gecko-dev/js/js2/parser.cpp

3930 строки
110 KiB
C++
Исходник Ответственный История

// -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
//
// The contents of this file are subject to the Netscape Public
// License Version 1.1 (the "License"); you may not use this file
// except in compliance with the License. You may obtain a copy of
// the License at http://www.mozilla.org/NPL/
//
// Software distributed under the License is distributed on an "AS
// IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr
// implied. See the License for the specific language governing
// rights and limitations under the License.
//
// The Original Code is the JavaScript 2 Prototype.
//
// The Initial Developer of the Original Code is Netscape
// Communications Corporation. Portions created by Netscape are
// Copyright (C) 1998 Netscape Communications Corporation. All
// Rights Reserved.
#include "numerics.h"
#include "parser.h"
#include "world.h"
#include "nodefactory.h"
namespace JS = JavaScript;
//
// Reader
//
// Create a Reader reading characters from the source string.
// sourceLocation describes the origin of the source and may be used for error messages.
// initialLineNum is the line number of the first line of the source string.
JS::Reader::Reader(const String &source, const String &sourceLocation, uint32 initialLineNum):
source(source + uni::null), sourceLocation(sourceLocation), initialLineNum(initialLineNum)
{
begin = p = this->source.data();
end = begin + this->source.size() - 1;
#ifdef DEBUG
recordString = 0;
#endif
beginLine();
}
// Mark the beginning of a line. Call this after reading every line break to fill
// out the line start table.
void JS::Reader::beginLine()
{
ASSERT(p <= end && (!linePositions.size() || p > linePositions.back()));
linePositions.push_back(p);
}
// Return the number of the line containing the given character position.
// The line starts should have been recorded by calling beginLine.
uint32 JS::Reader::posToLineNum(uint32 pos) const
{
ASSERT(pos <= getPos());
std::vector<const char16 *>::const_iterator i = std::upper_bound(linePositions.begin(), linePositions.end(), begin + pos);
ASSERT(i != linePositions.begin());
return static_cast<uint32>(i-1 - linePositions.begin()) + initialLineNum;
}
// Return the character position as well as pointers to the beginning and end (not including
// the line terminator) of the nth line. If lineNum is out of range, return 0 and two nulls.
// The line starts should have been recorded by calling beginLine(). If the nth line is the
// last one recorded, then getLine manually finds the line ending by searching for a line
// break; otherwise, getLine assumes that the line ends one character before the beginning
// of the next line.
uint32 JS::Reader::getLine(uint32 lineNum, const char16 *&lineBegin, const char16 *&lineEnd) const
{
lineBegin = 0;
lineEnd = 0;
if (lineNum < initialLineNum)
return 0;
lineNum -= initialLineNum;
if (lineNum >= linePositions.size())
return 0;
lineBegin = linePositions[lineNum];
const char16 *e;
++lineNum;
if (lineNum < linePositions.size())
e = linePositions[lineNum] - 1;
else {
e = lineBegin;
const char16 *end = Reader::end;
while (e != end && !isLineBreak(*e))
++e;
}
lineEnd = e;
return static_cast<uint32>(lineBegin - begin);
}
// Begin accumulating characters into the recordString, whose initial value is
// ignored and cleared. Each character passed to recordChar() is added to the end
// of the recordString. Recording ends when endRecord() or beginLine() is called.
// Recording is significantly optimized when the characters passed to readChar()
// are the same characters as read by get(). In this case the record String does
// not get allocated until endRecord() is called or a discrepancy appears between
// get() and recordChar().
void JS::Reader::beginRecording(String &recordString)
{
Reader::recordString = &recordString;
recordBase = p;
recordPos = p;
}
// Append ch to the recordString.
void JS::Reader::recordChar(char16 ch)
{
ASSERT(recordString);
if (recordPos) {
if (recordPos != end && *recordPos == ch) {
recordPos++;
return;
} else {
recordString->assign(recordBase, recordPos);
recordPos = 0;
}
}
*recordString += ch;
}
// Finish recording characters into the recordString that was last passed to beginRecording().
// Return that recordString.
JS::String &JS::Reader::endRecording()
{
String *rs = recordString;
ASSERT(rs);
if (recordPos)
rs->assign(recordBase, recordPos);
recordString = 0;
return *rs;
}
// Report an error at the given character position in the source code.
void JS::Reader::error(Exception::Kind kind, const String &message, uint32 pos)
{
uint32 lineNum = posToLineNum(pos);
const char16 *lineBegin;
const char16 *lineEnd;
uint32 linePos = getLine(lineNum, lineBegin, lineEnd);
ASSERT(lineBegin && lineEnd && linePos <= pos);
throw Exception(kind, message, sourceLocation, lineNum, pos - linePos, pos, lineBegin, lineEnd);
}
//
// Lexer
//
static const char controlCharNames[6] = {'b', 't', 'n', 'v', 'f', 'r'};
// Print the characters from begin to end, escaping them as necessary to make the resulting
// string be readable if placed between two quotes specified by quote (which should be either
// '\'' or '"').
void JS::escapeString(Formatter &f, const char16 *begin, const char16 *end, char16 quote)
{
ASSERT(begin <= end);
const char16 *chunk = begin;
while (begin != end) {
char16 ch = *begin++;
CharInfo ci(ch);
if (char16Value(ch) < 0x20 || isLineBreak(ci) || isFormat(ci) || ch == '\\' || ch == quote) {
if (begin-1 != chunk)
printString(f, chunk, begin-1);
chunk = begin;
f << '\\';
switch (ch) {
case 0x0008:
case 0x0009:
case 0x000A:
case 0x000B:
case 0x000C:
case 0x000D:
f << controlCharNames[ch - 0x0008];
break;
case '\'':
case '"':
case '\\':
f << ch;
break;
case 0x0000:
if (begin == end || char16Value(*begin) < '0' || char16Value(*begin) > '9') {
f << '0';
break;
}
default:
if (char16Value(ch) <= 0xFF) {
f << 'x';
printHex(f, static_cast<uint32>(char16Value(ch)), 2);
} else {
f << 'u';
printHex(f, static_cast<uint32>(char16Value(ch)), 4);
}
}
}
}
if (begin != chunk)
printString(f, chunk, begin);
}
// Print s as a quoted string using the given quotes (which should be either '\'' or '"').
void JS::quoteString(Formatter &f, const String &s, char16 quote)
{
f << quote;
const char16 *begin = s.data();
escapeString(f, begin, begin + s.size(), quote);
f << quote;
}
const char *const JS::Token::kindNames[kindsEnd] = {
// Special
"end of input", // end
"number", // number
"string", // string
"unit", // unit
"regular expression",// regExp
// Punctuators
"(", // openParenthesis
")", // closeParenthesis
"[", // openBracket
"]", // closeBracket
"{", // openBrace
"}", // closeBrace
",", // comma
";", // semicolon
".", // dot
"..", // doubleDot
"...", // tripleDot
"->", // arrow
":", // colon
"::", // doubleColon
"#", // pound
"@", // at
"++", // increment
"--", // decrement
"~", // complement
"!", // logicalNot
"*", // times
"/", // divide
"%", // modulo
"+", // plus
"-", // minus
"<<", // leftShift
">>", // rightShift
">>>", // logicalRightShift
"&&", // logicalAnd
"^^", // logicalXor
"||", // logicalOr
"&", // bitwiseAnd
"^", // bitwiseXor
"|", // bitwiseOr
"=", // assignment
"*=", // timesEquals
"/=", // divideEquals
"%=", // moduloEquals
"+=", // plusEquals
"-=", // minusEquals
"<<=", // leftShiftEquals
">>=", // rightShiftEquals
">>>=", // logicalRightShiftEquals
"&&=", // logicalAndEquals
"^^=", // logicalXorEquals
"||=", // logicalOrEquals
"&=", // bitwiseAndEquals
"^=", // bitwiseXorEquals
"|=", // bitwiseOrEquals
"==", // equal
"!=", // notEqual
"<", // lessThan
"<=", // lessThanOrEqual
">", // greaterThan
">=", // greaterThanOrEqual
"===", // identical
"!==", // notIdentical
"?", // question
// Reserved words
"abstract", // Abstract
"break", // Break
"case", // Case
"catch", // Catch
"class", // Class
"const", // Const
"continue", // Continue
"debugger", // Debugger
"default", // Default
"delete", // Delete
"do", // Do
"else", // Else
"enum", // Enum
"eval", // Eval
"export", // Export
"extends", // Extends
"false", // False
"final", // Final
"finally", // Finally
"for", // For
"function", // Function
"goto", // Goto
"if", // If
"implements", // Implements
"import", // Import
"in", // In
"instanceof", // Instanceof
"interface", // Interface
"native", // Native
"new", // New
"null", // Null
"package", // Package
"private", // Private
"protected", // Protected
"public", // Public
"return", // Return
"static", // Static
"super", // Super
"switch", // Switch
"synchronized", // Synchronized
"this", // This
"throw", // Throw
"throws", // Throws
"transient", // Transient
"true", // True
"try", // Try
"typeof", // Typeof
"var", // Var
"volatile", // Volatile
"while", // While
"with", // With
// Non-reserved words
"attribute", // Attribute
"constructor", // Constructor
"get", // Get
"language", // Language
"namespace", // Namespace
"set", // Set
"use", // Use
"operator", // Operator
"identifier" // identifier
};
const uchar followRet = 1<<JS::Token::canFollowReturn;
const uchar isAttr = 1<<JS::Token::isAttribute | 1<<JS::Token::canFollowAttribute;
const uchar followAttr = 1<<JS::Token::canFollowAttribute;
const uchar followGet = 1<<JS::Token::canFollowGet;
const uchar JS::Token::kindFlags[kindsEnd] = {
// Special
followRet, // end
0, // number
0, // string
0, // unit
0, // regExp
// Punctuators
0, // openParenthesis
0, // closeParenthesis
0, // openBracket
0, // closeBracket
followAttr, // openBrace
followRet, // closeBrace
0, // comma
followRet, // semicolon
0, // dot
0, // doubleDot
0, // tripleDot
0, // arrow
0, // colon
0, // doubleColon
0, // pound
0, // at
0, // increment
0, // decrement
0, // complement
0, // logicalNot
0, // times
0, // divide
0, // modulo
0, // plus
0, // minus
0, // leftShift
0, // rightShift
0, // logicalRightShift
0, // logicalAnd
0, // logicalXor
0, // logicalOr
0, // bitwiseAnd
0, // bitwiseXor
0, // bitwiseOr
0, // assignment
0, // timesEquals
0, // divideEquals
0, // moduloEquals
0, // plusEquals
0, // minusEquals
0, // leftShiftEquals
0, // rightShiftEquals
0, // logicalRightShiftEquals
0, // logicalAndEquals
0, // logicalXorEquals
0, // logicalOrEquals
0, // bitwiseAndEquals
0, // bitwiseXorEquals
0, // bitwiseOrEquals
0, // equal
0, // notEqual
0, // lessThan
0, // lessThanOrEqual
0, // greaterThan
0, // greaterThanOrEqual
0, // identical
0, // notIdentical
0, // question
// Reserved words
followAttr, // Abstract
0, // Break
0, // Case
0, // Catch
followAttr, // Class
followAttr, // Const
0, // Continue
0, // Debugger
0, // Default
0, // Delete
0, // Do
followRet, // Else
0, // Enum
0, // Eval
followAttr, // Export
0, // Extends
0, // False
isAttr, // Final
0, // Finally
0, // For
followAttr, // Function
0, // Goto
0, // If
0, // Implements
0, // Import
0, // In
0, // Instanceof
followAttr, // Interface
followAttr, // Native
0, // New
0, // Null
isAttr|followGet, // Package
isAttr|followGet, // Private
followAttr, // Protected
isAttr|followGet, // Public
0, // Return
isAttr, // Static
followGet, // Super
0, // Switch
followAttr, // Synchronized
0, // This
0, // Throw
0, // Throws
followAttr, // Transient
0, // True
0, // Try
0, // Typeof
followAttr, // Var
isAttr, // Volatile
followRet, // While
0, // With
// Non-reserved words
followGet, // Attribute
followAttr|followGet, // Constructor
isAttr|followGet, // Get
followGet, // Language
followAttr|followGet, // Namespace
isAttr|followGet, // Set
followGet, // Use
isAttr, // Operator
isAttr|followGet // identifier
};
// Initialize the keywords in the given world.
void JS::Token::initKeywords(World &world)
{
const char *const*keywordName = kindNames + keywordsBegin;
for (Kind kind = keywordsBegin; kind != keywordsEnd; kind = Kind(kind+1))
world.identifiers[widenCString(*keywordName++)].tokenKind = kind;
}
// Print a description of the token to f.
void JS::Token::print(Formatter &f, bool debug) const
{
switch (getKind()) {
case end:
f << "[end]";
break;
case number:
if (debug)
f << "[number " << getValue() << ']';
f << getChars();
break;
case unit:
if (debug)
f << "[unit]";
case string:
quoteString(f, getChars(), '"');
break;
case regExp:
f << '/' << getIdentifier() << '/' << getChars();
break;
case identifier:
if (debug)
f << "[identifier]";
f << getIdentifier();
break;
default:
f << getKind();
}
}
// Create a new Lexer for lexing the provided source code. The Lexer will intern identifiers, keywords, and regular
// expressions in the designated world.
JS::Lexer::Lexer(World &world, const String &source, const String &sourceLocation, uint32 initialLineNum):
world(world), reader(source, sourceLocation, initialLineNum)
{
nextToken = tokens;
nTokensFwd = 0;
#ifdef DEBUG
nTokensBack = 0;
#endif
lexingUnit = false;
}
// Get and return the next token. The token remains valid until the next call to this Lexer.
// If the Reader reached the end of file, return a Token whose Kind is end.
// The caller may alter the value of this Token (in particular, take control over the
// auto_ptr's data), but if it does so, the caller is not allowed to unget this Token.
