if (!newbuf)
return false;
mBegin = newbuf;
mCapacity = request;
#ifdef DEBUG
mReserved = request;
#endif
return true;
}
template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::reserve(size_t request)
{
MOZ_REENTRANCY_GUARD_ET_AL;
if (request > mCapacity && !growStorageBy(request - mLength))
return false;
#ifdef DEBUG
if (request > mReserved)
mReserved = request;
MOZ_ASSERT(mLength <= mReserved);
MOZ_ASSERT(mReserved <= mCapacity);
#endif
return true;
}
template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::shrinkBy(size_t incr)
{
MOZ_REENTRANCY_GUARD_ET_AL;
MOZ_ASSERT(incr <= mLength);
Impl::destroy(endNoCheck() - incr, endNoCheck());
mLength -= incr;
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::growBy(size_t incr)
{
MOZ_REENTRANCY_GUARD_ET_AL;
if (incr > mCapacity - mLength && !growStorageBy(incr))
return false;
MOZ_ASSERT(mLength + incr <= mCapacity);
T* newend = endNoCheck() + incr;
Impl::initialize(endNoCheck(), newend);
mLength += incr;
#ifdef DEBUG
if (mLength > mReserved)
mReserved = mLength;
#endif
return true;
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::growByUninitialized(size_t incr)
{
MOZ_REENTRANCY_GUARD_ET_AL;
if (incr > mCapacity - mLength && !growStorageBy(incr))
return false;
MOZ_ASSERT(mLength + incr <= mCapacity);
mLength += incr;
#ifdef DEBUG
if (mLength > mReserved)
mReserved = mLength;
#endif
return true;
}
template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::resize(size_t newLength)
{
size_t curLength = mLength;
if (newLength > curLength)
return growBy(newLength - curLength);
shrinkBy(curLength - newLength);
return true;
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::resizeUninitialized(size_t newLength)
{
size_t curLength = mLength;
if (newLength > curLength)
return growByUninitialized(newLength - curLength);
shrinkBy(curLength - newLength);
return true;
}
template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::clear()
{
MOZ_REENTRANCY_GUARD_ET_AL;
Impl::destroy(beginNoCheck(), endNoCheck());
mLength = 0;
}
template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::clearAndFree()
{
clear();
if (usingInlineStorage())
return;
this->free_(beginNoCheck());
mBegin = static_cast<T*>(storage.addr());
mCapacity = sInlineCapacity;
#ifdef DEBUG
mReserved = sInlineCapacity;
#endif
}
template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::canAppendWithoutRealloc(size_t needed) const
{
return mLength + needed <= mCapacity;
}
template<typename T, size_t N, class AP, class TV>
template<typename U, size_t O, class BP, class UV>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppendAll(const VectorBase<U, O, BP, UV>& other)
{
internalAppend(other.begin(), other.length());
}
template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppend(const U& u)
{
MOZ_ASSERT(mLength + 1 <= mReserved);
MOZ_ASSERT(mReserved <= mCapacity);
new(endNoCheck()) T(u);
++mLength;
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::appendN(const T& t, size_t needed)
{
MOZ_REENTRANCY_GUARD_ET_AL;
if (mLength + needed > mCapacity && !growStorageBy(needed))
return false;
#ifdef DEBUG
if (mLength + needed > mReserved)
mReserved = mLength + needed;
#endif
internalAppendN(t, needed);
return true;
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppendN(const T& t, size_t needed)
{
MOZ_ASSERT(mLength + needed <= mReserved);
MOZ_ASSERT(mReserved <= mCapacity);
Impl::copyConstructN(endNoCheck(), needed, t);
mLength += needed;
}
template<typename T, size_t N, class AP, class TV>
inline T*
VectorBase<T, N, AP, TV>::insert(T* p, const T& val)
{
MOZ_ASSERT(begin() <= p);
MOZ_ASSERT(p <= end());
size_t pos = p - begin();
MOZ_ASSERT(pos <= mLength);
size_t oldLength = mLength;
if (pos == oldLength) {
if (!append(val))
return nullptr;
} else {
T oldBack = back();
if (!append(oldBack)) /* Dup the last element. */
return nullptr;
for (size_t i = oldLength; i > pos; --i)
(*this)[i] = (*this)[i - 1];
(*this)[pos] = val;
}
return begin() + pos;
}
template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::erase(T* it)
{
MOZ_ASSERT(begin() <= it);
MOZ_ASSERT(it < end());
while (it + 1 < end()) {
*it = *(it + 1);
++it;
}
popBack();
}
template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::append(const U* insBegin, const U* insEnd)
{
MOZ_REENTRANCY_GUARD_ET_AL;
size_t needed = PointerRangeSize(insBegin, insEnd);
if (mLength + needed > mCapacity && !growStorageBy(needed))
return false;
#ifdef DEBUG
if (mLength + needed > mReserved)
mReserved = mLength + needed;
#endif
internalAppend(insBegin, needed);
return true;
}
template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppend(const U* insBegin, size_t insLength)
{
MOZ_ASSERT(mLength + insLength <= mReserved);
MOZ_ASSERT(mReserved <= mCapacity);
Impl::copyConstruct(endNoCheck(), insBegin, insBegin + insLength);
mLength += insLength;
}
