gecko-dev/mozglue/tests/TestBaseProfiler.cpp

4453 строки
171 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "BaseProfiler.h"
#include "mozilla/Attributes.h"
#include "mozilla/BaseProfileJSONWriter.h"
#ifdef MOZ_GECKO_PROFILER
# include "mozilla/BaseProfilerMarkerTypes.h"
# include "mozilla/BlocksRingBuffer.h"
# include "mozilla/leb128iterator.h"
# include "mozilla/ModuloBuffer.h"
# include "mozilla/PowerOfTwo.h"
# include "mozilla/ProfileBufferChunk.h"
# include "mozilla/ProfileBufferChunkManagerSingle.h"
# include "mozilla/ProfileBufferChunkManagerWithLocalLimit.h"
# include "mozilla/ProfileBufferControlledChunkManager.h"
# include "mozilla/ProfileChunkedBuffer.h"
# include "mozilla/Vector.h"
#endif // MOZ_GECKO_PROFILER
#if defined(_MSC_VER) || defined(__MINGW32__)
# include <windows.h>
# include <mmsystem.h>
# include <process.h>
#else
# include <errno.h>
# include <string.h>
# include <time.h>
# include <unistd.h>
#endif
#include <algorithm>
#include <atomic>
#include <iostream>
#include <random>
#include <thread>
#include <type_traits>
#include <utility>
#ifdef MOZ_GECKO_PROFILER
MOZ_MAYBE_UNUSED static void SleepMilli(unsigned aMilliseconds) {
# if defined(_MSC_VER) || defined(__MINGW32__)
Sleep(aMilliseconds);
# else
struct timespec ts = {/* .tv_sec */ static_cast<time_t>(aMilliseconds / 1000),
/* ts.tv_nsec */ long(aMilliseconds % 1000) * 1000000};
struct timespec tr = {0, 0};
while (nanosleep(&ts, &tr)) {
if (errno == EINTR) {
ts = tr;
} else {
printf("nanosleep() -> %s\n", strerror(errno));
exit(1);
}
}
# endif
}
MOZ_MAYBE_UNUSED static void WaitUntilTimeStampChanges(
const mozilla::TimeStamp& aTimeStampToCompare =
mozilla::TimeStamp::NowUnfuzzed()) {
while (aTimeStampToCompare == mozilla::TimeStamp::NowUnfuzzed()) {
SleepMilli(1);
}
}
using namespace mozilla;
void TestPowerOfTwoMask() {
printf("TestPowerOfTwoMask...\n");
static_assert(MakePowerOfTwoMask<uint32_t, 0>().MaskValue() == 0);
constexpr PowerOfTwoMask<uint32_t> c0 = MakePowerOfTwoMask<uint32_t, 0>();
MOZ_RELEASE_ASSERT(c0.MaskValue() == 0);
static_assert(MakePowerOfTwoMask<uint32_t, 0xFFu>().MaskValue() == 0xFFu);
constexpr PowerOfTwoMask<uint32_t> cFF =
MakePowerOfTwoMask<uint32_t, 0xFFu>();
MOZ_RELEASE_ASSERT(cFF.MaskValue() == 0xFFu);
static_assert(MakePowerOfTwoMask<uint32_t, 0xFFFFFFFFu>().MaskValue() ==
0xFFFFFFFFu);
constexpr PowerOfTwoMask<uint32_t> cFFFFFFFF =
MakePowerOfTwoMask<uint32_t, 0xFFFFFFFFu>();
MOZ_RELEASE_ASSERT(cFFFFFFFF.MaskValue() == 0xFFFFFFFFu);
struct TestDataU32 {
uint32_t mInput;
uint32_t mMask;
};
// clang-format off
TestDataU32 tests[] = {
{ 0, 0 },
{ 1, 1 },
{ 2, 3 },
{ 3, 3 },
{ 4, 7 },
{ 5, 7 },
{ (1u << 31) - 1, (1u << 31) - 1 },
{ (1u << 31), uint32_t(-1) },
{ (1u << 31) + 1, uint32_t(-1) },
{ uint32_t(-1), uint32_t(-1) }
};
// clang-format on
for (const TestDataU32& test : tests) {
PowerOfTwoMask<uint32_t> p2m(test.mInput);
MOZ_RELEASE_ASSERT(p2m.MaskValue() == test.mMask);
for (const TestDataU32& inner : tests) {