//
// If preferRegExp is true, a / will be preferentially interpreted as starting a regular
// expression; otherwise, a / will be preferentially interpreted as division or /=.
const JS::Token &JS::Lexer::get(bool preferRegExp)
{
const Token &t = peek(preferRegExp);
if (++nextToken == tokens + tokenBufferSize)
nextToken = tokens;
--nTokensFwd;
DEBUG_ONLY(++nTokensBack);
return t;
}
// Peek at the next token using the given preferRegExp setting. If that token's kind matches
// the given kind, consume that token and return it. Otherwise, do not consume that token and
// return nil.
const JS::Token *JS::Lexer::eat(bool preferRegExp, Token::Kind kind)
{
const Token &t = peek(preferRegExp);
if (t.kind != kind)
return 0;
if (++nextToken == tokens + tokenBufferSize)
nextToken = tokens;
--nTokensFwd;
DEBUG_ONLY(++nTokensBack);
return &t;
}
// Return the next token without consuming it.
//
// If preferRegExp is true, a / will be preferentially interpreted as starting a regular
// expression; otherwise, a / will be preferentially interpreted as division or /=.
// A subsequent call to peek or get will return the same token; that call must be presented
// with the same value for preferRegExp.
const JS::Token &JS::Lexer::peek(bool preferRegExp)
{
// Use an already looked-up token if there is one.
if (nTokensFwd) {
ASSERT(savedPreferRegExp[nextToken - tokens] == preferRegExp);
} else {
lexToken(preferRegExp);
nTokensFwd = 1;
#ifdef DEBUG
savedPreferRegExp[nextToken - tokens] = preferRegExp;
if (nTokensBack == tokenLookahead) {
nTokensBack = tokenLookahead-1;
if (tokenGuard)
(nextToken >= tokens+tokenLookahead ? nextToken-tokenLookahead : nextToken+tokenBufferSize-tokenLookahead)->valid = false;
}
#endif
}
return *nextToken;
}
#ifdef DEBUG
// Change the setting of preferRegExp for an already peeked token. The token must not be one
// for which that setting mattered.
//
// THIS IS A DANGEROUS FUNCTION!
// Use it only if you can be prove that the already peeked token does not start with a slash.
void JS::Lexer::redesignate(bool preferRegExp)
{
ASSERT(nTokensFwd);
ASSERT(savedPreferRegExp[nextToken - tokens] != preferRegExp);
ASSERT(!(nextToken->hasKind(Token::regExp) || nextToken->hasKind(Token::divide) || nextToken->hasKind(Token::divideEquals)));
savedPreferRegExp[nextToken - tokens] = preferRegExp;
}
#endif
// Unread the last token. This call may be called to unread at most tokenBufferSize tokens
// at a time (where a peek also counts as temporarily reading and unreading one token).
// When a token that has been unread is peeked or read again, the same value must be passed
// in preferRegExp as for the first time that token was read or peeked.
void JS::Lexer::unget()
{
ASSERT(nTokensBack--);
nTokensFwd++;
if (nextToken == tokens)
nextToken = tokens + tokenBufferSize;
--nextToken;
}
// Report a syntax error at the backUp-th last character read by the Reader.
// In other words, if backUp is 0, the error is at the next character to be read by the Reader;
// if backUp is 1, the error is at the last character read by the Reader, and so forth.
void JS::Lexer::syntaxError(const char *message, uint backUp)
{
reader.unget(backUp);
reader.error(Exception::syntaxError, widenCString(message), reader.getPos());
}
// Get the next character from the reader, skipping any Unicode format-control (Cf) characters.
inline char16 JS::Lexer::getChar()
{
char16 ch = reader.get();
if (char16Value(ch) >= firstFormatChar)
ch = internalGetChar(ch);
return ch;
}
// Helper for getChar()
char16 JS::Lexer::internalGetChar(char16 ch)
{
while (isFormat(ch))
ch = reader.get();
return ch;
}
// Peek the next character from the reader, skipping any Unicode format-control (Cf) characters,
// which are read and discarded.
inline char16 JS::Lexer::peekChar()
{
char16 ch = reader.peek();
if (char16Value(ch) >= firstFormatChar)
ch = internalPeekChar(ch);
return ch;
}
// Helper for peekChar()
char16 JS::Lexer::internalPeekChar(char16 ch)
{
while (isFormat(ch)) {
reader.get();
ch = reader.peek();
}
return ch;
}
// Peek the next character from the reader, skipping any Unicode format-control (Cf) characters,
// which are read and discarded. If the peeked character matches ch, read that character and return true;
// otherwise return false. ch must not be null.
bool JS::Lexer::testChar(char16 ch)
{
ASSERT(ch); // If ch were null, it could match the eof null.
char16 ch2 = peekChar();
if (ch == ch2) {
reader.get();
return true;
}
return false;
}
// A backslash has been read. Read the rest of the escape code.
// Return the interpreted escaped character. Throw an exception if the escape is not valid.
// If unicodeOnly is true, allow only \uxxxx escapes.
char16 JS::Lexer::lexEscape(bool unicodeOnly)
{
char16 ch = getChar();
int nDigits;
if (!unicodeOnly || ch == 'u')
switch (ch) {
case '0':
// Make sure that the next character isn't a digit.
ch = peekChar();
if (!isASCIIDecimalDigit(ch))
return 0x00;
getChar(); // Point to the next character in the error message
break;
case 'b':
return 0x08;
case 'f':
return 0x0C;
case 'n':
return 0x0A;
case 'r':
return 0x0D;
case 't':
return 0x09;
case 'v':
return 0x0B;
case 'x':
nDigits = 2;
goto lexHex;
case 'u':
nDigits = 4;
lexHex:
{
uint32 n = 0;
while (nDigits--) {
ch = getChar();
uint digit;
if (!isASCIIHexDigit(ch, digit))
goto error;
n = (n << 4) | digit;
}
return static_cast<char16>(n);
}
default:
if (!reader.getEof(ch)) {
CharInfo chi(ch);
if (!isAlphanumeric(chi) && !isLineBreak(chi))
return ch;
}
}
error:
syntaxError("Bad escape code");
return 0;
}
// Read an identifier into s. The initial value of s is ignored and cleared.
// Return true if an escape code has been encountered.
// If allowLeadingDigit is true, allow the first character of s to be a digit, just like any
// continuing identifier character.
bool JS::Lexer::lexIdentifier(String &s, bool allowLeadingDigit)
{
reader.beginRecording(s);
bool hasEscape = false;
while (true) {
char16 ch = getChar();
char16 ch2 = ch;
if (ch == '\\') {
ch2 = lexEscape(true);
hasEscape = true;
}
CharInfo chi2(ch2);
if (!(allowLeadingDigit ? isIdContinuing(chi2) : isIdLeading(chi2))) {
if (ch == '\\')
syntaxError("Identifier escape expands into non-identifier character");
else
reader.unget();
break;
}
reader.recordChar(ch2);
allowLeadingDigit = true;
}
reader.endRecording();
return hasEscape;
}
// Read a numeric literal into nextToken->chars and nextToken->value.
// Return true if the numeric literal is followed by a unit, but don't read the unit yet.
bool JS::Lexer::lexNumeral()
{
int hasDecimalPoint = 0;
String &s = nextToken->chars;
uint digit;
reader.beginRecording(s);
char16 ch = getChar();
if (ch == '0') {
reader.recordChar('0');
ch = getChar();
if ((ch&~0x20) == 'X') {
uint32 pos = reader.getPos();
char16 ch2 = getChar();
if (isASCIIHexDigit(ch2, digit)) {
reader.recordChar(ch);
do {
reader.recordChar(ch2);
ch2 = getChar();
} while (isASCIIHexDigit(ch2, digit));
ch = ch2;
} else
reader.setPos(pos);
goto done;
} else if (isASCIIDecimalDigit(ch)) {
syntaxError("Numeric constant syntax error");
}
}
while (isASCIIDecimalDigit(ch) || ch == '.' && !hasDecimalPoint++) {
reader.recordChar(ch);
ch = getChar();
}
if ((ch&~0x20) == 'E') {
uint32 pos = reader.getPos();
char16 ch2 = getChar();
char16 sign = 0;
if (ch2 == '+' || ch2 == '-') {
sign = ch2;
ch2 = getChar();
}
if (isASCIIDecimalDigit(ch2)) {
reader.recordChar(ch);
if (sign)
reader.recordChar(sign);
do {
reader.recordChar(ch2);
ch2 = getChar();
} while (isASCIIDecimalDigit(ch2));
ch = ch2;
} else
reader.setPos(pos);
}
done:
// At this point the reader is just past the character ch, which is the first non-formatting character
// that is not part of the number.
reader.endRecording();
const char16 *sBegin = s.data();
const char16 *sEnd = sBegin + s.size();
const char16 *numEnd;
nextToken->value = stringToDouble(sBegin, sEnd, numEnd);
ASSERT(numEnd == sEnd);
reader.unget();
ASSERT(ch == reader.peek());
return isIdContinuing(ch) || ch == '\\';
}
// Read a string literal into s. The initial value of s is ignored and cleared.
// The opening quote has already been read into separator.
void JS::Lexer::lexString(String &s, char16 separator)
{
char16 ch;
reader.beginRecording(s);
while ((ch = reader.get()) != separator) {
CharInfo chi(ch);
if (!isFormat(chi)) {
if (ch == '\\')
ch = lexEscape(false);
else if (reader.getEof(ch) || isLineBreak(chi))
syntaxError("Unterminated string literal");
reader.recordChar(ch);
}
}
reader.endRecording();
}
// Read a regular expression literal. Store the regular expression in nextToken->id
// and the flags in nextToken->chars.
// The opening slash has already been read.
void JS::Lexer::lexRegExp()
{
String s;
char16 prevCh = 0;
reader.beginRecording(s);
while (true) {
char16 ch = getChar();
CharInfo chi(ch);
if (reader.getEof(ch) || isLineBreak(chi))
syntaxError("Unterminated regular expression literal");
if (prevCh == '\\') {
reader.recordChar(ch);
prevCh = 0; // Ignore slashes and backslashes immediately after a backslash
} else if (ch != '/') {
reader.recordChar(ch);
prevCh = ch;
} else
break;
}
reader.endRecording();
nextToken->id = &world.identifiers[s];
lexIdentifier(nextToken->chars, true);
}
// Read a token from the Reader and store it at *nextToken.
// If the Reader reached the end of file, store a Token whose Kind is end.
void JS::Lexer::lexToken(bool preferRegExp)
{
Token &t = *nextToken;
t.lineBreak = false;
t.id = 0;
//clear(t.chars); // Don't really need to waste time clearing this string here
Token::Kind kind;
if (lexingUnit) {
lexIdentifier(t.chars, false);
ASSERT(t.chars.size());
kind = Token::unit; // unit
lexingUnit = false;
} else {
next:
char16 ch = reader.get();
if (reader.getEof(ch)) {
endOfInput:
t.pos = reader.getPos() - 1;
kind = Token::end;
} else {
char16 ch2;
CharInfo chi(ch);
switch (cGroup(chi)) {
case CharInfo::FormatGroup:
case CharInfo::WhiteGroup:
goto next;
case CharInfo::IdGroup:
t.pos = reader.getPos() - 1;
readIdentifier:
{
reader.unget();
String s;
bool hasEscape = lexIdentifier(s, false);
t.id = &world.identifiers[s];
kind = hasEscape ? Token::identifier : t.id->tokenKind;
}
break;
case CharInfo::NonIdGroup:
case CharInfo::IdContinueGroup:
t.pos = reader.getPos() - 1;
switch (ch) {
case '(':
kind = Token::openParenthesis; // (
break;
case ')':
kind = Token::closeParenthesis; // )
break;
case '[':
kind = Token::openBracket; // [
break;
case ']':
kind = Token::closeBracket; // ]
break;
case '{':
kind = Token::openBrace; // {
break;
case '}':
kind = Token::closeBrace; // }
break;
case ',':
kind = Token::comma; // ,
break;
case ';':
kind = Token::semicolon; // ;
break;
case '.':
kind = Token::dot; // .
ch2 = getChar();
if (isASCIIDecimalDigit(ch2)) {
reader.setPos(t.pos);
goto number; // decimal point
} else if (ch2 == '.') {
kind = Token::doubleDot; // ..
if (testChar('.'))
kind = Token::tripleDot; // ...
