зеркало из https://github.com/mozilla/gecko-dev.git
895 строки
31 KiB
C++
895 строки
31 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "Blur.h"
|
|
|
|
#include <algorithm>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "mozilla/CheckedInt.h"
|
|
|
|
#include "2D.h"
|
|
#include "DataSurfaceHelpers.h"
|
|
#include "Tools.h"
|
|
|
|
#ifdef USE_NEON
|
|
# include "mozilla/arm.h"
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
/**
|
|
* Helper function to process each row of the box blur.
|
|
* It takes care of transposing the data on input or output depending
|
|
* on whether we intend a horizontal or vertical blur, and whether we're
|
|
* reading from the initial source or writing to the final destination.
|
|
* It allows starting or ending anywhere within the row to accomodate
|
|
* a skip rect.
|
|
*/
|
|
template <bool aTransposeInput, bool aTransposeOutput>
|
|
static inline void BoxBlurRow(const uint8_t* aInput, uint8_t* aOutput,
|
|
int32_t aLeftLobe, int32_t aRightLobe,
|
|
int32_t aWidth, int32_t aStride, int32_t aStart,
|
|
int32_t aEnd) {
|
|
// If the input or output is transposed, then we will move down a row
|
|
// for each step, instead of moving over a column. Since these values
|
|
// only depend on a template parameter, they will more easily get
|
|
// copy-propagated in the non-transposed case, which is why they
|
|
// are not passed as parameters.
|
|
const int32_t inputStep = aTransposeInput ? aStride : 1;
|
|
const int32_t outputStep = aTransposeOutput ? aStride : 1;
|
|
|
|
// We need to sample aLeftLobe pixels to the left and aRightLobe pixels
|
|
// to the right of the current position, then average them. So this is
|
|
// the size of the total width of this filter.
|
|
const int32_t boxSize = aLeftLobe + aRightLobe + 1;
|
|
|
|
// Instead of dividing the pixel sum by boxSize to average, we can just
|
|
// compute a scale that will normalize the result so that it can be quickly
|
|
// shifted into the desired range.
|
|
const uint32_t reciprocal = (1 << 24) / boxSize;
|
|
|
|
// The shift would normally truncate the result, whereas we would rather
|
|
// prefer to round the result to the closest increment. By adding 0.5 units
|
|
// to the initial sum, we bias the sum so that it will be rounded by the
|
|
// truncation instead.
|
|
uint32_t alphaSum = (boxSize + 1) / 2;
|
|
|
|
// We process the row with a moving filter, keeping a sum (alphaSum) of
|
|
// boxSize pixels. As we move over a pixel, we need to add on a pixel
|
|
// from the right extreme of the window that moved into range, and subtract
|
|
// off a pixel from the left extreme of window that moved out of range.
|
|
// But first, we need to initialization alphaSum to the contents of
|
|
// the window before we can get going. If the window moves out of bounds
|
|
// of the row, we clamp each sample to be the closest pixel from within
|
|
// row bounds, so the 0th and aWidth-1th pixel.
|
|
int32_t initLeft = aStart - aLeftLobe;
|
|
if (initLeft < 0) {
|
|
// If the left lobe samples before the row, add in clamped samples.
|
|
alphaSum += -initLeft * aInput[0];
|
|
initLeft = 0;
|
|
}
|
|
int32_t initRight = aStart + boxSize - aLeftLobe;
|
|
if (initRight > aWidth) {
|
|
// If the right lobe samples after the row, add in clamped samples.
|
|
alphaSum += (initRight - aWidth) * aInput[(aWidth - 1) * inputStep];
|
|
initRight = aWidth;
|
|
}
|
|
// Finally, add in all the valid, non-clamped samples to fill up the
|
|
// rest of the window.
|
|
const uint8_t* src = &aInput[initLeft * inputStep];
|
|
const uint8_t* iterEnd = &aInput[initRight * inputStep];
|
|
|
|
#define INIT_ITER \
|
|
alphaSum += *src; \
|
|
src += inputStep;
|
|
|
|
// We unroll the per-pixel loop here substantially. The amount of work
|
|
// done per sample is so small that the cost of a loop condition check
|
|
// and a branch can substantially add to or even dominate the performance
|
|
// of the loop.
|
|
while (src + 16 * inputStep <= iterEnd) {
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
INIT_ITER;
|
|
}
|
|
while (src < iterEnd) {
|
|
INIT_ITER;
|
|
}
|
|
|
|
// Now we start moving the window over the row. We will be accessing
|
|
// pixels form aStart - aLeftLobe up to aEnd + aRightLobe, which may be
|
|
// out of bounds of the row. To avoid having to check within the inner
|
|
// loops if we are in bound, we instead compute the points at which
|
|
// we will move out of bounds of the row on the left side (splitLeft)
|
|
// and right side (splitRight).