if (p2m.MaskValue() != uint32_t(-1)) {
MOZ_RELEASE_ASSERT((inner.mInput % p2m) ==
(inner.mInput % (p2m.MaskValue() + 1)));
}
MOZ_RELEASE_ASSERT((inner.mInput & p2m) == (inner.mInput % p2m));
MOZ_RELEASE_ASSERT((p2m & inner.mInput) == (inner.mInput & p2m));
}
}
printf("TestPowerOfTwoMask done\n");
}
void TestPowerOfTwo() {
printf("TestPowerOfTwo...\n");
static_assert(MakePowerOfTwo<uint32_t, 1>().Value() == 1);
constexpr PowerOfTwo<uint32_t> c1 = MakePowerOfTwo<uint32_t, 1>();
MOZ_RELEASE_ASSERT(c1.Value() == 1);
static_assert(MakePowerOfTwo<uint32_t, 1>().Mask().MaskValue() == 0);
static_assert(MakePowerOfTwo<uint32_t, 128>().Value() == 128);
constexpr PowerOfTwo<uint32_t> c128 = MakePowerOfTwo<uint32_t, 128>();
MOZ_RELEASE_ASSERT(c128.Value() == 128);
static_assert(MakePowerOfTwo<uint32_t, 128>().Mask().MaskValue() == 127);
static_assert(MakePowerOfTwo<uint32_t, 0x80000000u>().Value() == 0x80000000u);
constexpr PowerOfTwo<uint32_t> cMax = MakePowerOfTwo<uint32_t, 0x80000000u>();
MOZ_RELEASE_ASSERT(cMax.Value() == 0x80000000u);
static_assert(MakePowerOfTwo<uint32_t, 0x80000000u>().Mask().MaskValue() ==
0x7FFFFFFFu);
struct TestDataU32 {
uint32_t mInput;
uint32_t mValue;
uint32_t mMask;
};
// clang-format off
TestDataU32 tests[] = {
{ 0, 1, 0 },
{ 1, 1, 0 },
{ 2, 2, 1 },
{ 3, 4, 3 },
{ 4, 4, 3 },
{ 5, 8, 7 },
{ (1u << 31) - 1, (1u << 31), (1u << 31) - 1 },
{ (1u << 31), (1u << 31), (1u << 31) - 1 },
{ (1u << 31) + 1, (1u << 31), (1u << 31) - 1 },
{ uint32_t(-1), (1u << 31), (1u << 31) - 1 }
};
// clang-format on
for (const TestDataU32& test : tests) {
PowerOfTwo<uint32_t> p2(test.mInput);
MOZ_RELEASE_ASSERT(p2.Value() == test.mValue);
MOZ_RELEASE_ASSERT(p2.MaskValue() == test.mMask);
PowerOfTwoMask<uint32_t> p2m = p2.Mask();
MOZ_RELEASE_ASSERT(p2m.MaskValue() == test.mMask);
for (const TestDataU32& inner : tests) {
MOZ_RELEASE_ASSERT((inner.mInput % p2) == (inner.mInput % p2.Value()));
}
}
printf("TestPowerOfTwo done\n");
}
void TestLEB128() {
printf("TestLEB128...\n");
MOZ_RELEASE_ASSERT(ULEB128MaxSize<uint8_t>() == 2);
MOZ_RELEASE_ASSERT(ULEB128MaxSize<uint16_t>() == 3);
MOZ_RELEASE_ASSERT(ULEB128MaxSize<uint32_t>() == 5);
MOZ_RELEASE_ASSERT(ULEB128MaxSize<uint64_t>() == 10);
struct TestDataU64 {
uint64_t mValue;
unsigned mSize;
const char* mBytes;
};
// clang-format off
TestDataU64 tests[] = {
// Small numbers should keep their normal byte representation.
{ 0u, 1, "\0" },
{ 1u, 1, "\x01" },
// 0111 1111 (127, or 0x7F) is the highest number that fits into a single
// LEB128 byte. It gets encoded as 0111 1111, note the most significant bit
// is off.
{ 0x7Fu, 1, "\x7F" },
// Next number: 128, or 0x80.
// Original data representation: 1000 0000
// Broken up into groups of 7: 1 0000000
// Padded with 0 (msB) or 1 (lsB): 00000001 10000000
// Byte representation: 0x01 0x80
// Little endian order: -> 0x80 0x01
{ 0x80u, 2, "\x80\x01" },
// Next: 129, or 0x81 (showing that we don't lose low bits.)