} else
reader.unget();
break;
case ':':
kind = Token::colon; // :
if (testChar(':'))
kind = Token::doubleColon; // ::
break;
case '#':
kind = Token::pound; // #
break;
case '@':
kind = Token::at; // @
break;
case '?':
kind = Token::question; // ?
break;
case '~':
kind = Token::complement; // ~
break;
case '!':
kind = Token::logicalNot; // !
if (testChar('=')) {
kind = Token::notEqual; // !=
if (testChar('='))
kind = Token::notIdentical; // !==
}
break;
case '*':
kind = Token::times; // * *=
tryAssignment:
if (testChar('='))
kind = Token::Kind(kind + Token::timesEquals - Token::times);
break;
case '/':
kind = Token::divide; // /
ch = getChar();
if (ch == '/') { // // comment
do {
ch = reader.get();
if (reader.getEof(ch))
goto endOfInput;
} while (!isLineBreak(ch));
goto endOfLine;
} else if (ch == '*') { // /* comment */
ch = 0;
do {
ch2 = ch;
ch = getChar();
if (isLineBreak(ch)) {
reader.beginLine();
t.lineBreak = true;
} else if (reader.getEof(ch))
syntaxError("Unterminated /* comment");
} while (ch != '/' || ch2 != '*');
goto next;
} else {
reader.unget();
if (preferRegExp) { // Regular expression
kind = Token::regExp;
lexRegExp();
} else
goto tryAssignment; // /=
}
break;
case '%':
kind = Token::modulo; // %
goto tryAssignment; // %=
case '+':
kind = Token::plus; // +
if (testChar('+'))
kind = Token::increment; // ++
else
goto tryAssignment; // +=
break;
case '-':
kind = Token::minus; // -
ch = getChar();
if (ch == '-')
kind = Token::decrement; // --
else if (ch == '>')
kind = Token::arrow; // ->
else {
reader.unget();
goto tryAssignment; // -=
}
break;
case '&':
kind = Token::bitwiseAnd; // & && &= &&=
logical:
if (testChar(ch))
kind = Token::Kind(kind - Token::bitwiseAnd + Token::logicalAnd);
goto tryAssignment;
case '^':
kind = Token::bitwiseXor; // ^ ^^ ^= ^^=
goto logical;
case '|':
kind = Token::bitwiseOr; // | || |= ||=
goto logical;
case '=':
kind = Token::assignment; // =
if (testChar('=')) {
kind = Token::equal; // ==
if (testChar('='))
kind = Token::identical; // ===
}
break;
case '<':
kind = Token::lessThan; // <
if (testChar('<')) {
kind = Token::leftShift; // <<
goto tryAssignment; // <<=
}
comparison:
if (testChar('=')) // <= >=
kind = Token::Kind(kind + Token::lessThanOrEqual - Token::lessThan);
break;
case '>':
kind = Token::greaterThan; // >
if (testChar('>')) {
kind = Token::rightShift; // >>
if (testChar('>'))
kind = Token::logicalRightShift; // >>>
goto tryAssignment; // >>= >>>=
}
goto comparison;
case '\\':
goto readIdentifier; // An identifier that starts with an escape
case '\'':
case '"':
kind = Token::string; // 'string' "string"
lexString(t.chars, ch);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
reader.unget(); // Number
number:
kind = Token::number;
lexingUnit = lexNumeral();
break;
default:
syntaxError("Bad character");
}
break;
case CharInfo::LineBreakGroup:
endOfLine:
reader.beginLine();
t.lineBreak = true;
goto next;
}
}
}
t.kind = kind;
#ifdef DEBUG
t.valid = true;
#endif
}
//
// Parser Utilities
//
const bool debugExprNodePrint = true; // Print extra parentheses around subexpressions?
const int32 basicIndent = 4; // Size of one level of statement indentation
const int32 caseIndent = basicIndent/2; // Indentation before a case or default statement
const int32 varIndent = 2; // Indentation of var or const statement bindings
const int32 subexpressionIndent = 4; // Size of one level of expression indentation
const int32 functionHeaderIndent = 9; // Indentation of function signature
const int32 namespaceHeaderIndent = 4; // Indentation of class, interface, or namespace header
static const char functionPrefixNames[3][5] = {"", "get ", "set " };
// Print this onto f. name must be non-nil.
void JS::FunctionName::print(PrettyPrinter &f) const
{
f << functionPrefixNames[prefix];
f << name;
}
// Print this onto f.
void JS::VariableBinding::print(PrettyPrinter &f) const
{
PrettyPrinter::Block b(f);
#ifdef NEW_PARSER
if (aliases) {
IdentifierList *id = aliases;
f << "| ";
while (id) {
f << "'";
f << id->name;
f << "' ";
id = id->next;
}
}
#endif
if (name)
f << name;
PrettyPrinter::Indent i(f, subexpressionIndent);
if (type) {
f.fillBreak(0);
f << ": ";
f << type;
}
if (initializer) {
f.linearBreak(1);
f << "= ";
f << initializer;
}
}
// Print this onto f. If isConstructor is true, this is a constructor.
// If attributes is null, this is a function expression; if attributes is non-null,
// this is a function statement with the given attributes.
// When there is no function body, print a trailing semicolon unless noSemi is true.
void JS::FunctionDefinition::print(PrettyPrinter &f, bool isConstructor, const AttributeStmtNode *attributes, bool noSemi) const
{
PrettyPrinter::Block b(f);
if (attributes)
attributes->printAttributes(f);
f << (isConstructor ? "constructor" : "function");
if (name) {
f << ' ';
FunctionName::print(f);
}
{
PrettyPrinter::Indent i(f, functionHeaderIndent);
f.fillBreak(0);
f << '(';
{
PrettyPrinter::Block b2(f);
const VariableBinding *p = parameters;
if (p)
while (true) {
if (p == restParameter) {
f << "...";
if (p->name)
f << ' ';
}
p->print(f);
p = p->next;
if (!p)
break;
f << ',';
f.fillBreak(1);
}
f << ')';
}
if (resultType) {
f.fillBreak(0);
f << ": ";
f << resultType;
}
}
if (body) {
bool loose = attributes != 0;
f.linearBreak(1, loose);
body->printBlock(f, loose);
} else
StmtNode::printSemi(f, noSemi);
}
// Print a comma-separated ExprList on to f. Since a method can't be called on nil, the list
// has at least one element.
void JS::ExprList::printCommaList(PrettyPrinter &f) const
{
PrettyPrinter::Block b(f);
const ExprList *list = this;
while (true) {
f << list->expr;
list = list->next;
if (!list)
break;
f << ',';
f.fillBreak(1);
}
}
// If list is nil, do nothing. Otherwise, emit a linear line break of size 1, the name, a space, and the
// contents of list separated by commas.
void JS::ExprList::printOptionalCommaList(PrettyPrinter &f, const char *name, const ExprList *list)
{
if (list) {
f.linearBreak(1);
f << name << ' ';
list->printCommaList(f);
}
}
//
// ExprNode
//
const char *const JS::ExprNode::kindNames[kindsEnd] = {
"NIL", // none
0, // identifier
0, // number
0, // string
0, // regExp
"null", // Null
"true", // True
"false", // False
"this", // This
"super", // Super
0, // parentheses
0, // numUnit
0, // exprUnit
"::", // qualify
0, // objectLiteral
0, // arrayLiteral
0, // functionLiteral
0, // call
0, // New
0, // index
".", // dot
".(", // dotParen
"@", // at
"delete ", // Delete
"typeof ", // Typeof
"eval ", // Eval
"++ ", // preIncrement
"-- ", // preDecrement
" ++", // postIncrement
" --", // postDecrement
"+ ", // plus
"- ", // minus
"~ ", // complement
"! ", // logicalNot
"+", // add
"-", // subtract
"*", // multiply
"/", // divide
"%", // modulo
"<<", // leftShift
">>", // rightShift
">>>", // logicalRightShift
"&", // bitwiseAnd
"^", // bitwiseXor
"|", // bitwiseOr
"&&", // logicalAnd
"^^", // logicalXor
"||", // logicalOr
"==", // equal
"!=", // notEqual
"<", // lessThan
"<=", // lessThanOrEqual
">", // greaterThan
">=", // greaterThanOrEqual
"===", // identical
"!==", // notIdentical
"in", // In
"instanceof", // Instanceof
"=", // assignment
"+=", // addEquals
"-=", // subtractEquals
"*=", // multiplyEquals
"/=", // divideEquals
"%=", // moduloEquals
"<<=", // leftShiftEquals
">>=", // rightShiftEquals
">>>=", // logicalRightShiftEquals
"&=", // bitwiseAndEquals
"^=", // bitwiseXorEquals
"|=", // bitwiseOrEquals
"&&=", // logicalAndEquals
"^^=", // logicalXorEquals
"||=", // logicalOrEquals
"?", // conditional
"," // comma
};
// Print this onto f.
void JS::ExprNode::print(PrettyPrinter &f) const
{
f << kindName(kind);
}
void JS::IdentifierExprNode::print(PrettyPrinter &f) const
{
f << name;
}
void JS::NumberExprNode::print(PrettyPrinter &f) const
{
f << value;
}
void JS::StringExprNode::print(PrettyPrinter &f) const
{
quoteString(f, str, '"');
}
void JS::RegExpExprNode::print(PrettyPrinter &f) const
{
f << '/' << re << '/' << flags;
}
void JS::NumUnitExprNode::print(PrettyPrinter &f) const
{
f << numStr;
StringExprNode::print(f);
}
void JS::ExprUnitExprNode::print(PrettyPrinter &f) const
{
f << op;
StringExprNode::print(f);
}
void JS::FunctionExprNode::print(PrettyPrinter &f) const
{
function.print(f, false, 0, false);
}
void JS::PairListExprNode::print(PrettyPrinter &f) const
{
char beginBracket;
char endBracket;
switch (getKind()) {
case objectLiteral:
beginBracket = '{';
endBracket = '}';
break;
case arrayLiteral:
case index:
beginBracket = '[';
endBracket = ']';
break;
case call:
case New:
beginBracket = '(';
endBracket = ')';
break;
default:
NOT_REACHED("Bad kind");
return;
}
f << beginBracket;
PrettyPrinter::Block b(f);
const ExprPairList *p = pairs;
if (p)
while (true) {
const ExprNode *field = p->field;
if (field) {
f << field << ':';
f.fillBreak(0);
}
const ExprNode *value = p->value;
if (value)
f << value;
p = p->next;
if (!p)
break;
f << ',';
f.linearBreak(static_cast<uint32>(field || value));
}
f << endBracket;
}
void JS::InvokeExprNode::print(PrettyPrinter &f) const
{
PrettyPrinter::Block b(f);
if (hasKind(New))
f << "new ";
f << op;
PrettyPrinter::Indent i(f, subexpressionIndent);
f.fillBreak(0);
PairListExprNode::print(f);
}
void JS::UnaryExprNode::print(PrettyPrinter &f) const
{
if (hasKind(parentheses)) {
f << '(';
f << op;
f << ')';
} else {
if (debugExprNodePrint)
f << '(';
const char *name = kindName(getKind());
if (hasKind(postIncrement) || hasKind(postDecrement)) {
f << op;
f << name;
} else {
f << name;
f << op;
}
if (debugExprNodePrint)
f << ')';
}
}
void JS::BinaryExprNode::print(PrettyPrinter &f) const
{
if (debugExprNodePrint && !hasKind(qualify))
f << '(';
PrettyPrinter::Block b(f);
f << op1;
uint32 nSpaces = hasKind(dot) || hasKind(dotParen) || hasKind(at) || hasKind(qualify) ? (uint32)0 : (uint32)1;
f.fillBreak(nSpaces);
f << kindName(getKind());
f.fillBreak(nSpaces);
f << op2;
if (hasKind(dotParen))
f << ')';
if (debugExprNodePrint && !hasKind(qualify))
f << ')';
}
void JS::TernaryExprNode::print(PrettyPrinter &f) const
{
if (debugExprNodePrint)
f << '(';
PrettyPrinter::Block b(f);
f << op1;
f.fillBreak(1);
f << '?';
f.fillBreak(1);
f << op2;
f.fillBreak(1);
f << ':';
f.fillBreak(1);
f << op3;
if (debugExprNodePrint)
f << ')';
}
//
// StmtNode
//
// Print statements on separate lines onto f. Do not print a line break after the last statement.
void JS::StmtNode::printStatements(PrettyPrinter &f, const StmtNode *statements)
{
if (statements) {
PrettyPrinter::Block b(f);
while (true) {
const StmtNode *next = statements->next;
statements->print(f, !next);
statements = next;
if (!statements)
break;
f.requiredBreak();
}
}
}
// Print statements as a block enclosed in curly braces onto f.
// If loose is false, do not insist on each statement being on a separate line; instead,
// make breaks between statements be linear breaks in the enclosing PrettyPrinter::Block scope.
// The caller must have placed this call inside a PrettyPrinter::Block scope.
void JS::StmtNode::printBlockStatements(PrettyPrinter &f, const StmtNode *statements, bool loose)
{
f << '{';
if (statements) {
{
PrettyPrinter::Indent i(f, basicIndent);
uint32 nSpaces = 0;
while (statements) {
if (statements->hasKind(Case)) {
PrettyPrinter::Indent i2(f, caseIndent - basicIndent);
f.linearBreak(nSpaces, loose);
statements->print(f, false);
} else {
f.linearBreak(nSpaces, loose);
statements->print(f, !statements->next);
}
statements = statements->next;
nSpaces = 1;
}
}
f.linearBreak(0, loose);
} else
f.fillBreak(0);
f << '}';
}
// Print a closing statement semicolon onto f unless noSemi is true.
void JS::StmtNode::printSemi(PrettyPrinter &f, bool noSemi)
{
if (!noSemi)
f << ';';
}
// Print this as a substatement of a statement such as if or with.
// If this statement is a block without attributes, begin it on the current line and
// do not indent it -- the block itself will provide the indent. Otherwise, begin this
// statement on a new line and indent it.
// If continuation is non-nil, it specifies a continuation such as 'else' or the 'while'
// of a do-while statement. If this statement is a block without attributes, print a
// space and the continuation after the closing brace; otherwise print the continuation
// on a new line.
// If noSemi is true, do not print the semicolon unless it is required by the statement.
// The caller must have placed this call inside a PrettyPrinter::Block scope that encloses
// the containining statement.
void JS::StmtNode::printSubstatement(PrettyPrinter &f, bool noSemi, const char *continuation) const
{
if (hasKind(block) && !static_cast<const BlockStmtNode *>(this)->attributes) {
f << ' ';
static_cast<const BlockStmtNode *>(this)->printBlock(f, true);
if (continuation)
f << ' ' << continuation;
} else {
{
PrettyPrinter::Indent i(f, basicIndent);
f.requiredBreak();
this->print(f, noSemi);
}
if (continuation) {
f.requiredBreak();
f << continuation;
}
}
}
// Print the attributes on a single line separated with and followed by a space.
void JS::AttributeStmtNode::printAttributes(PrettyPrinter &f) const
{
for (const IdentifierList *a = attributes; a; a = a->next)
f << a->name << ' ';
}
// Print this block, including attributes, onto f.
// If loose is false, do not insist on each statement being on a separate line; instead,
// make breaks between statements be linear breaks in the enclosing PrettyPrinter::Block scope.
// The caller must have placed this call inside a PrettyPrinter::Block scope.
void JS::BlockStmtNode::printBlock(PrettyPrinter &f, bool loose) const
{
printAttributes(f);
printBlockStatements(f, statements, loose);
}
// Print this onto f.