|
|
int32_t splitLeft = std::min(std::max(aLeftLobe, aStart), aEnd);
|
|
int32_t splitRight =
|
|
std::min(std::max(aWidth - (boxSize - aLeftLobe), aStart), aEnd);
|
|
// If the filter window is actually large than the size of the row,
|
|
// there will be a middle area of overlap where the leftmost and rightmost
|
|
// pixel of the filter will both be outside the row. In this case, we need
|
|
// to invert the splits so that splitLeft <= splitRight.
|
|
if (boxSize > aWidth) {
|
|
std::swap(splitLeft, splitRight);
|
|
}
|
|
|
|
// Process all pixels up to splitLeft that would sample before the start of
|
|
// the row. Note that because inputStep and outputStep may not be a const 1
|
|
// value, it is more performant to increment pointers here for the source and
|
|
// destination rather than use a loop counter, since doing so would entail an
|
|
// expensive multiplication that significantly slows down the loop.
|
|
uint8_t* dst = &aOutput[aStart * outputStep];
|
|
iterEnd = &aOutput[splitLeft * outputStep];
|
|
src = &aInput[(aStart + boxSize - aLeftLobe) * inputStep];
|
|
uint8_t firstVal = aInput[0];
|
|
|
|
#define LEFT_ITER \
|
|
*dst = (alphaSum * reciprocal) >> 24; \
|
|
alphaSum += *src - firstVal; \
|
|
dst += outputStep; \
|
|
src += inputStep;
|
|
|
|
while (dst + 16 * outputStep <= iterEnd) {
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
LEFT_ITER;
|
|
}
|
|
while (dst < iterEnd) {
|
|
LEFT_ITER;
|
|
}
|
|
|
|
// Process all pixels between splitLeft and splitRight.
|
|
iterEnd = &aOutput[splitRight * outputStep];
|
|
if (boxSize <= aWidth) {
|
|
// The filter window is smaller than the row size, so the leftmost and
|
|
// rightmost samples are both within row bounds.
|
|
src = &aInput[(splitLeft - aLeftLobe) * inputStep];
|
|
int32_t boxStep = boxSize * inputStep;
|
|
|
|
#define CENTER_ITER \
|
|
*dst = (alphaSum * reciprocal) >> 24; \
|
|
alphaSum += src[boxStep] - *src; \
|
|
dst += outputStep; \
|
|
src += inputStep;
|
|
|
|
while (dst + 16 * outputStep <= iterEnd) {
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
CENTER_ITER;
|
|
}
|
|
while (dst < iterEnd) {
|
|
CENTER_ITER;
|
|
}
|
|
} else {
|
|
// The filter window is larger than the row size, and we're in the area of
|
|
// split overlap. So the leftmost and rightmost samples are both out of
|
|
// bounds and need to be clamped. We can just precompute the difference here
|
|
// consequently.
|
|
int32_t firstLastDiff = aInput[(aWidth - 1) * inputStep] - aInput[0];
|
|
while (dst < iterEnd) {
|
|
*dst = (alphaSum * reciprocal) >> 24;
|
|
alphaSum += firstLastDiff;
|
|
dst += outputStep;
|
|
}
|
|
}
|
|
|
|
// Process all remaining pixels after splitRight that would sample after the
|
|
// row end.
|
|
iterEnd = &aOutput[aEnd * outputStep];
|
|
src = &aInput[(splitRight - aLeftLobe) * inputStep];
|
|
uint8_t lastVal = aInput[(aWidth - 1) * inputStep];
|
|
|
|
#define RIGHT_ITER \
|
|
*dst = (alphaSum * reciprocal) >> 24; \
|
|
alphaSum += lastVal - *src; \
|
|
dst += outputStep; \
|
|
src += inputStep;
|
|
|
|
while (dst + 16 * outputStep <= iterEnd) {
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
RIGHT_ITER;
|
|
}
|
|
while (dst < iterEnd) {
|
|
RIGHT_ITER;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Box blur involves looking at one pixel, and setting its value to the average
|
|
* of its neighbouring pixels. This is meant to provide a 3-pass approximation
|
|
* of a Gaussian blur.
|
|
* @param aTranspose Whether to transpose the buffer when reading and writing
|
|
* to it.
|
|
* @param aData The buffer to be blurred.