// Original data representation: 1000 0001
// Broken up into groups of 7: 1 0000001
// Padded with 0 (msB) or 1 (lsB): 00000001 10000001
// Byte representation: 0x01 0x81
// Little endian order: -> 0x81 0x01
{ 0x81u, 2, "\x81\x01" },
// Highest 8-bit number: 255, or 0xFF.
// Original data representation: 1111 1111
// Broken up into groups of 7: 1 1111111
// Padded with 0 (msB) or 1 (lsB): 00000001 11111111
// Byte representation: 0x01 0xFF
// Little endian order: -> 0xFF 0x01
{ 0xFFu, 2, "\xFF\x01" },
// Next: 256, or 0x100.
// Original data representation: 1 0000 0000
// Broken up into groups of 7: 10 0000000
// Padded with 0 (msB) or 1 (lsB): 00000010 10000000
// Byte representation: 0x10 0x80
// Little endian order: -> 0x80 0x02
{ 0x100u, 2, "\x80\x02" },
// Highest 32-bit number: 0xFFFFFFFF (8 bytes, all bits set).
// Original: 1111 1111 1111 1111 1111 1111 1111 1111
// Groups: 1111 1111111 1111111 1111111 1111111
// Padded: 00001111 11111111 11111111 11111111 11111111
// Bytes: 0x0F 0xFF 0xFF 0xFF 0xFF
// Little Endian: -> 0xFF 0xFF 0xFF 0xFF 0x0F
{ 0xFFFFFFFFu, 5, "\xFF\xFF\xFF\xFF\x0F" },
// Highest 64-bit number: 0xFFFFFFFFFFFFFFFF (16 bytes, all bits set).
// 64 bits, that's 9 groups of 7 bits, plus 1 (most significant) bit.
{ 0xFFFFFFFFFFFFFFFFu, 10, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x01" }
};
// clang-format on
for (const TestDataU64& test : tests) {
MOZ_RELEASE_ASSERT(ULEB128Size(test.mValue) == test.mSize);
// Prepare a buffer that can accomodate the largest-possible LEB128.
uint8_t buffer[ULEB128MaxSize<uint64_t>()];
// Use a pointer into the buffer as iterator.
uint8_t* p = buffer;
// And write the LEB128.
WriteULEB128(test.mValue, p);
// Pointer (iterator) should have advanced just past the expected LEB128
// size.
MOZ_RELEASE_ASSERT(p == buffer + test.mSize);
// Check expected bytes.
for (unsigned i = 0; i < test.mSize; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t(test.mBytes[i]));
}
// Move pointer (iterator) back to start of buffer.
p = buffer;
// And read the LEB128 we wrote above.
uint64_t read = ReadULEB128<uint64_t>(p);
// Pointer (iterator) should have also advanced just past the expected
// LEB128 size.
MOZ_RELEASE_ASSERT(p == buffer + test.mSize);
// And check the read value.
MOZ_RELEASE_ASSERT(read == test.mValue);
// Testing ULEB128 reader.
ULEB128Reader<uint64_t> reader;
MOZ_RELEASE_ASSERT(!reader.IsComplete());
// Move pointer back to start of buffer.
p = buffer;
for (;;) {
// Read a byte and feed it to the reader.
if (reader.FeedByteIsComplete(*p++)) {
break;
}
// Not complete yet, we shouldn't have reached the end pointer.
MOZ_RELEASE_ASSERT(!reader.IsComplete());
MOZ_RELEASE_ASSERT(p < buffer + test.mSize);
}
MOZ_RELEASE_ASSERT(reader.IsComplete());
// Pointer should have advanced just past the expected LEB128 size.
MOZ_RELEASE_ASSERT(p == buffer + test.mSize);
// And check the read value.
MOZ_RELEASE_ASSERT(reader.Value() == test.mValue);
// And again after a Reset.