// If noSemi is true, do not print the trailing semicolon unless it is required by the statement.
void JS::StmtNode::print(PrettyPrinter &f, bool /*noSemi*/) const
{
ASSERT(hasKind(empty));
f << ';';
}
void JS::ExprStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
const ExprNode *e = expr;
switch (getKind()) {
case Case:
if (e) {
f << "case ";
f << e;
} else
f << "default";
f << ':';
break;
case Return:
f << "return";
if (e) {
f << ' ';
goto showExpr;
} else
goto showSemicolon;
case Throw:
f << "throw ";
case expression:
showExpr:
f << e;
showSemicolon:
printSemi(f, noSemi);
break;
default:
NOT_REACHED("Bad kind");
}
}
void JS::DebuggerStmtNode::print(PrettyPrinter &f, bool) const
{
f << "debugger;";
}
void JS::BlockStmtNode::print(PrettyPrinter &f, bool) const
{
PrettyPrinter::Block b(f, 0);
printBlock(f, true);
}
void JS::LabelStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
PrettyPrinter::Block b(f, basicIndent);
f << name << ':';
f.linearBreak(1);
stmt->print(f, noSemi);
}
void JS::UnaryStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
PrettyPrinter::Block b(f, 0);
printContents(f, noSemi);
}
// Same as print except that uses the caller's PrettyPrinter::Block.
void JS::UnaryStmtNode::printContents(PrettyPrinter &f, bool noSemi) const
{
ASSERT(stmt);
const char *kindName = 0;
switch (getKind()) {
case If:
kindName = "if";
break;
case While:
kindName = "while";
break;
case DoWhile:
f << "do";
stmt->printSubstatement(f, true, "while (");
f << expr << ')';
printSemi(f, noSemi);
return;
case With:
kindName = "with";
break;
default:
NOT_REACHED("Bad kind");
}
f << kindName << " (";
f << expr << ')';
stmt->printSubstatement(f, noSemi);
}
void JS::BinaryStmtNode::printContents(PrettyPrinter &f, bool noSemi) const
{
ASSERT(stmt && stmt2 && hasKind(IfElse));
f << "if (";
f << expr << ')';
stmt->printSubstatement(f, true, "else");
if (stmt2->hasKind(If) || stmt2->hasKind(IfElse)) {
f << ' ';
static_cast<const UnaryStmtNode *>(stmt2)->printContents(f, noSemi);
} else
stmt2->printSubstatement(f, noSemi);
}
void JS::ForStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
ASSERT(stmt && (hasKind(For) || hasKind(ForIn)));
PrettyPrinter::Block b(f, 0);
f << "for (";
{
PrettyPrinter::Block b2(f);
if (initializer)
initializer->print(f, true);
if (hasKind(ForIn)) {
f.fillBreak(1);
f << "in";
f.fillBreak(1);
ASSERT(expr2 && !expr3);
f << expr2;
} else {
f << ';';
if (expr2) {
f.linearBreak(1);
f << expr2;
}
f << ';';
if (expr3) {
f.linearBreak(1);
f << expr3;
}
}
f << ')';
}
stmt->printSubstatement(f, noSemi);
}
void JS::SwitchStmtNode::print(PrettyPrinter &f, bool) const
{
PrettyPrinter::Block b(f);
f << "switch (";
f << expr << ") ";
printBlockStatements(f, statements, true);
}
void JS::GoStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
const char *kindName = 0;
switch (getKind()) {
case Break:
kindName = "break";
break;
case Continue:
kindName = "continue";
break;
default:
NOT_REACHED("Bad kind");
}
f << kindName;
if (name)
f << " " << *name;
printSemi(f, noSemi);
}
void JS::TryStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
PrettyPrinter::Block b(f, 0);
f << "try";
const StmtNode *s = stmt;
for (const CatchClause *c = catches; c; c = c->next) {
s->printSubstatement(f, true, "catch (");
PrettyPrinter::Block b2(f);
f << c->name;
ExprNode *t = c->type;
if (t) {
f << ':';
f.linearBreak(1);
f << t;
}
f << ')';
s = c->stmt;
}
if (finally) {
s->printSubstatement(f, true, "finally");
s = finally;
}
s->printSubstatement(f, noSemi);
}
void JS::VariableStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
printAttributes(f);
ASSERT(hasKind(Const) || hasKind(Var));
f << (hasKind(Const) ? "const" : "var");
{
PrettyPrinter::Block b(f, basicIndent);
const VariableBinding *binding = bindings;
if (binding)
while (true) {
f.linearBreak(1);
binding->print(f);
binding = binding->next;
if (!binding)
break;
f << ',';
}
}
printSemi(f, noSemi);
}
void JS::FunctionStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
function.print(f, hasKind(Constructor), this, noSemi);
}
void JS::NamespaceStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
printAttributes(f);
ASSERT(hasKind(Namespace));
PrettyPrinter::Block b(f, namespaceHeaderIndent);
f << "namespace ";
f << name;
ExprList::printOptionalCommaList(f, "extends", supers);
printSemi(f, noSemi);
}
void JS::ClassStmtNode::print(PrettyPrinter &f, bool noSemi) const
{
printAttributes(f);
ASSERT(hasKind(Class) || hasKind(Interface));
{
PrettyPrinter::Block b(f, namespaceHeaderIndent);
const char *keyword;
const char *superlistKeyword;
if (hasKind(Class)) {
keyword = "class ";
superlistKeyword = "implements";
} else {
keyword = "interface ";
superlistKeyword = "extends";
}
f << keyword;
f << name;
if (superclass) {
f.linearBreak(1);
f << "extends ";
f << superclass;
}
ExprList::printOptionalCommaList(f, superlistKeyword, supers);
}
if (body) {
f.requiredBreak();
body->printBlock(f, true);
} else
printSemi(f, noSemi);
}
//
// Parser
//
JS::NodeFactory * JS::NodeFactory::state;
// Create a new Parser for parsing the provided source code, interning identifiers, keywords, and regular
// expressions in the designated world, and allocating the parse tree in the designated arena.
JS::Parser::Parser(World &world, Arena &arena, const String &source, const String &sourceLocation, uint32 initialLineNum):
lexer(world, source, sourceLocation, initialLineNum), arena(arena), lineBreaksSignificant(true)
{
NodeFactory::Init(arena);
}
// Report a syntax error at the backUp-th last token read by the Lexer.
// In other words, if backUp is 0, the error is at the next token to be read by the Lexer (which
// must have been peeked already); if backUp is 1, the error is at the last token read by the Lexer,
// and so forth.
void JS::Parser::syntaxError(const char *message, uint backUp)
{
syntaxError(widenCString(message), backUp);
}
// Same as above, but the error message is already a String.
void JS::Parser::syntaxError(const String &message, uint backUp)
{
while (backUp--)
lexer.unget();
getReader().error(Exception::syntaxError, message, lexer.getPos());
}
// Get the next token using the given preferRegExp setting. If that token's kind matches
// the given kind, consume that token and return it. Otherwise throw a syntax error.
const JS::Token &JS::Parser::require(bool preferRegExp, Token::Kind kind)
{
const Token &t = lexer.get(preferRegExp);
if (!t.hasKind(kind)) {
String message;
bool special = Token::isSpecialKind(kind);
if (special)
message += '\'';
message += Token::kindName(kind);
if (special)
message += '\'';
message += " expected";
syntaxError(message);
}
return t;
}
// Copy the Token's chars into the current arena and return the resulting copy.
inline JS::String &JS::Parser::copyTokenChars(const Token &t)
{
return newArenaString(arena, t.getChars());
}
// If t is an Identifier, return a new IdentifierExprNode corresponding to t.
// Otherwise, return null.
JS::ExprNode *JS::Parser::makeIdentifierExpression(const Token &t) const
{
if (t.hasIdentifierKind())
return new(arena) IdentifierExprNode(t);
return 0;
}
// An identifier or parenthesized expression has just been parsed into e.
// If it is followed by one or more ::'s followed by identifiers, construct the appropriate
// qualify parse node and return it and set foundQualifiers to true. If no ::
// is found, return e and set foundQualifiers to false.
// After parseIdentifierQualifiers finishes, the next token might have been peeked with the given preferRegExp setting.
JS::ExprNode *JS::Parser::parseIdentifierQualifiers(ExprNode *e, bool &foundQualifiers, bool preferRegExp)
{
const Token *tDoubleColon = lexer.eat(preferRegExp, Token::doubleColon);
if (!tDoubleColon) {
foundQualifiers = false;
return e;
}
foundQualifiers = true;
checkStackSize();
uint32 pos = tDoubleColon->getPos();
return new(arena) BinaryExprNode(pos, ExprNode::qualify, e, parseQualifiedIdentifier(lexer.get(true), preferRegExp));
}
// An opening parenthesis has just been parsed into tParen. Finish parsing a ParenthesizedExpression.
// If it is followed by one or more ::'s followed by identifiers, construct the appropriate
// qualify parse node and return it and set foundQualifiers to true. If no ::
// is found, return the ParenthesizedExpression and set foundQualifiers to false.
// After parseParenthesesAndIdentifierQualifiers finishes, the next token might have been peeked with
// the given preferRegExp setting.
JS::ExprNode *JS::Parser::parseParenthesesAndIdentifierQualifiers(const Token &tParen, bool &foundQualifiers, bool preferRegExp)
{
uint32 pos = tParen.getPos();
ExprNode *e = new(arena) UnaryExprNode(pos, ExprNode::parentheses, parseExpression(false));
require(false, Token::closeParenthesis);
return parseIdentifierQualifiers(e, foundQualifiers, preferRegExp);
}
// Parse and return a qualifiedIdentifier. The first token has already been parsed and is in t.
// If the second token was peeked, it should be have been done with the given preferRegExp setting.
// After parseQualifiedIdentifier finishes, the next token might have been peeked with the given preferRegExp setting.
JS::ExprNode *JS::Parser::parseQualifiedIdentifier(const Token &t, bool preferRegExp)
{
bool foundQualifiers;
ExprNode *e = makeIdentifierExpression(t);
if (e)
return parseIdentifierQualifiers(e, foundQualifiers, preferRegExp);
if (t.hasKind(Token::openParenthesis)) {
e = parseParenthesesAndIdentifierQualifiers(t, foundQualifiers, preferRegExp);
goto checkQualifiers;
}
if (t.hasKind(Token::Super)) {
e = parseIdentifierQualifiers(new(arena) ExprNode(t.getPos(), ExprNode::Super), foundQualifiers, preferRegExp);
goto checkQualifiers;
}
if (t.hasKind(Token::Public) || t.hasKind(Token::Package) || t.hasKind(Token::Private)) {
e = parseIdentifierQualifiers(new(arena) IdentifierExprNode(t), foundQualifiers, preferRegExp);
checkQualifiers:
if (!foundQualifiers)
syntaxError("'::' expected", 0);
return e;
}
syntaxError("Identifier or '(' expected");
return 0; // Unreachable code here just to shut up compiler warnings
}
// Parse and return an arrayLiteral. The opening bracket has already been read into initialToken.
JS::PairListExprNode *JS::Parser::parseArrayLiteral(const Token &initialToken)
{
uint32 initialPos = initialToken.getPos();
NodeQueue<ExprPairList> elements;
while (true) {
ExprNode *element = 0;
const Token &t = lexer.peek(true);
if (t.hasKind(Token::comma) || t.hasKind(Token::closeBracket))
lexer.redesignate(false); // Safe: neither ',' nor '}' starts with a slash.
else
element = parseAssignmentExpression(false);
elements += new(arena) ExprPairList(0, element);
const Token &tSeparator = lexer.get(false);
if (tSeparator.hasKind(Token::closeBracket))
break;
if (!tSeparator.hasKind(Token::comma))
syntaxError("',' expected");
}
return new(arena) PairListExprNode(initialPos, ExprNode::arrayLiteral, elements.first);
}
// Parse and return an objectLiteral. The opening brace has already been read into initialToken.
JS::PairListExprNode *JS::Parser::parseObjectLiteral(const Token &initialToken)
{
uint32 initialPos = initialToken.getPos();
NodeQueue<ExprPairList> elements;
if (!lexer.eat(true, Token::closeBrace))
while (true) {
const Token &t = lexer.get(true);
ExprNode *field;
if (t.hasIdentifierKind() || t.hasKind(Token::openParenthesis) || t.hasKind(Token::Super) ||
t.hasKind(Token::Public) || t.hasKind(Token::Package) || t.hasKind(Token::Private))
field = parseQualifiedIdentifier(t, false);
else if (t.hasKind(Token::string)) {
field = NodeFactory::LiteralString(t.getPos(),ExprNode::string,copyTokenChars(t));
}
else if (t.hasKind(Token::number))
field = new(arena) NumberExprNode(t);
else {
syntaxError("Field name expected");
field = 0; // Unreachable code here just to shut up compiler warnings
}
require(false, Token::colon);
elements += NodeFactory::LiteralField(field, parseAssignmentExpression(false));
const Token &tSeparator = lexer.get(false);
if (tSeparator.hasKind(Token::closeBrace))
break;
if (!tSeparator.hasKind(Token::comma))
syntaxError("',' expected");
}
return new(arena) PairListExprNode(initialPos, ExprNode::objectLiteral, elements.first);
}
// Parse and return a PrimaryExpression.
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parsePrimaryExpression finishes, the next token might have been peeked with preferRegExp set to false.