|
|
* @param aLobes The number of pixels to blend on the left and right for each of
|
|
* 3 passes.
|
|
* @param aWidth The number of columns in the buffers.
|
|
* @param aRows The number of rows in the buffers.
|
|
* @param aStride The stride of the buffer.
|
|
*/
|
|
template <bool aTranspose>
|
|
static void BoxBlur(uint8_t* aData, const int32_t aLobes[3][2], int32_t aWidth,
|
|
int32_t aRows, int32_t aStride, IntRect aSkipRect) {
|
|
if (aTranspose) {
|
|
std::swap(aWidth, aRows);
|
|
aSkipRect.Swap();
|
|
}
|
|
|
|
MOZ_ASSERT(aWidth > 0);
|
|
|
|
// All three passes of the box blur that approximate the Gaussian are done
|
|
// on each row in turn, so we only need two temporary row buffers to process
|
|
// each row, instead of a full-sized buffer. Data moves from the source to the
|
|
// first temporary, from the first temporary to the second, then from the
|
|
// second back to the destination. This way is more cache-friendly than
|
|
// processing whe whole buffer in each pass and thus yields a nice speedup.
|
|
uint8_t* tmpRow = new (std::nothrow) uint8_t[2 * aWidth];
|
|
if (!tmpRow) {
|
|
return;
|
|
}
|
|
uint8_t* tmpRow2 = tmpRow + aWidth;
|
|
|
|
const int32_t stride = aTranspose ? 1 : aStride;
|
|
bool skipRectCoversWholeRow =
|
|
0 >= aSkipRect.X() && aWidth <= aSkipRect.XMost();
|
|
|
|
for (int32_t y = 0; y < aRows; y++) {
|
|
// Check whether the skip rect intersects this row. If the skip
|
|
// rect covers the whole surface in this row, we can avoid
|
|
// this row entirely (and any others along the skip rect).
|
|
bool inSkipRectY = aSkipRect.ContainsY(y);
|
|
if (inSkipRectY && skipRectCoversWholeRow) {
|
|
aData += stride * (aSkipRect.YMost() - y);
|
|
y = aSkipRect.YMost() - 1;
|
|
continue;
|
|
}
|
|
|
|
// Read in data from the source transposed if necessary.
|
|
BoxBlurRow<aTranspose, false>(aData, tmpRow, aLobes[0][0], aLobes[0][1],
|
|
aWidth, aStride, 0, aWidth);
|
|
|
|
// For the middle pass, the data is already pre-transposed and does not need
|
|
// to be post-transposed yet.
|
|
BoxBlurRow<false, false>(tmpRow, tmpRow2, aLobes[1][0], aLobes[1][1],
|
|
aWidth, aStride, 0, aWidth);
|
|
|
|
// Write back data to the destination transposed if necessary too.
|
|
// Make sure not to overwrite the skip rect by only outputting to the
|
|
// destination before and after the skip rect, if requested.
|
|
int32_t skipStart =
|
|
inSkipRectY ? std::min(std::max(aSkipRect.X(), 0), aWidth) : aWidth;
|
|
int32_t skipEnd = std::max(skipStart, aSkipRect.XMost());
|
|
if (skipStart > 0) {
|
|
BoxBlurRow<false, aTranspose>(tmpRow2, aData, aLobes[2][0], aLobes[2][1],
|
|
aWidth, aStride, 0, skipStart);
|
|
}
|
|
if (skipEnd < aWidth) {
|
|
BoxBlurRow<false, aTranspose>(tmpRow2, aData, aLobes[2][0], aLobes[2][1],
|
|
aWidth, aStride, skipEnd, aWidth);
|
|
}
|
|
|
|
aData += stride;
|
|
}
|
|
|
|
delete[] tmpRow;
|
|
}
|
|
|
|
static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2]) {
|
|
int32_t major, minor, final;
|
|
|
|
/* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
|
|
* some notes about approximating the Gaussian blur with box-blurs.
|
|
* The comments below are in the terminology of that page.
|
|
*/
|
|
int32_t z = aRadius / 3;
|
|
switch (aRadius % 3) {
|
|
case 0:
|
|
// aRadius = z*3; choose d = 2*z + 1
|
|
major = minor = final = z;
|
|
break;
|
|
case 1:
|
|
// aRadius = z*3 + 1
|
|
// This is a tricky case since there is no value of d which will
|
|
// yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
|
|
// for some integer k, then the radius will be 3*k. If d is even,
|
|
// i.e. d=2*k, then the radius will be 3*k - 1.
|
|
// So we have to choose values that don't match the standard
|
|
// algorithm.