template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::append(const U& u)
{
MOZ_REENTRANCY_GUARD_ET_AL;
if (mLength == mCapacity && !growStorageBy(1))
return false;
#ifdef DEBUG
if (mLength + 1 > mReserved)
mReserved = mLength + 1;
#endif
internalAppend(u);
return true;
}
template<typename T, size_t N, class AP, class TV>
template<typename U, size_t O, class BP, class UV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::appendAll(const VectorBase<U, O, BP, UV>& other)
{
return append(other.begin(), other.length());
}
template<typename T, size_t N, class AP, class TV>
template<class U>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::append(const U *insBegin, size_t insLength)
{
return append(insBegin, insBegin + insLength);
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::popBack()
{
MOZ_REENTRANCY_GUARD_ET_AL;
MOZ_ASSERT(!empty());
--mLength;
endNoCheck()->~T();
}
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE T
VectorBase<T, N, AP, TV>::popCopy()
{
T ret = back();
popBack();
return ret;
}
template<typename T, size_t N, class AP, class TV>
inline T*
VectorBase<T, N, AP, TV>::extractRawBuffer()
{
T* ret;
if (usingInlineStorage()) {
ret = reinterpret_cast<T*>(this->malloc_(mLength * sizeof(T)));
if (!ret)
return nullptr;
Impl::copyConstruct(ret, beginNoCheck(), endNoCheck());
Impl::destroy(beginNoCheck(), endNoCheck());
/* mBegin, mCapacity are unchanged. */
mLength = 0;
} else {
ret = mBegin;
mBegin = static_cast<T*>(storage.addr());
mLength = 0;
mCapacity = sInlineCapacity;
#ifdef DEBUG
mReserved = sInlineCapacity;
#endif
}
return ret;
}
template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::replaceRawBuffer(T* p, size_t aLength)
{
MOZ_REENTRANCY_GUARD_ET_AL;
/* Destroy what we have. */
Impl::destroy(beginNoCheck(), endNoCheck());
if (!usingInlineStorage())
this->free_(beginNoCheck());
/* Take in the new buffer. */
if (aLength <= sInlineCapacity) {
/*
* We convert to inline storage if possible, even though p might
* otherwise be acceptable. Maybe this behaviour should be
* specifiable with an argument to this function.
*/
mBegin = static_cast<T*>(storage.addr());
mLength = aLength;
mCapacity = sInlineCapacity;
Impl::moveConstruct(mBegin, p, p + aLength);
Impl::destroy(p, p + aLength);
this->free_(p);
} else {
mBegin = p;
mLength = aLength;
mCapacity = aLength;
}
#ifdef DEBUG
mReserved = aLength;
#endif
}
template<typename T, size_t N, class AP, class TV>
inline size_t
VectorBase<T, N, AP, TV>::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
{
return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck());
}
template<typename T, size_t N, class AP, class TV>
inline size_t
VectorBase<T, N, AP, TV>::sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const
{
return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
}
template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::swap(TV& other)
{
MOZ_STATIC_ASSERT(N == 0,
"still need to implement this for N != 0");
// This only works when inline storage is always empty.
if (!usingInlineStorage() && other.usingInlineStorage()) {
other.mBegin = mBegin;
mBegin = inlineStorage();
} else if (usingInlineStorage() && !other.usingInlineStorage()) {
mBegin = other.mBegin;
other.mBegin = other.inlineStorage();
} else if (!usingInlineStorage() && !other.usingInlineStorage()) {
Swap(mBegin, other.mBegin);
} else {
// This case is a no-op, since we'd set both to use their inline storage.
}
Swap(mLength, other.mLength);
Swap(mCapacity, other.mCapacity);
#ifdef DEBUG
Swap(mReserved, other.mReserved);
#endif
}
/*
* STL-like container providing a short-lived, dynamic buffer. Vector calls the
* constructors/destructors of all elements stored in its internal buffer, so
* non-PODs may be safely used. Additionally, Vector will store the first N
* elements in-place before resorting to dynamic allocation.
*
* T requirements:
* - default and copy constructible, assignable, destructible
* - operations do not throw
* N requirements:
* - any value, however, N is clamped to min/max values
* AllocPolicy:
* - see "Allocation policies" in AllocPolicy.h (defaults to
* mozilla::MallocAllocPolicy)
*
* Vector is not reentrant: T member functions called during Vector member
* functions must not call back into the same object!
*/
template<typename T,
size_t MinInlineCapacity = 0,
class AllocPolicy = MallocAllocPolicy>
class Vector
: public VectorBase<T,
MinInlineCapacity,
AllocPolicy,
Vector<T, MinInlineCapacity, AllocPolicy> >
{
typedef VectorBase<T, MinInlineCapacity, AllocPolicy, Vector> Base;
public:
Vector(AllocPolicy alloc = AllocPolicy()) : Base(alloc) {}
Vector(mozilla::MoveRef<Vector> vec) : Base(vec) {}
Vector& operator=(mozilla::MoveRef<Vector> vec) {
return Base::operator=(vec);
}
};
} // namespace mozilla
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif /* mozilla_Vector_h */