JS::ExprNode *JS::Parser::parsePrimaryExpression()
{
ExprNode *e;
ExprNode::Kind eKind;
const Token &t = lexer.get(true);
switch (t.getKind()) {
case Token::Null:
eKind = ExprNode::Null;
goto makeExprNode;
case Token::True:
eKind = ExprNode::True;
goto makeExprNode;
case Token::False:
eKind = ExprNode::False;
goto makeExprNode;
case Token::This:
eKind = ExprNode::This;
goto makeExprNode;
case Token::Super:
eKind = ExprNode::Super;
if (lexer.peek(false).hasKind(Token::doubleColon))
goto makeQualifiedIdentifierNode;
makeExprNode:
e = new(arena) ExprNode(t.getPos(), eKind);
break;
case Token::Public:
if (lexer.peek(false).hasKind(Token::doubleColon))
goto makeQualifiedIdentifierNode;
e = new(arena) IdentifierExprNode(t);
break;
case Token::number:
{
const Token &tUnit = lexer.peek(false);
if (!lineBreakBefore(tUnit) && (tUnit.hasKind(Token::unit) || tUnit.hasKind(Token::string))) {
lexer.get(false);
e = new(arena) NumUnitExprNode(t.getPos(), ExprNode::numUnit, copyTokenChars(t), t.getValue(), copyTokenChars(tUnit));
} else
e = new(arena) NumberExprNode(t);
}
break;
case Token::string:
e = NodeFactory::LiteralString(t.getPos(),ExprNode::string,copyTokenChars(t));
break;
case Token::regExp:
e = new(arena) RegExpExprNode(t.getPos(), ExprNode::regExp, t.getIdentifier(), copyTokenChars(t));
break;
case Token::Package:
case Token::Private:
case CASE_TOKEN_NONRESERVED:
makeQualifiedIdentifierNode:
e = parseQualifiedIdentifier(t, false);
break;
case Token::openParenthesis:
{
bool foundQualifiers;
e = parseParenthesesAndIdentifierQualifiers(t, foundQualifiers, false);
if (!foundQualifiers) {
const Token &tUnit = lexer.peek(false);
if (!lineBreakBefore(tUnit) && tUnit.hasKind(Token::string)) {
lexer.get(false);
e = new(arena) ExprUnitExprNode(t.getPos(), ExprNode::exprUnit, e, copyTokenChars(tUnit));
}
}
}
break;
case Token::openBracket:
e = parseArrayLiteral(t);
break;
case Token::openBrace:
e = parseObjectLiteral(t);
break;
case Token::Function:
{
FunctionExprNode *f = new(arena) FunctionExprNode(t.getPos());
const Token &t2 = lexer.get(true);
f->function.prefix = FunctionName::normal;
if (!(f->function.name = makeIdentifierExpression(t2)))
lexer.unget();
parseFunctionSignature(f->function);
f->function.body = parseBody(0);
e = f;
}
break;
default:
syntaxError("Expression expected");
e = 0; // Unreachable code here just to shut up compiler warnings
}
return e;
}
// Parse a . or @ followed by a QualifiedIdentifier or ParenthesizedExpression and return
// the resulting BinaryExprNode. Use kind if a QualifiedIdentifier was found or parenKind
// if a ParenthesizedExpression was found.
// tOperator is the . or @ token. target is the first operand.
JS::BinaryExprNode *JS::Parser::parseMember(ExprNode *target, const Token &tOperator, ExprNode::Kind kind, ExprNode::Kind parenKind)
{
uint32 pos = tOperator.getPos();
ExprNode *member;
const Token &t2 = lexer.get(true);
if (t2.hasKind(Token::openParenthesis)) {
bool foundQualifiers;
member = parseParenthesesAndIdentifierQualifiers(t2, foundQualifiers, false);
if (!foundQualifiers)
kind = parenKind;
} else
member = parseQualifiedIdentifier(t2, false);
return new(arena) BinaryExprNode(pos, kind, target, member);
}
// Parse an ArgumentsList followed by a closing parenthesis or bracket and return
// the resulting InvokeExprNode. The target function, indexed object, or created class
// is supplied. The opening parenthesis or bracket has already been read.
// pos is the position to use for the InvokeExprNode.
JS::InvokeExprNode *JS::Parser::parseInvoke(ExprNode *target, uint32 pos, Token::Kind closingTokenKind, ExprNode::Kind invokeKind)
{
NodeQueue<ExprPairList> arguments;
bool hasNamedArgument = false;
#ifdef NEW_PARSER
parseArgumentList(arguments);
match(closingTokenKind);
#else
if (!lexer.eat(true, closingTokenKind))
while (true) {
ExprNode *field = 0;
ExprNode *value = parseAssignmentExpression(false);
if (lexer.eat(false, Token::colon)) {
field = value;
if (!ExprNode::isFieldKind(field->getKind()))
syntaxError("Argument name must be an identifier, string, or number");
hasNamedArgument = true;
value = parseAssignmentExpression(false);
} else if (hasNamedArgument)
syntaxError("Unnamed argument cannot follow named argument", 0);
arguments += new(arena) ExprPairList(field, value);
const Token &tSeparator = lexer.get(false);
if (tSeparator.hasKind(closingTokenKind))
break;
if (!tSeparator.hasKind(Token::comma))
syntaxError("',' expected");
}
#endif
return new(arena) InvokeExprNode(pos, invokeKind, target, arguments.first);
}
// Parse and return a PostfixExpression.
// If newExpression is true, this expression is immediately preceded by 'new', so don't allow
// call, postincrement, or postdecrement operators on it.
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parsePostfixExpression finishes, the next token might have been peeked with preferRegExp set to false.
JS::ExprNode *JS::Parser::parsePostfixExpression(bool newExpression)
{
ExprNode *e;
const Token *tNew = lexer.eat(true, Token::New);
if (tNew) {
checkStackSize();
uint32 posNew = tNew->getPos();
e = parsePostfixExpression(true);
if (lexer.eat(false, Token::openParenthesis))
e = parseInvoke(e, posNew, Token::closeParenthesis, ExprNode::New);
else
e = new(arena) InvokeExprNode(posNew, ExprNode::New, e, 0);
} else
e = parsePrimaryExpression();
while (true) {
ExprNode::Kind eKind;
const Token &t = lexer.get(false);
switch (t.getKind()) {
case Token::openParenthesis:
if (newExpression)
goto other;
e = parseInvoke(e, t.getPos(), Token::closeParenthesis, ExprNode::call);
break;
case Token::openBracket:
e = parseInvoke(e, t.getPos(), Token::closeBracket, ExprNode::index);
break;
case Token::dot:
e = parseMember(e, t, ExprNode::dot, ExprNode::dotParen);
break;
case Token::at:
e = parseMember(e, t, ExprNode::at, ExprNode::at);
break;
case Token::increment:
eKind = ExprNode::postIncrement;
incDec:
if (newExpression || lineBreakBefore(t))
goto other;
e = new(arena) UnaryExprNode(t.getPos(), eKind, e);
break;
case Token::decrement:
eKind = ExprNode::postDecrement;
goto incDec;
default:
other:
lexer.unget();
return e;
}
}
}
// Ensure that e is a postfix expression. If not, throw a syntax error on the current token.
void JS::Parser::ensurePostfix(const ExprNode *e)
{
ASSERT(e);
if (!e->isPostfix())
syntaxError("Only a postfix expression can be used as the result of an assignment; enclose this expression in parentheses", 0);
}
// Parse and return a UnaryExpression.
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseUnaryExpression finishes, the next token might have been peeked with preferRegExp set to false.
JS::ExprNode *JS::Parser::parseUnaryExpression()
{
ExprNode::Kind eKind;
ExprNode *e;
const Token &t = lexer.peek(true);
uint32 pos = t.getPos();
switch (t.getKind()) {
case Token::Delete:
eKind = ExprNode::Delete;
goto getPostfixExpression;
case Token::increment:
eKind = ExprNode::preIncrement;
goto getPostfixExpression;
case Token::decrement:
eKind = ExprNode::preDecrement;
getPostfixExpression:
lexer.get(true);
e = parsePostfixExpression();
break;
case Token::Typeof:
eKind = ExprNode::Typeof;
goto getUnaryExpression;
case Token::Eval:
eKind = ExprNode::Eval;
goto getUnaryExpression;
case Token::plus:
eKind = ExprNode::plus;
goto getUnaryExpression;
case Token::minus:
eKind = ExprNode::minus;
goto getUnaryExpression;
case Token::complement:
eKind = ExprNode::complement;
goto getUnaryExpression;
case Token::logicalNot:
eKind = ExprNode::logicalNot;
getUnaryExpression:
lexer.get(true);
checkStackSize();
e = parseUnaryExpression();
break;
default:
return parsePostfixExpression();
}
return new(arena) UnaryExprNode(pos, eKind, e);
}
const JS::Parser::BinaryOperatorInfo JS::Parser::tokenBinaryOperatorInfos[Token::kindsEnd] = {
// Special
{ExprNode::none, pExpression, pNone}, // Token::end
{ExprNode::none, pExpression, pNone}, // Token::number
{ExprNode::none, pExpression, pNone}, // Token::string
{ExprNode::none, pExpression, pNone}, // Token::unit
{ExprNode::none, pExpression, pNone}, // Token::regExp
// Punctuators
{ExprNode::none, pExpression, pNone}, // Token::openParenthesis
{ExprNode::none, pExpression, pNone}, // Token::closeParenthesis
{ExprNode::none, pExpression, pNone}, // Token::openBracket
{ExprNode::none, pExpression, pNone}, // Token::closeBracket
{ExprNode::none, pExpression, pNone}, // Token::openBrace
{ExprNode::none, pExpression, pNone}, // Token::closeBrace
{ExprNode::comma, pExpression, pExpression}, // Token::comma
{ExprNode::none, pExpression, pNone}, // Token::semicolon
{ExprNode::none, pExpression, pNone}, // Token::dot
{ExprNode::none, pExpression, pNone}, // Token::doubleDot
{ExprNode::none, pExpression, pNone}, // Token::tripleDot
{ExprNode::none, pExpression, pNone}, // Token::arrow
{ExprNode::none, pExpression, pNone}, // Token::colon
{ExprNode::none, pExpression, pNone}, // Token::doubleColon
{ExprNode::none, pExpression, pNone}, // Token::pound
{ExprNode::none, pExpression, pNone}, // Token::at
{ExprNode::none, pExpression, pNone}, // Token::increment
{ExprNode::none, pExpression, pNone}, // Token::decrement
{ExprNode::none, pExpression, pNone}, // Token::complement
{ExprNode::none, pExpression, pNone}, // Token::logicalNot
{ExprNode::multiply, pMultiplicative, pMultiplicative}, // Token::times
{ExprNode::divide, pMultiplicative, pMultiplicative}, // Token::divide
{ExprNode::modulo, pMultiplicative, pMultiplicative}, // Token::modulo
{ExprNode::add, pAdditive, pAdditive}, // Token::plus
{ExprNode::subtract, pAdditive, pAdditive}, // Token::minus
{ExprNode::leftShift, pShift, pShift}, // Token::leftShift
{ExprNode::rightShift, pShift, pShift}, // Token::rightShift
{ExprNode::logicalRightShift, pShift, pShift}, // Token::logicalRightShift
{ExprNode::logicalAnd, pBitwiseOr, pLogicalAnd}, // Token::logicalAnd (right-associative for efficiency)
{ExprNode::logicalXor, pLogicalAnd, pLogicalXor}, // Token::logicalXor (right-associative for efficiency)
{ExprNode::logicalOr, pLogicalXor, pLogicalOr}, // Token::logicalOr (right-associative for efficiency)
{ExprNode::bitwiseAnd, pBitwiseAnd, pBitwiseAnd}, // Token::bitwiseAnd
{ExprNode::bitwiseXor, pBitwiseXor, pBitwiseXor}, // Token::bitwiseXor
{ExprNode::bitwiseOr, pBitwiseOr, pBitwiseOr}, // Token::bitwiseOr
{ExprNode::assignment, pPostfix, pAssignment}, // Token::assignment
{ExprNode::multiplyEquals, pPostfix, pAssignment}, // Token::timesEquals
{ExprNode::divideEquals, pPostfix, pAssignment}, // Token::divideEquals
{ExprNode::moduloEquals, pPostfix, pAssignment}, // Token::moduloEquals
{ExprNode::addEquals, pPostfix, pAssignment}, // Token::plusEquals
{ExprNode::subtractEquals, pPostfix, pAssignment}, // Token::minusEquals
{ExprNode::leftShiftEquals, pPostfix, pAssignment}, // Token::leftShiftEquals
{ExprNode::rightShiftEquals, pPostfix, pAssignment}, // Token::rightShiftEquals
{ExprNode::logicalRightShiftEquals, pPostfix, pAssignment}, // Token::logicalRightShiftEquals
{ExprNode::logicalAndEquals, pPostfix, pAssignment}, // Token::logicalAndEquals
{ExprNode::logicalXorEquals, pPostfix, pAssignment}, // Token::logicalXorEquals
{ExprNode::logicalOrEquals, pPostfix, pAssignment}, // Token::logicalOrEquals
{ExprNode::bitwiseAndEquals, pPostfix, pAssignment}, // Token::bitwiseAndEquals
{ExprNode::bitwiseXorEquals, pPostfix, pAssignment}, // Token::bitwiseXorEquals
{ExprNode::bitwiseOrEquals, pPostfix, pAssignment}, // Token::bitwiseOrEquals
{ExprNode::equal, pEquality, pEquality}, // Token::equal
{ExprNode::notEqual, pEquality, pEquality}, // Token::notEqual
{ExprNode::lessThan, pRelational, pRelational}, // Token::lessThan
{ExprNode::lessThanOrEqual, pRelational, pRelational}, // Token::lessThanOrEqual
{ExprNode::greaterThan, pRelational, pRelational}, // Token::greaterThan
{ExprNode::greaterThanOrEqual, pRelational, pRelational}, // Token::greaterThanOrEqual
{ExprNode::identical, pEquality, pEquality}, // Token::identical
{ExprNode::notIdentical, pEquality, pEquality}, // Token::notIdentical
{ExprNode::conditional, pLogicalOr, pConditional}, // Token::question
// Reserved words
{ExprNode::none, pExpression, pNone}, // Token::Abstract
{ExprNode::none, pExpression, pNone}, // Token::Break
{ExprNode::none, pExpression, pNone}, // Token::Case
{ExprNode::none, pExpression, pNone}, // Token::Catch
{ExprNode::none, pExpression, pNone}, // Token::Class
{ExprNode::none, pExpression, pNone}, // Token::Const
{ExprNode::none, pExpression, pNone}, // Token::Continue
{ExprNode::none, pExpression, pNone}, // Token::Debugger
{ExprNode::none, pExpression, pNone}, // Token::Default
{ExprNode::none, pExpression, pNone}, // Token::Delete
{ExprNode::none, pExpression, pNone}, // Token::Do
{ExprNode::none, pExpression, pNone}, // Token::Else
{ExprNode::none, pExpression, pNone}, // Token::Enum
{ExprNode::none, pExpression, pNone}, // Token::Eval
{ExprNode::none, pExpression, pNone}, // Token::Export
{ExprNode::none, pExpression, pNone}, // Token::Extends
{ExprNode::none, pExpression, pNone}, // Token::False
{ExprNode::none, pExpression, pNone}, // Token::Final
{ExprNode::none, pExpression, pNone}, // Token::Finally
{ExprNode::none, pExpression, pNone}, // Token::For
{ExprNode::none, pExpression, pNone}, // Token::Function
{ExprNode::none, pExpression, pNone}, // Token::Goto
{ExprNode::none, pExpression, pNone}, // Token::If
{ExprNode::none, pExpression, pNone}, // Token::Implements
{ExprNode::none, pExpression, pNone}, // Token::Import
{ExprNode::In, pRelational, pRelational}, // Token::In
{ExprNode::Instanceof, pRelational, pRelational}, // Token::Instanceof
{ExprNode::none, pExpression, pNone}, // Token::Interface
{ExprNode::none, pExpression, pNone}, // Token::Native
{ExprNode::none, pExpression, pNone}, // Token::New
{ExprNode::none, pExpression, pNone}, // Token::Null
{ExprNode::none, pExpression, pNone}, // Token::Package
{ExprNode::none, pExpression, pNone}, // Token::Private
{ExprNode::none, pExpression, pNone}, // Token::Protected
{ExprNode::none, pExpression, pNone}, // Token::Public
{ExprNode::none, pExpression, pNone}, // Token::Return
{ExprNode::none, pExpression, pNone}, // Token::Static
{ExprNode::none, pExpression, pNone}, // Token::Super
{ExprNode::none, pExpression, pNone}, // Token::Switch
{ExprNode::none, pExpression, pNone}, // Token::Synchronized
{ExprNode::none, pExpression, pNone}, // Token::This
{ExprNode::none, pExpression, pNone}, // Token::Throw
{ExprNode::none, pExpression, pNone}, // Token::Throws
{ExprNode::none, pExpression, pNone}, // Token::Transient
{ExprNode::none, pExpression, pNone}, // Token::True
{ExprNode::none, pExpression, pNone}, // Token::Try
{ExprNode::none, pExpression, pNone}, // Token::Typeof
{ExprNode::none, pExpression, pNone}, // Token::Var
{ExprNode::none, pExpression, pNone}, // Token::Volatile
{ExprNode::none, pExpression, pNone}, // Token::While
{ExprNode::none, pExpression, pNone}, // Token::With
// Non-reserved words
{ExprNode::none, pExpression, pNone}, // Token::Attribute
{ExprNode::none, pExpression, pNone}, // Token::Constructor
{ExprNode::none, pExpression, pNone}, // Token::Get
{ExprNode::none, pExpression, pNone}, // Token::Language
{ExprNode::none, pExpression, pNone}, // Token::Namespace
{ExprNode::none, pExpression, pNone}, // Token::Set
{ExprNode::none, pExpression, pNone}, // Token::Use
{ExprNode::none, pExpression, pNone} // Token::identifier
};
struct JS::Parser::StackedSubexpression {
ExprNode::Kind kind; // The kind of BinaryExprNode the subexpression should generate
uchar precedence; // Precedence of an operator with respect to operators on its right
uint32 pos; // The operator token's position
ExprNode *op1; // First operand of the operator
ExprNode *op2; // Second operand of the operator (used for ?: only)
};
// Parse and return an Expression. If noIn is false, allow the in operator. If noAssignment is
// false, allow the = and op= operators. If noComma is false, allow the comma operator.