|
|
major = z + 1;
|
|
minor = final = z;
|
|
break;
|
|
case 2:
|
|
// aRadius = z*3 + 2; choose d = 2*z + 2
|
|
major = final = z + 1;
|
|
minor = z;
|
|
break;
|
|
default:
|
|
// Mathematical impossibility!
|
|
MOZ_ASSERT(false);
|
|
major = minor = final = 0;
|
|
}
|
|
MOZ_ASSERT(major + minor + final == aRadius);
|
|
|
|
aLobes[0][0] = major;
|
|
aLobes[0][1] = minor;
|
|
aLobes[1][0] = minor;
|
|
aLobes[1][1] = major;
|
|
aLobes[2][0] = final;
|
|
aLobes[2][1] = final;
|
|
}
|
|
|
|
static void SpreadHorizontal(uint8_t* aInput, uint8_t* aOutput, int32_t aRadius,
|
|
int32_t aWidth, int32_t aRows, int32_t aStride,
|
|
const IntRect& aSkipRect) {
|
|
if (aRadius == 0) {
|
|
memcpy(aOutput, aInput, aStride * aRows);
|
|
return;
|
|
}
|
|
|
|
bool skipRectCoversWholeRow =
|
|
0 >= aSkipRect.X() && aWidth <= aSkipRect.XMost();
|
|
for (int32_t y = 0; y < aRows; y++) {
|
|
// Check whether the skip rect intersects this row. If the skip
|
|
// rect covers the whole surface in this row, we can avoid
|
|
// this row entirely (and any others along the skip rect).
|
|
bool inSkipRectY = aSkipRect.ContainsY(y);
|
|
if (inSkipRectY && skipRectCoversWholeRow) {
|
|
y = aSkipRect.YMost() - 1;
|
|
continue;
|
|
}
|
|
|
|
for (int32_t x = 0; x < aWidth; x++) {
|
|
// Check whether we are within the skip rect. If so, go
|
|
// to the next point outside the skip rect.
|
|
if (inSkipRectY && aSkipRect.ContainsX(x)) {
|
|
x = aSkipRect.XMost();
|
|
if (x >= aWidth) break;
|
|
}
|
|
|
|
int32_t sMin = std::max(x - aRadius, 0);
|
|
int32_t sMax = std::min(x + aRadius, aWidth - 1);
|
|
int32_t v = 0;
|
|
for (int32_t s = sMin; s <= sMax; ++s) {
|
|
v = std::max<int32_t>(v, aInput[aStride * y + s]);
|
|
}
|
|
aOutput[aStride * y + x] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void SpreadVertical(uint8_t* aInput, uint8_t* aOutput, int32_t aRadius,
|
|
int32_t aWidth, int32_t aRows, int32_t aStride,
|
|
const IntRect& aSkipRect) {
|
|
if (aRadius == 0) {
|
|
memcpy(aOutput, aInput, aStride * aRows);
|
|
return;
|
|
}
|
|
|
|
bool skipRectCoversWholeColumn =
|
|
0 >= aSkipRect.Y() && aRows <= aSkipRect.YMost();
|
|
for (int32_t x = 0; x < aWidth; x++) {
|
|
bool inSkipRectX = aSkipRect.ContainsX(x);
|
|
if (inSkipRectX && skipRectCoversWholeColumn) {
|
|
x = aSkipRect.XMost() - 1;
|
|
continue;
|
|
}
|
|
|
|
for (int32_t y = 0; y < aRows; y++) {
|
|
// Check whether we are within the skip rect. If so, go
|
|
// to the next point outside the skip rect.
|
|
if (inSkipRectX && aSkipRect.ContainsY(y)) {
|
|
y = aSkipRect.YMost();
|
|
if (y >= aRows) break;
|
|
}
|
|
|
|
int32_t sMin = std::max(y - aRadius, 0);
|
|
int32_t sMax = std::min(y + aRadius, aRows - 1);
|
|
int32_t v = 0;
|
|
for (int32_t s = sMin; s <= sMax; ++s) {
|
|
v = std::max<int32_t>(v, aInput[aStride * s + x]);
|
|
}
|
|
aOutput[aStride * y + x] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
CheckedInt<int32_t> AlphaBoxBlur::RoundUpToMultipleOf4(int32_t aVal) {
|
|
CheckedInt<int32_t> val(aVal);
|
|
|
|
val += 3;
|
|
val /= 4;
|
|
val *= 4;
|
|
|
|
return val;
|
|
}
|
|
|
|
AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, const IntSize& aSpreadRadius,
|
|
const IntSize& aBlurRadius, const Rect* aDirtyRect,
|
|
const Rect* aSkipRect)
|
|
: mStride(0), mSurfaceAllocationSize(0) {
|
|
Init(aRect, aSpreadRadius, aBlurRadius, aDirtyRect, aSkipRect);
|
|
}
|
|
|
|
AlphaBoxBlur::AlphaBoxBlur()
|
|
: mStride(0), mSurfaceAllocationSize(0), mHasDirtyRect(false) {}
|
|
|
|
void AlphaBoxBlur::Init(const Rect& aRect, const IntSize& aSpreadRadius,
|
|
const IntSize& aBlurRadius, const Rect* aDirtyRect,
|
|
const Rect* aSkipRect) {
|
|
mSpreadRadius = aSpreadRadius;
|
|
mBlurRadius = aBlurRadius;
|
|
|
|
Rect rect(aRect);
|
|
rect.Inflate(Size(aBlurRadius + aSpreadRadius));
|
|
rect.RoundOut();
|
|
|
|
if (aDirtyRect) {
|
|
// If we get passed a dirty rect from layout, we can minimize the
|
|
// shadow size and make painting faster.
|
|
mHasDirtyRect = true;
|
|
mDirtyRect = *aDirtyRect;
|
|
Rect requiredBlurArea = mDirtyRect.Intersect(rect);
|
|
requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
|
|
rect = requiredBlurArea.Intersect(rect);
|
|
} else {
|
|
mHasDirtyRect = false;
|
|
}
|
|
|
|
mRect = TruncatedToInt(rect);
|
|
if (mRect.IsEmpty()) {
|
|
return;
|
|
}
|
|
|
|
if (aSkipRect) {
|
|
// If we get passed a skip rect, we can lower the amount of
|
|
// blurring/spreading we need to do. We convert it to IntRect to avoid
|
|
// expensive int<->float conversions if we were to use Rect instead.
|
|
Rect skipRect = *aSkipRect;
|
|
skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
|
|
mSkipRect = RoundedIn(skipRect);
|
|
mSkipRect = mSkipRect.Intersect(mRect);
|
|
if (mSkipRect.IsEqualInterior(mRect)) return;
|
|
|
|
mSkipRect -= mRect.TopLeft();
|
|
} else {
|
|
mSkipRect = IntRect(0, 0, 0, 0);
|
|
}
|
|
|
|
CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.Width());
|
|
if (stride.isValid()) {
|
|
mStride = stride.value();
|
|
|
|
// We need to leave room for an additional 3 bytes for a potential overrun
|
|
// in our blurring code.
|
|
size_t size = BufferSizeFromStrideAndHeight(mStride, mRect.Height(), 3);
|
|
if (size != 0) {
|
|
mSurfaceAllocationSize = size;
|
|
}
|
|
}
|
|
}
|
|
|
|
AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect, int32_t aStride, float aSigmaX,
|
|
float aSigmaY)
|
|
: mRect(TruncatedToInt(aRect)),
|
|
mSpreadRadius(),
|
|
mBlurRadius(CalculateBlurRadius(Point(aSigmaX, aSigmaY))),
|
|
mStride(aStride),
|
|
mSurfaceAllocationSize(0),
|
|
mHasDirtyRect(false) {
|
|
IntRect intRect;
|
|
if (aRect.ToIntRect(&intRect)) {
|
|
size_t minDataSize =
|
|
BufferSizeFromStrideAndHeight(intRect.Width(), intRect.Height());
|
|
if (minDataSize != 0) {
|
|
mSurfaceAllocationSize = minDataSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
AlphaBoxBlur::~AlphaBoxBlur() {}
|
|
|
|
IntSize AlphaBoxBlur::GetSize() const {
|
|
IntSize size(mRect.Width(), mRect.Height());
|
|
return size;
|
|
}
|
|
|
|
int32_t AlphaBoxBlur::GetStride() const { return mStride; }
|
|
|
|
IntRect AlphaBoxBlur::GetRect() const { return mRect; }
|
|
|
|
Rect* AlphaBoxBlur::GetDirtyRect() {
|
|
if (mHasDirtyRect) {
|
|
return &mDirtyRect;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
size_t AlphaBoxBlur::GetSurfaceAllocationSize() const {
|
|
return mSurfaceAllocationSize;
|
|
}
|
|
|
|
void AlphaBoxBlur::Blur(uint8_t* aData) const {
|
|
if (!aData) {
|
|
return;
|
|
}
|
|
|
|
// no need to do all this if not blurring or spreading
|
|
if (mBlurRadius != IntSize(0, 0) || mSpreadRadius != IntSize(0, 0)) {
|
|
int32_t stride = GetStride();
|
|
|
|
IntSize size = GetSize();
|
|
|
|
if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
|
|
// No need to use CheckedInt here - we have validated it in the
|
|
// constructor.