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseExpression finishes, the next token might have been peeked with preferRegExp set to false.
JS::ExprNode *JS::Parser::parseExpression(bool noIn, bool noAssignment, bool noComma)
{
ArrayBuffer<StackedSubexpression, 10> subexpressionStack;
checkStackSize();
// Push a limiter onto subexpressionStack.
subexpressionStack.reserve_advance_back()->precedence = pNone;
while (true) {
foundColon:
ExprNode *e = parseUnaryExpression();
const Token &t = lexer.peek(false);
const BinaryOperatorInfo &binOpInfo = tokenBinaryOperatorInfos[t.getKind()];
Precedence precedence = binOpInfo.precedenceLeft;
ExprNode::Kind kind = binOpInfo.kind;
ASSERT(precedence > pNone);
// Disqualify assignments, 'in', and comma if the flags indicate that these should end the expression.
if (precedence == pPostfix && noAssignment || kind == ExprNode::In && noIn || kind == ExprNode::comma && noComma) {
kind = ExprNode::none;
precedence = pExpression;
}
if (precedence == pPostfix)
ensurePostfix(e); // Ensure that the target of an assignment is a postfix subexpression.
else
// Reduce already stacked operators with precedenceLeft or higher precedence
while (subexpressionStack.back().precedence >= precedence) {
StackedSubexpression &s = subexpressionStack.pop_back();
if (s.kind == ExprNode::conditional) {
if (s.op2)
e = new(arena) TernaryExprNode(s.pos, s.kind, s.op1, s.op2, e);
else {
if (!t.hasKind(Token::colon))
syntaxError("':' expected", 0);
lexer.get(false);
subexpressionStack.advance_back();
s.op2 = e;
goto foundColon;
}
} else
e = new(arena) BinaryExprNode(s.pos, s.kind, s.op1, e);
}
if (kind == ExprNode::none) {
ASSERT(subexpressionStack.size() == 1);
return e;
}
// Push the current operator onto the subexpressionStack.
lexer.get(false);
StackedSubexpression &s = *subexpressionStack.reserve_advance_back();
s.kind = kind;
s.precedence = binOpInfo.precedenceRight;
s.pos = t.getPos();
s.op1 = e;
s.op2 = 0;
}
}
// Parse an opening parenthesis, an Expression, and a closing parenthesis. Return the Expression.
// If the first token was peeked, it should be have been done with preferRegExp set to true.
JS::ExprNode *JS::Parser::parseParenthesizedExpression()
{
require(true, Token::openParenthesis);
ExprNode *e = parseExpression(false);
require(false, Token::closeParenthesis);
return e;
}
// Parse and return a TypeExpression. If noIn is false, allow the in operator.
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseTypeExpression finishes, the next token might have been peeked with preferRegExp set to true.
JS::ExprNode *JS::Parser::parseTypeExpression(bool noIn)
{
ExprNode *type = parseNonAssignmentExpression(noIn);
if (lexer.peek(false).hasKind(Token::divideEquals))
syntaxError("'/=' not allowed here", 0);
lexer.redesignate(true); // Safe: a '/' would have been interpreted as an operator, so it can't be the next token;
// a '/=' was outlawed by the check above.
return type;
}
// Parse a TypedIdentifier. Return the identifier's name.
// If a type was provided, set type to it; otherwise, set type to nil.
// After parseTypedIdentifier finishes, the next token might have been peeked with preferRegExp set to false.
const JS::StringAtom &JS::Parser::parseTypedIdentifier(ExprNode *&type)
{
const Token &t = lexer.get(true);
if (!t.hasIdentifierKind())
syntaxError("Identifier expected");
const StringAtom &name = t.getIdentifier();
type = 0;
if (lexer.eat(false, Token::colon))
type = parseNonAssignmentExpression(false);
return name;
}
// If the next token has the given kind, eat it and parse and return the following TypeExpression;
// otherwise return nil.
// If noIn is false, allow the in operator.
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseTypeBinding finishes, the next token might have been peeked with preferRegExp set to true.
JS::ExprNode *JS::Parser::parseTypeBinding(Token::Kind kind, bool noIn)
{
ExprNode *type = 0;
if (lexer.eat(true, kind))
type = parseTypeExpression(noIn);
return type;
}
// If the next token has the given kind, eat it and parse and return the following TypeExpressionList;
// otherwise return nil.
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseTypeListBinding finishes, the next token might have been peeked with preferRegExp set to true.
JS::ExprList *JS::Parser::parseTypeListBinding(Token::Kind kind)
{
NodeQueue<ExprList> types;
if (lexer.eat(true, kind))
do types += new(arena) ExprList(parseTypeExpression(false));
while (lexer.eat(true, Token::comma));
return types.first;
}
// Parse and return a VariableBinding.
// If noQualifiers is false, allow a QualifiedIdentifier as the variable name; otherwise, restrict the
// variable name to be a simple Identifier.
// If noIn is false, allow the in operator.
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseVariableBinding finishes, the next token might have been peeked with preferRegExp set to true.
JS::VariableBinding *JS::Parser::parseVariableBinding(bool noQualifiers, bool noIn)
{
const Token &t = lexer.get(true);
uint32 pos = t.getPos();
ExprNode *name;
if (noQualifiers) {
name = makeIdentifierExpression(t);
if (!name)
syntaxError("Identifier expected");
} else
name = parseQualifiedIdentifier(t, true);
ExprNode *type = parseTypeBinding(Token::colon, noIn);
ExprNode *initializer = 0;
if (lexer.eat(true, Token::assignment)) {
initializer = parseAssignmentExpression(noIn);
lexer.redesignate(true); // Safe: a '/' or a '/=' would have been interpreted as an operator, so it can't be the next token.
}
return new(arena) VariableBinding(pos, name, type, initializer);
}
// Parse a FunctionName and initialize fn with the result.
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseFunctionName finishes, the next token might have been peeked with preferRegExp set to true.
void JS::Parser::parseFunctionName(FunctionName &fn)
{
fn.prefix = FunctionName::normal;
const Token *t = &lexer.get(true);
if (t->hasKind(Token::Get) || t->hasKind(Token::Set)) {
const Token *t2 = &lexer.peek(true);
if (!lineBreakBefore(*t2) && t2->getFlag(Token::canFollowGet)) {
fn.prefix = t->hasKind(Token::Get) ? FunctionName::Get : FunctionName::Set;
t = &lexer.get(true);
}
}
fn.name = parseQualifiedIdentifier(*t, true);
}
// Parse a FunctionSignature and initialize fd with the result.
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseFunctionSignature finishes, the next token might have been peeked with preferRegExp set to true.
void JS::Parser::parseFunctionSignature(FunctionDefinition &fd)
{
require(true, Token::openParenthesis);
NodeQueue<VariableBinding> parameters;
VariableBinding *optParameters = 0;
VariableBinding *namedParameters = 0;
VariableBinding *restParameter = 0;
#ifdef NEW_PARSER
fd.optParameters = optParameters;
fd.namedParameters = namedParameters;
fd.restParameter = restParameter;
#endif
if (!lexer.eat(true, Token::closeParenthesis)) {
#ifdef NEW_PARSER
parseAllParameters(fd,parameters);
match(Token::closeParenthesis);
#else
while (true) {
if (lexer.eat(true, Token::tripleDot)) {
const Token &t1 = lexer.peek(true);
if (t1.hasKind(Token::closeParenthesis))
restParameter = new(arena) VariableBinding(t1.getPos(), 0, 0, 0);
else
restParameter = parseVariableBinding(true, false);
if (!optParameters)
optParameters = restParameter;
parameters += restParameter;
require(true, Token::closeParenthesis);
break;
} else {
VariableBinding *b = parseVariableBinding(true, false);
if (b->initializer) {
if (!optParameters)
optParameters = b;
} else
if (optParameters)
syntaxError("'=' expected", 0);
parameters += b;
const Token &t = lexer.get(true);
if (!t.hasKind(Token::comma))
if (t.hasKind(Token::closeParenthesis))
break;
else
syntaxError("',' or ')' expected");
}
}
#endif
}
fd.parameters = parameters.first;
#ifndef NEW_PARSER
fd.optParameters = optParameters;
fd.restParameter = restParameter;
fd.resultType = parseTypeBinding(Token::colon, false);
#endif
fd.resultType = parseResultSignature();
}
// Parse a list of statements ending with a '}'. Return these statements as a linked list
// threaded through the StmtNodes' next fields. The opening '{' has already been read.
// If noCloseBrace is true, an end-of-input terminates the block; the end-of-input token is not read.
// If inSwitch is true, allow case <expr>: and default: statements.
// If noCloseBrace is true, after parseBlock finishes the next token might have been peeked with preferRegExp set to true.
JS::StmtNode *JS::Parser::parseBlock(bool inSwitch, bool noCloseBrace)
{
NodeQueue<StmtNode> q;
SemicolonState semicolonState = semiNone;
while (true) {
const Token *t = &lexer.peek(true);
if (t->hasKind(Token::semicolon) && semicolonState != semiNone) {
lexer.get(true);
semicolonState = semiNone;
t = &lexer.peek(true);
}
if (noCloseBrace) {
if (t->hasKind(Token::end))
return q.first;
} else if (t->hasKind(Token::closeBrace)) {
lexer.get(true);
return q.first;
}
if (!(semicolonState == semiNone || semicolonState == semiInsertable && lineBreakBefore(*t)))
syntaxError("';' expected", 0);
StmtNode *s = parseStatement(!inSwitch, inSwitch, semicolonState);
if (inSwitch && !q.first && !s->hasKind(StmtNode::Case))
syntaxError("First statement in a switch block must be 'case expr:' or 'default:'", 0);
q += s;
}
}
// Parse an optional block of statements beginning with a '{' and ending with a '}'.
// Return these statements as a BlockStmtNode.
// If semicolonState is nil, the block is required; otherwise, the block is optional and if it is
// omitted, *semicolonState is set to semiInsertable.
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseBody finishes, the next token might have been peeked with preferRegExp set to true.
JS::BlockStmtNode *JS::Parser::parseBody(SemicolonState *semicolonState)
{
const Token *tBrace = lexer.eat(true, Token::openBrace);
if (tBrace) {
uint32 pos = tBrace->getPos();
return new(arena) BlockStmtNode(pos, StmtNode::block, 0, parseBlock(false, false));
} else {
if (!semicolonState)
syntaxError("'{' expected", 0);
*semicolonState = semiInsertable;
return 0;
}
}
JS::ExprNode::Kind JS::Parser::validateOperatorName(const Token &name)
{
Lexer operatorLexer(getWorld(), copyTokenChars(name), getReader().sourceLocation); // XXX line number ???
const Token &t = operatorLexer.get(false); // XXX preferRegExp ???