|
|
size_t szB = stride * size.height;
|
|
uint8_t* tmpData = new (std::nothrow) uint8_t[szB];
|
|
|
|
if (!tmpData) {
|
|
return;
|
|
}
|
|
|
|
memset(tmpData, 0, szB);
|
|
|
|
SpreadHorizontal(aData, tmpData, mSpreadRadius.width, size.width,
|
|
size.height, stride, mSkipRect);
|
|
SpreadVertical(tmpData, aData, mSpreadRadius.height, size.width,
|
|
size.height, stride, mSkipRect);
|
|
|
|
delete[] tmpData;
|
|
}
|
|
|
|
int32_t horizontalLobes[3][2];
|
|
ComputeLobes(mBlurRadius.width, horizontalLobes);
|
|
int32_t verticalLobes[3][2];
|
|
ComputeLobes(mBlurRadius.height, verticalLobes);
|
|
|
|
// We want to allow for some extra space on the left for alignment reasons.
|
|
int32_t maxLeftLobe =
|
|
RoundUpToMultipleOf4(horizontalLobes[0][0] + 1).value();
|
|
|
|
IntSize integralImageSize(
|
|
size.width + maxLeftLobe + horizontalLobes[1][1],
|
|
size.height + verticalLobes[0][0] + verticalLobes[1][1] + 1);
|
|
|
|
if ((integralImageSize.width * integralImageSize.height) > (1 << 24)) {
|
|
// Fallback to old blurring code when the surface is so large it may
|
|
// overflow our integral image!
|
|
if (mBlurRadius.width > 0) {
|
|
BoxBlur<false>(aData, horizontalLobes, size.width, size.height, stride,
|
|
mSkipRect);
|
|
}
|
|
if (mBlurRadius.height > 0) {
|
|
BoxBlur<true>(aData, verticalLobes, size.width, size.height, stride,
|
|
mSkipRect);
|
|
}
|
|
} else {
|
|
size_t integralImageStride =
|
|
GetAlignedStride<16>(integralImageSize.width, 4);
|
|
if (integralImageStride == 0) {
|
|
return;
|
|
}
|
|
|
|
// We need to leave room for an additional 12 bytes for a maximum overrun
|
|
// of 3 pixels in the blurring code.
|
|
size_t bufLen = BufferSizeFromStrideAndHeight(
|
|
integralImageStride, integralImageSize.height, 12);
|
|
if (bufLen == 0) {
|
|
return;
|
|
}
|
|
// bufLen is a byte count, but here we want a multiple of 32-bit ints, so
|
|
// we divide by 4.
|
|
AlignedArray<uint32_t> integralImage((bufLen / 4) +
|
|
((bufLen % 4) ? 1 : 0));
|
|
|
|
if (!integralImage) {
|
|
return;
|
|
}
|
|
|
|
#ifdef USE_SSE2
|
|
if (Factory::HasSSE2()) {
|
|
BoxBlur_SSE2(aData, horizontalLobes[0][0], horizontalLobes[0][1],
|
|
verticalLobes[0][0], verticalLobes[0][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_SSE2(aData, horizontalLobes[1][0], horizontalLobes[1][1],
|
|
verticalLobes[1][0], verticalLobes[1][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_SSE2(aData, horizontalLobes[2][0], horizontalLobes[2][1],
|
|
verticalLobes[2][0], verticalLobes[2][1], integralImage,
|
|
integralImageStride);
|
|
} else
|
|
#endif
|
|
#ifdef USE_NEON
|
|
if (mozilla::supports_neon()) {
|
|
BoxBlur_NEON(aData, horizontalLobes[0][0], horizontalLobes[0][1],
|
|
verticalLobes[0][0], verticalLobes[0][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_NEON(aData, horizontalLobes[1][0], horizontalLobes[1][1],
|
|
verticalLobes[1][0], verticalLobes[1][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_NEON(aData, horizontalLobes[2][0], horizontalLobes[2][1],
|
|
verticalLobes[2][0], verticalLobes[2][1], integralImage,
|
|
integralImageStride);
|
|
} else
|
|
#endif
|
|
{
|
|
#ifdef _MIPS_ARCH_LOONGSON3A
|
|
BoxBlur_LS3(aData, horizontalLobes[0][0], horizontalLobes[0][1],
|
|
verticalLobes[0][0], verticalLobes[0][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_LS3(aData, horizontalLobes[1][0], horizontalLobes[1][1],
|
|
verticalLobes[1][0], verticalLobes[1][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_LS3(aData, horizontalLobes[2][0], horizontalLobes[2][1],
|
|
verticalLobes[2][0], verticalLobes[2][1], integralImage,
|
|
integralImageStride);
|
|
#else
|
|
BoxBlur_C(aData, horizontalLobes[0][0], horizontalLobes[0][1],
|
|
verticalLobes[0][0], verticalLobes[0][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_C(aData, horizontalLobes[1][0], horizontalLobes[1][1],
|
|
verticalLobes[1][0], verticalLobes[1][1], integralImage,
|
|
integralImageStride);
|
|
BoxBlur_C(aData, horizontalLobes[2][0], horizontalLobes[2][1],
|
|
verticalLobes[2][0], verticalLobes[2][1], integralImage,
|
|
integralImageStride);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE void GenerateIntegralRow(uint32_t* aDest,
|
|
const uint8_t* aSource,
|
|
uint32_t* aPreviousRow,
|
|
const uint32_t& aSourceWidth,
|
|
const uint32_t& aLeftInflation,
|
|
const uint32_t& aRightInflation) {
|
|
uint32_t currentRowSum = 0;
|
|
uint32_t pixel = aSource[0];
|
|
for (uint32_t x = 0; x < aLeftInflation; x++) {
|
|
currentRowSum += pixel;
|
|
*aDest++ = currentRowSum + *aPreviousRow++;
|
|
}
|
|
for (uint32_t x = aLeftInflation; x < (aSourceWidth + aLeftInflation);
|
|
x += 4) {
|
|
uint32_t alphaValues = *(uint32_t*)(aSource + (x - aLeftInflation));
|
|
#if defined WORDS_BIGENDIAN || defined IS_BIG_ENDIAN || defined __BIG_ENDIAN__
|
|
currentRowSum += (alphaValues >> 24) & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
currentRowSum += (alphaValues >> 16) & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
currentRowSum += (alphaValues >> 8) & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
currentRowSum += alphaValues & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
#else
|
|
currentRowSum += alphaValues & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
alphaValues >>= 8;
|
|
currentRowSum += alphaValues & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
alphaValues >>= 8;
|
|
currentRowSum += alphaValues & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
alphaValues >>= 8;
|
|
currentRowSum += alphaValues & 0xff;
|
|
*aDest++ = *aPreviousRow++ + currentRowSum;
|
|
#endif
|
|
}
|
|
pixel = aSource[aSourceWidth - 1];
|
|
for (uint32_t x = (aSourceWidth + aLeftInflation);
|
|
x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
|
|
currentRowSum += pixel;
|
|
*aDest++ = currentRowSum + *aPreviousRow++;
|
|
}
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE void GenerateIntegralImage_C(
|
|
int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation,
|
|
int32_t aBottomInflation, uint32_t* aIntegralImage,
|
|
size_t aIntegralImageStride, uint8_t* aSource, int32_t aSourceStride,
|
|
const IntSize& aSize) {
|
|
uint32_t stride32bit = aIntegralImageStride / 4;
|
|
|
|
IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
|
|
aSize.height + aTopInflation + aBottomInflation);
|
|
|
|
memset(aIntegralImage, 0, aIntegralImageStride);
|
|
|
|
GenerateIntegralRow(aIntegralImage, aSource, aIntegralImage, aSize.width,
|
|
aLeftInflation, aRightInflation);
|
|
for (int y = 1; y < aTopInflation + 1; y++) {
|
|
GenerateIntegralRow(aIntegralImage + (y * stride32bit), aSource,
|
|
aIntegralImage + (y - 1) * stride32bit, aSize.width,
|
|
aLeftInflation, aRightInflation);
|
|
}
|
|
|
|
for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
|
|
GenerateIntegralRow(aIntegralImage + (y * stride32bit),
|
|
aSource + aSourceStride * (y - aTopInflation),
|
|
aIntegralImage + (y - 1) * stride32bit, aSize.width,
|
|
aLeftInflation, aRightInflation);
|
|
}
|
|
|
|
if (aBottomInflation) {
|
|
for (int y = (aSize.height + aTopInflation); y < integralImageSize.height;
|
|
y++) {
|
|
GenerateIntegralRow(aIntegralImage + (y * stride32bit),
|
|
aSource + ((aSize.height - 1) * aSourceStride),
|
|
aIntegralImage + (y - 1) * stride32bit, aSize.width,
|
|
aLeftInflation, aRightInflation);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Attempt to do an in-place box blur using an integral image.