// XXX switch to a table lookup instead
switch (t.getKind()) {
default:
syntaxError("Illegal operator name");
case Token::complement:
return ExprNode::complement;
case Token::increment:
return ExprNode::postIncrement;
case Token::decrement:
return ExprNode::postDecrement;
case Token::Const:
return ExprNode::none; // XXX
case Token::plus:
return ExprNode::add;
case Token::minus:
return ExprNode::subtract;
case Token::times:
return ExprNode::multiply;
case Token::divide:
return ExprNode::divide;
case Token::modulo:
return ExprNode::modulo;
case Token::leftShift:
return ExprNode::leftShift;
case Token::rightShift:
return ExprNode::rightShift;
case Token::logicalRightShift:
return ExprNode::logicalRightShift;
case Token::lessThan:
return ExprNode::lessThan;
case Token::lessThanOrEqual:
return ExprNode::lessThanOrEqual;
case Token::equal:
return ExprNode::equal;
case Token::bitwiseAnd:
return ExprNode::bitwiseAnd;
case Token::bitwiseXor:
return ExprNode::bitwiseXor;
case Token::bitwiseOr:
return ExprNode::bitwiseOr;
case Token::identical:
return ExprNode::identical;
case Token::In:
return ExprNode::In;
case Token::openParenthesis:
return ExprNode::call;
case Token::New:
return ExprNode::New;
case Token::openBracket:
return ExprNode::index;
case Token::Delete:
return ExprNode::Delete;
}
return ExprNode::none;
}
// Parse and return a statement that takes zero or more initial attributes, which have already been parsed.
// If noIn is false, allow the in operator.
//
// If the statement ends with an optional semicolon, that semicolon is not parsed.
// Instead, parseAttributeStatement returns in semicolonState one of three values:
// semiNone: No semicolon is needed to close the statement
// semiNoninsertable: A NoninsertableSemicolon is needed to close the statement; a line break is not enough
// semiInsertable: A Semicolon is needed to close the statement; a line break is also sufficient
//
// pos is the position of the beginning of the statement (its first attribute if it has attributes).
// The first token of the statement has already been read and is provided in t.
// After parseAttributeStatement finishes, the next token might have been peeked with preferRegExp set to true.
JS::StmtNode *JS::Parser::parseAttributeStatement(uint32 pos, IdentifierList *attributes, const Token &t,
bool noIn, SemicolonState &semicolonState)
{
semicolonState = semiNone;
StmtNode::Kind sKind;
switch (t.getKind()) {
case Token::openBrace:
return new(arena) BlockStmtNode(pos, StmtNode::block, attributes, parseBlock(false, false));
case Token::Const:
sKind = StmtNode::Const;
goto constOrVar;
case Token::Var:
sKind = StmtNode::Var;
constOrVar:
{
NodeQueue<VariableBinding> bindings;
do bindings += parseVariableBinding(false, noIn);
while (lexer.eat(true, Token::comma));
semicolonState = semiInsertable;
return new(arena) VariableStmtNode(pos, sKind, attributes, bindings.first);
}
case Token::Constructor:
sKind = StmtNode::Constructor;
goto functionOrConstructor;
case Token::Function:
sKind = StmtNode::Function;
functionOrConstructor:
{
FunctionStmtNode *f = new(arena) FunctionStmtNode(pos, sKind, attributes);
if (sKind == StmtNode::Constructor) {
f->function.prefix = FunctionName::normal;
const Token &t2 = lexer.get(false);
if (lineBreakBefore(t2) || !(f->function.name = makeIdentifierExpression(t2)))
syntaxError("Constructor name expected");
} else
if (attributes && attributes->contains(Token::Operator)) {
// expecting a string literal matching one of the legal operator names
const Token &t2 = lexer.get(false);
if (!t2.hasKind(Token::string))
syntaxError("Operator name (as string literal) expected");
f->function.prefix = FunctionName::Operator;
f->function.op = validateOperatorName(t2);
f->function.name = NULL;
}
else
parseFunctionName(f->function);
parseFunctionSignature(f->function);
f->function.body = parseBody(&semicolonState);
return f;
}
case Token::Interface:
sKind = StmtNode::Interface;
goto classOrInterface;
case Token::Class:
sKind = StmtNode::Class;
classOrInterface:
{
ExprNode *name = parseQualifiedIdentifier(lexer.get(true), true);
ExprNode *superclass = 0;
if (sKind == StmtNode::Class)
superclass = parseTypeBinding(Token::Extends, false);
ExprList *superinterfaces = parseTypeListBinding(sKind == StmtNode::Class ? Token::Implements : Token::Extends);
BlockStmtNode *body = parseBody(superclass || superinterfaces ? 0 : &semicolonState);
return new(arena) ClassStmtNode(pos, sKind, attributes, name, superclass, superinterfaces, body);
}
case Token::Namespace:
{
const Token &t2 = lexer.get(false);
ExprNode *name;
if (lineBreakBefore(t2) || !(name = makeIdentifierExpression(t2)))
syntaxError("Namespace name expected");
ExprList *supernamespaces = parseTypeListBinding(Token::Extends);
semicolonState = semiInsertable;
return new(arena) NamespaceStmtNode(pos, StmtNode::Namespace, attributes, name, supernamespaces);
}
default:
syntaxError("Bad declaration");
return 0;
}
}
// Parse and return a statement that takes zero or more initial attributes.
// semicolonState behaves as in parseAttributeStatement.
//
// as restricts the kinds of statements that are allowed after the attributes:
// asAny Any statements that takes attributes can follow
// asBlock Only a block can follow
// asConstVar Only a const or var declaration can follow, and the 'in' operator is not allowed at its top level
//
// The first token of the statement has already been read and is provided in t.
// If the second token was peeked, it should be have been done with preferRegExp set to false;
// the second token should have been peeked only if t is an attribute or the keyword 'constructor'.
// After parseAttributesAndStatement finishes, the next token might have been peeked with
// preferRegExp set to true.
JS::StmtNode *JS::Parser::parseAttributesAndStatement(const Token *t, AttributeStatement as, SemicolonState &semicolonState)
{
uint32 pos = t->getPos();
NodeQueue<IdentifierList> attributes;
while (t->getFlag(Token::isAttribute)) {
attributes += new(arena) IdentifierList(t->getIdentifier());
t = &lexer.get(false);
if (lineBreakBefore(*t))
syntaxError("Line break not allowed here");
}
switch (as) {
case asAny:
break;
case asBlock:
if (!t->hasKind(Token::openBrace))
syntaxError("'{' expected");
break;
case asConstVar:
if (!t->hasKind(Token::Const) && !t->hasKind(Token::Var))
syntaxError("const or var expected");
break;
}
return parseAttributeStatement(pos, attributes.first, *t, as == asConstVar, semicolonState);
}
// Parse and return an AnnotatedBlock.
JS::StmtNode *JS::Parser::parseAnnotatedBlock()
{
const Token &t = lexer.get(true);
SemicolonState semicolonState;
// If package is the first attribute then it must be the only attribute.
if (t.hasKind(Token::Package) && !lexer.peek(false).hasKind(Token::openBrace))
syntaxError("'{' expected", 0);
return parseAttributesAndStatement(&t, asBlock, semicolonState);
}
// Parse and return a ForStatement. The 'for' token has already been read; its position is pos.
// If the statement ends with an optional semicolon, that semicolon is not parsed.
// Instead, parseFor returns a semicolonState with the same meaning as that in parseStatement.
//
// After parseFor finishes, the next token might have been peeked with preferRegExp set to true.
JS::StmtNode *JS::Parser::parseFor(uint32 pos, SemicolonState &semicolonState)
{
require(true, Token::openParenthesis);
const Token &t = lexer.get(true);
uint32 tPos = t.getPos();
const Token *t2;
StmtNode *initializer = 0;
ExprNode *expr1 = 0;
ExprNode *expr2 = 0;
ExprNode *expr3 = 0;
StmtNode::Kind sKind = StmtNode::For;
switch (t.getKind()) {
case Token::semicolon:
goto threeExpr;
case Token::Const:
case Token::Var:
case Token::Final:
case Token::Static:
case Token::Volatile:
makeAttribute:
initializer = parseAttributesAndStatement(&t, asConstVar, semicolonState);
break;
case CASE_TOKEN_ATTRIBUTE_IDENTIFIER:
case Token::Public:
case Token::Package:
case Token::Private:
t2 = &lexer.peek(false);
if (!lineBreakBefore(*t2) && t2->getFlag(Token::canFollowAttribute))
goto makeAttribute;
default:
lexer.unget();
expr1 = parseExpression(true);
initializer = new(arena) ExprStmtNode(tPos, StmtNode::expression, expr1);
lexer.redesignate(true); // Safe: a '/' or a '/=' would have been interpreted as an operator, so it can't be the next token.
break;
}
if (lexer.eat(true, Token::semicolon))
threeExpr: {
if (!lexer.eat(true, Token::semicolon)) {
expr2 = parseExpression(false);
require(false, Token::semicolon);
}
if (lexer.peek(true).hasKind(Token::closeParenthesis))
lexer.redesignate(false); // Safe: the token is ')'.
else
expr3 = parseExpression(false);
}
else if (lexer.eat(true, Token::In)) {
sKind = StmtNode::ForIn;
if (expr1) {
ASSERT(initializer->hasKind(StmtNode::expression));
ensurePostfix(expr1);
} else {
ASSERT(initializer->hasKind(StmtNode::Const) || initializer->hasKind(StmtNode::Var));
const VariableBinding *bindings = static_cast<VariableStmtNode *>(initializer)->bindings;
if (!bindings || bindings->next)
syntaxError("Only one variable binding can be used in a for-in statement", 0);
}
expr2 = parseExpression(false);
}
else
syntaxError("';' or 'in' expected", 0);
require(false, Token::closeParenthesis);
return new(arena) ForStmtNode(pos, sKind, initializer, expr2, expr3, parseStatement(false, false, semicolonState));
}
// Parse and return a TryStatement. The 'try' token has already been read; its position is pos.
// After parseTry finishes, the next token might have been peeked with preferRegExp set to true.
JS::StmtNode *JS::Parser::parseTry(uint32 pos)
{
StmtNode *tryBlock = parseAnnotatedBlock();
NodeQueue<CatchClause> catches;
const Token *t;
while ((t = lexer.eat(true, Token::Catch)) != 0) {
uint32 catchPos = t->getPos();
require(true, Token::openParenthesis);
ExprNode *type;
const StringAtom &name = parseTypedIdentifier(type);
require(false, Token::closeParenthesis);
catches += new(arena) CatchClause(catchPos, name, type, parseAnnotatedBlock());
}
StmtNode *finally = 0;
if (lexer.eat(true, Token::Finally))
finally = parseAnnotatedBlock();
else if (!catches.first)
syntaxError("A try statement must be followed by at least one catch or finally", 0);
return new(arena) TryStmtNode(pos, tryBlock, catches.first, finally);
}
// Parse and return a TopStatement. If topLevel is false, allow only Statements.
// If inSwitch is true, allow case <expr>: and default: statements.
//
// If the statement ends with an optional semicolon, that semicolon is not parsed.
// Instead, parseStatement returns in semicolonState one of three values:
// semiNone: No semicolon is needed to close the statement
// semiNoninsertable: A NoninsertableSemicolon is needed to close the statement; a line break is not enough
// semiInsertable: A Semicolon is needed to close the statement; a line break is also sufficient
//
// If the first token was peeked, it should be have been done with preferRegExp set to true.
// After parseStatement finishes, the next token might have been peeked with preferRegExp set to true.
JS::StmtNode *JS::Parser::parseStatement(bool /*topLevel*/, bool inSwitch, SemicolonState &semicolonState)
{
StmtNode *s;
ExprNode *e = 0;
StmtNode::Kind sKind;
const Token &t = lexer.get(true);
const Token *t2;
uint32 pos = t.getPos();
semicolonState = semiNone;
checkStackSize();
switch (t.getKind()) {
case Token::semicolon:
s = new(arena) StmtNode(pos, StmtNode::empty);
break;
case Token::Constructor:
case Token::Namespace:
t2 = &lexer.peek(false);
if (lineBreakBefore(*t2) || !t2->hasIdentifierKind())
goto makeExpression;
case Token::openBrace:
case Token::Const:
case Token::Var:
case Token::Function:
case Token::Class:
case Token::Interface:
s = parseAttributeStatement(pos, 0, t, false, semicolonState);
break;
case Token::If:
e = parseParenthesizedExpression();
s = parseStatementAndSemicolon(semicolonState);
if (lexer.eat(true, Token::Else))
s = new(arena) BinaryStmtNode(pos, StmtNode::IfElse, e, s, parseStatement(false, false, semicolonState));
else {
sKind = StmtNode::If;
goto makeUnary;
}
break;
case Token::Switch:
e = parseParenthesizedExpression();
require(true, Token::openBrace);
s = new(arena) SwitchStmtNode(pos, e, parseBlock(true, false));
break;
case Token::Case:
if (!inSwitch)
goto notInSwitch;
e = parseExpression(false);
makeSwitchCase:
require(false, Token::colon);
s = new(arena) ExprStmtNode(pos, StmtNode::Case, e);
break;
case Token::Default:
if (inSwitch)
goto makeSwitchCase;
notInSwitch:
syntaxError("case and default may only be used inside a switch statement");
break;
case Token::Do:
{
SemicolonState semiState2;
s = parseStatementAndSemicolon(semiState2); // Ignore semiState2.