|
|
*/
|
|
void AlphaBoxBlur::BoxBlur_C(uint8_t* aData, int32_t aLeftLobe,
|
|
int32_t aRightLobe, int32_t aTopLobe,
|
|
int32_t aBottomLobe, uint32_t* aIntegralImage,
|
|
size_t aIntegralImageStride) const {
|
|
IntSize size = GetSize();
|
|
|
|
MOZ_ASSERT(size.width > 0);
|
|
|
|
// Our 'left' or 'top' lobe will include the current pixel. i.e. when
|
|
// looking at an integral image the value of a pixel at 'x,y' is calculated
|
|
// using the value of the integral image values above/below that.
|
|
aLeftLobe++;
|
|
aTopLobe++;
|
|
int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);
|
|
|
|
MOZ_ASSERT(boxSize > 0);
|
|
|
|
if (boxSize == 1) {
|
|
return;
|
|
}
|
|
|
|
int32_t stride32bit = aIntegralImageStride / 4;
|
|
|
|
int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();
|
|
|
|
GenerateIntegralImage_C(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
|
|
aIntegralImage, aIntegralImageStride, aData, mStride,
|
|
size);
|
|
|
|
uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
|
|
|
|
uint32_t* innerIntegral =
|
|
aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
|
|
|
|
// Storing these locally makes this about 30% faster! Presumably the compiler
|
|
// can't be sure we're not altering the member variables in this loop.
|
|
IntRect skipRect = mSkipRect;
|
|
uint8_t* data = aData;
|
|
int32_t stride = mStride;
|
|
for (int32_t y = 0; y < size.height; y++) {
|
|
// Not using ContainsY(y) because we do not skip y == skipRect.Y()
|
|
// although that may not be done on purpose
|
|
bool inSkipRectY = y > skipRect.Y() && y < skipRect.YMost();
|
|
|
|
uint32_t* topLeftBase =
|
|
innerIntegral + ((y - aTopLobe) * stride32bit - aLeftLobe);
|
|
uint32_t* topRightBase =
|
|
innerIntegral + ((y - aTopLobe) * stride32bit + aRightLobe);
|
|
uint32_t* bottomRightBase =
|
|
innerIntegral + ((y + aBottomLobe) * stride32bit + aRightLobe);
|
|
uint32_t* bottomLeftBase =
|
|
innerIntegral + ((y + aBottomLobe) * stride32bit - aLeftLobe);
|
|
|
|
for (int32_t x = 0; x < size.width; x++) {
|
|
// Not using ContainsX(x) because we do not skip x == skipRect.X()
|
|
// although that may not be done on purpose
|
|
if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
|
|
x = skipRect.XMost() - 1;
|
|
// Trigger early jump on coming loop iterations, this will be reset
|
|
// next line anyway.
|
|
inSkipRectY = false;
|
|
continue;
|
|
}
|
|
int32_t topLeft = topLeftBase[x];
|
|
int32_t topRight = topRightBase[x];
|
|
int32_t bottomRight = bottomRightBase[x];
|
|
int32_t bottomLeft = bottomLeftBase[x];
|
|
|
|
uint32_t value = bottomRight - topRight - bottomLeft;
|
|
value += topLeft;
|
|
|
|
data[stride * y + x] =
|
|
(uint64_t(reciprocal) * value + (uint64_t(1) << 31)) >> 32;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the box blur size (which we're calling the blur radius) from
|
|
* the standard deviation.
|
|
*
|
|
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
|
|
* approximating a Gaussian using box blurs. This yields quite a good
|
|
* approximation for a Gaussian. Then we multiply this by 1.5 since our
|
|
* code wants the radius of the entire triple-box-blur kernel instead of
|
|
* the diameter of an individual box blur. For more details, see:
|
|
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
|
|
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
|
|
*/
|
|
static const Float GAUSSIAN_SCALE_FACTOR =
|
|
Float((3 * sqrt(2 * M_PI) / 4) * 1.5);
|
|
|
|
IntSize AlphaBoxBlur::CalculateBlurRadius(const Point& aStd) {
|
|
IntSize size(
|
|
static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5f)),
|
|
static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5f)));
|
|
|
|
return size;
|
|
}
|
|
|
|
Float AlphaBoxBlur::CalculateBlurSigma(int32_t aBlurRadius) {
|
|
return aBlurRadius / GAUSSIAN_SCALE_FACTOR;
|
|
}
|
|
|
|
} // namespace gfx
|
|
} // namespace mozilla
|