require(true, Token::While);
e = parseParenthesizedExpression();
sKind = StmtNode::DoWhile;
goto makeUnary;
}
break;
case Token::With:
sKind = StmtNode::With;
goto makeWhileWith;
case Token::While:
sKind = StmtNode::While;
makeWhileWith:
e = parseParenthesizedExpression();
s = parseStatement(false, false, semicolonState);
makeUnary:
s = new(arena) UnaryStmtNode(pos, sKind, e, s);
break;
case Token::For:
s = parseFor(pos, semicolonState);
break;
case Token::Continue:
sKind = StmtNode::Continue;
goto makeGo;
case Token::Break:
sKind = StmtNode::Break;
makeGo:
{
const StringAtom *label = 0;
t2 = &lexer.peek(true);
if (t2->hasKind(Token::identifier) && !lineBreakBefore(*t2)) {
lexer.get(true);
label = &t2->getIdentifier();
}
s = new(arena) GoStmtNode(pos, sKind, label);
}
goto insertableSemicolon;
case Token::Return:
sKind = StmtNode::Return;
t2 = &lexer.peek(true);
if (lineBreakBefore(*t2) || t2->getFlag(Token::canFollowReturn))
goto makeExprStmtNode;
goto makeExpressionNode;
case Token::Throw:
sKind = StmtNode::Throw;
if (lineBreakBefore())
syntaxError("throw cannot be followed by a line break", 0);
goto makeExpressionNode;
case Token::Try:
s = parseTry(pos);
break;
case Token::Debugger:
s = new(arena) DebuggerStmtNode(pos, StmtNode::Debugger);
break;
case Token::Final:
case Token::Static:
case Token::Volatile:
makeAttribute:
s = parseAttributesAndStatement(&t, asAny, semicolonState);
break;
case Token::Public:
case Token::Package:
case Token::Private:
t2 = &lexer.peek(false);
goto makeExpressionOrAttribute;
case CASE_TOKEN_ATTRIBUTE_IDENTIFIER:
t2 = &lexer.peek(false);
if (t2->hasKind(Token::colon)) {
lexer.get(false);
const StringAtom &name = t.getIdentifier(); // Must do this now because parseStatement can invalidate t.
s = new(arena) LabelStmtNode(pos, name, parseStatement(false, false, semicolonState));
break;
}
makeExpressionOrAttribute:
if (!lineBreakBefore(*t2) && t2->getFlag(Token::canFollowAttribute))
goto makeAttribute;
default:
makeExpression:
lexer.unget();
sKind = StmtNode::expression;
makeExpressionNode:
e = parseExpression(false);
lexer.redesignate(true); // Safe: a '/' or a '/=' would have been interpreted as an operator, so it can't be the next token.
makeExprStmtNode:
s = new(arena) ExprStmtNode(pos, sKind, e);
insertableSemicolon:
semicolonState = semiInsertable;
break;
}
return s;
}
// Same as parseStatement but also swallow the following semicolon if one is present.
JS::StmtNode *JS::Parser::parseStatementAndSemicolon(SemicolonState &semicolonState)
{
StmtNode *s = parseStatement(false, false, semicolonState);
if (semicolonState != semiNone && lexer.eat(true, Token::semicolon))
semicolonState = semiNone;
return s;
}
// BEGIN NEW CODE
bool JS::Parser::lookahead(Token::Kind kind, bool preferRegExp) {
const Token &t = lexer.peek(preferRegExp);
if (t.getKind() != kind)
return false;
return true;
}
const JS::Token *JS::Parser::match(Token::Kind kind, bool preferRegExp) {
const Token *t = lexer.eat(preferRegExp,kind);
if (!t || t->getKind() != kind)
return 0;
return t;
}
/**
* Identifier
* Identifier
* get
* set
*/
JS::ExprNode *JS::Parser::parseIdentifier() {
ExprNode *result = NULL;
if( lookahead(Token::Get) ) {
result = NodeFactory::Identifier(*match(Token::Get));
} else if( lookahead(Token::Set) ) {
result = NodeFactory::Identifier(*match(Token::Set));
} else if( lookahead(Token::identifier) ) {
result = NodeFactory::Identifier(*match(Token::identifier));
} else {
// throw new Exception("Expecting an Identifier when encountering input: " + scanner.getErrorText());
}
return result;
}
/**
* LiteralField
* FieldName : AssignmentExpressionallowIn
*/
JS::ExprPairList *JS::Parser::parseLiteralField() {
ExprPairList *result=NULL;
ExprNode *first;
ExprNode *second;
first = parseFieldName();
match(Token::colon);
second = parseAssignmentExpression();
lexer.redesignate(true); // Safe: looking for non-slash punctuation.
result = NodeFactory::LiteralField(first,second);
return result;
}
/**
* FieldName
* Identifier
* String
* Number
* ParenthesizedExpression
*/
JS::ExprNode *JS::Parser::parseFieldName() {
ExprNode *result;
if( lookahead(Token::string) ) {
const Token *t = match(Token::string);
result = NodeFactory::LiteralString(t->getPos(),ExprNode::string,copyTokenChars(*t));
} else if( lookahead(Token::number) ) {
const Token *t = match(Token::number);
result = NodeFactory::LiteralNumber(*t);
} else if( lookahead(Token::openParenthesis) ) {
result = parseParenthesizedExpression();
} else {
result = parseIdentifier();
}
return result;
}
/**
* ArgumentList
* <20>empty<74>
* LiteralField NamedArgumentListPrime
* AssignmentExpression[allowIn] ArgumentListPrime
*/
JS::ExprPairList *JS::Parser::parseArgumentList(NodeQueue<ExprPairList> &args) {
ExprPairList *result=NULL;
if( lookahead(Token::closeParenthesis) ) {
} else {
ExprNode *first;
first = parseAssignmentExpression();
lexer.redesignate(true); // Safe: looking for non-slash punctuation.
//if( AssignmentExpressionNode.isFieldName(first) && lookahead(colon_token) ) {
if( lookahead(Token::colon) ) {
ExprNode *second;
match(Token::colon);
// Finish parsing the LiteralField.
second = parseAssignmentExpression();
lexer.redesignate(true); // Safe: looking for non-slash punctuation.
args += NodeFactory::LiteralField(first,second);
result = parseNamedArgumentListPrime(args);
} else {
args += NodeFactory::LiteralField(NULL,first);
result = parseArgumentListPrime(args);
}
}
return result;
}
/**
* ArgumentListPrime
* <20>empty<74>
* , AssignmentExpression[allowIn] ArgumentListPrime
* , LiteralField NamedArgumentListPrime
*/
JS::ExprPairList *JS::Parser::parseArgumentListPrime(NodeQueue<ExprPairList> &args) {
ExprPairList *result;
if( lookahead(Token::comma) ) {
match(Token::comma);
ExprNode *first;
first = parseAssignmentExpression();
lexer.redesignate(true); // Safe: looking for non-slash punctuation.
//if( AssignmentExpressionNode.isFieldName(second) && lookahead(colon_token) ) {
if( lookahead(Token::colon) ) {
ExprNode *second;
match(Token::colon);
// Finish parsing the literal field.
second = parseAssignmentExpression();
lexer.redesignate(true); // Safe: looking for non-slash punctuation.
args += NodeFactory::LiteralField(first,second);
result = parseNamedArgumentListPrime(args);
} else {
args += NodeFactory::LiteralField(NULL,first);
result = parseArgumentListPrime(args);
}
} else {
result = args.first;
}
return result;
}
/**
* NamedArgumentListPrime
* <20>empty<74>
* , LiteralField NamedArgumentListPrime
*/
JS::ExprPairList *JS::Parser::parseNamedArgumentListPrime(NodeQueue<ExprPairList> &args) {
ExprPairList *result;
if( lookahead(Token::comma) ) {
match(Token::comma);
args += parseLiteralField();
result = parseNamedArgumentListPrime(args);
} else {
result = args.first;
}
return result;
}
/**
* AllParameters
* Parameter
* Parameter , AllParameters
* Parameter OptionalParameterPrime
* Parameter OptionalParameterPrime , OptionalNamedRestParameters
* | NamedRestParameters
* RestParameter
* RestParameter , | NamedParameters
*/
JS::VariableBinding *JS::Parser::parseAllParameters(FunctionDefinition &fd,NodeQueue<VariableBinding> &params) {
VariableBinding *result;
if( lookahead(Token::tripleDot) ) {
fd.restParameter = parseRestParameter();
params += fd.restParameter;
if( lookahead(Token::comma) ) {
match(Token::comma);
match(Token::bitwiseOr);
result = parseNamedParameters(fd,params);
} else {
result = params.first;
}
} else if( lookahead(Token::bitwiseOr) ) {
match(Token::bitwiseOr);
result = parseNamedRestParameters(fd,params);
} else {
VariableBinding *first;
first = parseParameter();
if( lookahead(Token::comma) ) {
params += first;
match(Token::comma);
result = parseAllParameters(fd,params);
} else if( lookahead(Token::assignment) ) {
first = parseOptionalParameterPrime(first);
if (!fd.optParameters) {
fd.optParameters = first;
}
params += first;
if( lookahead(Token::comma) ) {
match(Token::comma);
result = parseOptionalNamedRestParameters(fd,params);
}
} else {
params += first;
result = params.first;
}
}
return result;
}
/**
* OptionalNamedRestParameters
* OptionalParameter
* OptionalParameter , OptionalNamedRestParameters
* | NamedRestParameters
* RestParameter
* RestParameter , | NamedParameters
*/
JS::VariableBinding *JS::Parser::parseOptionalNamedRestParameters(FunctionDefinition &fd,NodeQueue<VariableBinding> &params) {
VariableBinding *result;
if( lookahead(Token::tripleDot) ) {
fd.restParameter = parseRestParameter();
params += fd.restParameter;
if( lookahead(Token::comma) ) {
match(Token::comma);
match(Token::bitwiseOr);
result = parseNamedParameters(fd,params);
} else {
result = params.first;
}
} else if( lookahead(Token::bitwiseOr) ) {
match(Token::bitwiseOr);
result = parseNamedRestParameters(fd,params);
} else {
VariableBinding *first;
first = parseOptionalParameter();
if (!fd.optParameters) {
fd.optParameters = first;
}
params += first;
if( lookahead(Token::comma) ) {
match(Token::comma);
result = parseOptionalNamedRestParameters(fd,params);
} else {
result = params.first;
}
}
return result;
}
/**
* NamedRestParameters
* NamedParameter
* NamedParameter , NamedRestParameters
* RestParameter
*/
JS::VariableBinding *JS::Parser::parseNamedRestParameters(FunctionDefinition &fd,NodeQueue<VariableBinding> &params) {
VariableBinding *result;
if( lookahead(Token::tripleDot) ) {
fd.restParameter = parseRestParameter();
params += fd.restParameter;
result = params.first;
} else {
NodeQueue<IdentifierList> aliases;
VariableBinding *first;
first = parseNamedParameter(aliases);
// The following marks the position in the list that named parameters
// may occur. It is not required that this particular parameter has
// aliases associated with it.
if (!fd.namedParameters) {
fd.namedParameters = first;
}
if (!fd.optParameters && first->initializer) {
fd.optParameters = first;
}
if( lookahead(Token::comma) ) {
params += first;
match(Token::comma);
result = parseNamedRestParameters(fd,params);
} else {
params += first;
result = params.first;
}
}
return result;
}
/**
* NamedParameters
* NamedParameter
* NamedParameter , NamedParameters
*/
JS::VariableBinding *JS::Parser::parseNamedParameters(FunctionDefinition &fd,NodeQueue<VariableBinding> &params) {
VariableBinding *result,*first;
NodeQueue<IdentifierList> aliases; // List of aliases.
first = parseNamedParameter(aliases);
// The following marks the position in the list that named parameters
// may occur. It is not required that this particular parameter has
// aliases associated with it.
if (!fd.namedParameters) {
fd.namedParameters = first;
}
if (!fd.optParameters && first->initializer) {
fd.optParameters = first;
}
if (lookahead(Token::comma)) {
params += first;
match(Token::comma);
result = parseNamedParameters(fd,params);
} else {
params += first;
result = params.first;
}
return result;
}
/**
* RestParameter
* ...
* ... Parameter
*/
JS::VariableBinding *JS::Parser::parseRestParameter() {
VariableBinding *result;
match(Token::tripleDot);
if( lookahead(Token::identifier) ||
lookahead(Token::Get) ||
lookahead(Token::Set) ) {
result = parseParameter();
} else {
result = NodeFactory::Parameter(0,0);
}
return result;
}
/**
* Parameter
* Identifier
* Identifier : TypeExpression[allowIn]
*/
JS::VariableBinding *JS::Parser::parseParameter() {
VariableBinding *result=NULL;
ExprNode *first,*second;
first = parseIdentifier();
if( lookahead(Token::colon) ) {
match(Token::colon);
second = parseTypeExpression();
} else {
second = NULL;
}
result = NodeFactory::Parameter(first,second);
return result;
}
/**
* OptionalParameter
* Parameter = AssignmentExpression[allowIn]
*/
JS::VariableBinding *JS::Parser::parseOptionalParameter() {
VariableBinding *result,*first;
first = parseParameter();
result = parseOptionalParameterPrime(first);
return result;
}
JS::VariableBinding *JS::Parser::parseOptionalParameterPrime(VariableBinding *first) {
VariableBinding* result=NULL;
match(Token::assignment);
first->initializer = parseAssignmentExpression();
lexer.redesignate(true); // Safe: looking for non-slash puncutation.
result = first;
return result;
}
/**
* NamedParameter
* Parameter
* OptionalParameter
* String NamedParameter
*/
JS::VariableBinding *JS::Parser::parseNamedParameter(NodeQueue<IdentifierList> &aliases) {
VariableBinding *result;
if( lookahead(Token::string) ) {
const Token *t = match(Token::string);
aliases += NodeFactory::ListedIdentifier(copyTokenChars(*t));
result = parseNamedParameter(aliases);
} else {
result = parseParameter();
result->aliases = aliases.first;
if( lookahead(Token::assignment) ) {
result = parseOptionalParameterPrime(result);
}
}
return result;
}
/**
* ResultSignature
* <20>empty<74>
* : TypeExpression[allowIn]
*/
JS::ExprNode *JS::Parser::parseResultSignature() {
ExprNode* result=NULL;
if( lookahead(Token::colon) ) {
match(Token::colon);
result = parseTypeExpression(); // allowIn is default.
} else {
result = NULL;
}
return result;
}
bool JS::IdentifierList::contains(Token::Kind kind) {
if (name.tokenKind == kind)
return true;
else
return (next) ? next->contains(kind) : false;
}