reader.Reset();
MOZ_RELEASE_ASSERT(!reader.IsComplete());
p = buffer;
for (;;) {
if (reader.FeedByteIsComplete(*p++)) {
break;
}
MOZ_RELEASE_ASSERT(!reader.IsComplete());
MOZ_RELEASE_ASSERT(p < buffer + test.mSize);
}
MOZ_RELEASE_ASSERT(reader.IsComplete());
MOZ_RELEASE_ASSERT(p == buffer + test.mSize);
MOZ_RELEASE_ASSERT(reader.Value() == test.mValue);
}
printf("TestLEB128 done\n");
}
template <uint8_t byte, uint8_t... tail>
constexpr bool TestConstexprULEB128Reader(ULEB128Reader<uint64_t>& aReader) {
if (aReader.IsComplete()) {
return false;
}
const bool isComplete = aReader.FeedByteIsComplete(byte);
if (aReader.IsComplete() != isComplete) {
return false;
}
if constexpr (sizeof...(tail) == 0) {
return isComplete;
} else {
if (isComplete) {
return false;
}
return TestConstexprULEB128Reader<tail...>(aReader);
}
}
template <uint64_t expected, uint8_t... bytes>
constexpr bool TestConstexprULEB128Reader() {
ULEB128Reader<uint64_t> reader;
if (!TestConstexprULEB128Reader<bytes...>(reader)) {
return false;
}
if (!reader.IsComplete()) {
return false;
}
if (reader.Value() != expected) {
return false;
}
reader.Reset();
if (!TestConstexprULEB128Reader<bytes...>(reader)) {
return false;
}
if (!reader.IsComplete()) {
return false;
}
if (reader.Value() != expected) {
return false;
}
return true;
}
static_assert(TestConstexprULEB128Reader<0x0u, 0x0u>());
static_assert(!TestConstexprULEB128Reader<0x0u, 0x0u, 0x0u>());
static_assert(TestConstexprULEB128Reader<0x1u, 0x1u>());
static_assert(TestConstexprULEB128Reader<0x7Fu, 0x7Fu>());
static_assert(TestConstexprULEB128Reader<0x80u, 0x80u, 0x01u>());
static_assert(!TestConstexprULEB128Reader<0x80u, 0x80u>());
static_assert(!TestConstexprULEB128Reader<0x80u, 0x01u>());
static_assert(TestConstexprULEB128Reader<0x81u, 0x81u, 0x01u>());
static_assert(TestConstexprULEB128Reader<0xFFu, 0xFFu, 0x01u>());
static_assert(TestConstexprULEB128Reader<0x100u, 0x80u, 0x02u>());
static_assert(TestConstexprULEB128Reader<0xFFFFFFFFu, 0xFFu, 0xFFu, 0xFFu,
0xFFu, 0x0Fu>());
static_assert(
!TestConstexprULEB128Reader<0xFFFFFFFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu>());
static_assert(!TestConstexprULEB128Reader<0xFFFFFFFFu, 0xFFu, 0xFFu, 0xFFu,
0xFFu, 0xFFu, 0x0Fu>());
static_assert(
TestConstexprULEB128Reader<0xFFFFFFFFFFFFFFFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,
0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0x01u>());
static_assert(
!TestConstexprULEB128Reader<0xFFFFFFFFFFFFFFFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,
0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu>());
static void TestChunk() {
printf("TestChunk...\n");
static_assert(!std::is_default_constructible_v<ProfileBufferChunk>,
"ProfileBufferChunk should not be default-constructible");
static_assert(
!std::is_constructible_v<ProfileBufferChunk, ProfileBufferChunk::Length>,
"ProfileBufferChunk should not be constructible from Length");
static_assert(
sizeof(ProfileBufferChunk::Header) ==
sizeof(ProfileBufferChunk::Header::mOffsetFirstBlock) +
sizeof(ProfileBufferChunk::Header::mOffsetPastLastBlock) +
sizeof(ProfileBufferChunk::Header::mDoneTimeStamp) +
sizeof(ProfileBufferChunk::Header::mBufferBytes) +
sizeof(ProfileBufferChunk::Header::mBlockCount) +
sizeof(ProfileBufferChunk::Header::mRangeStart) +
sizeof(ProfileBufferChunk::Header::mProcessId) +
sizeof(ProfileBufferChunk::Header::mPADDING),
"ProfileBufferChunk::Header may have unwanted padding, please review");
// Note: The above static_assert is an attempt at keeping
// ProfileBufferChunk::Header tightly packed, but some changes could make this
// impossible to achieve (most probably due to alignment) -- Just do your
// best!
constexpr ProfileBufferChunk::Length TestLen = 1000;
// Basic allocations of different sizes.
for (ProfileBufferChunk::Length len = 0; len <= TestLen; ++len) {
auto chunk = ProfileBufferChunk::Create(len);
static_assert(
std::is_same_v<decltype(chunk), UniquePtr<ProfileBufferChunk>>,
"ProfileBufferChunk::Create() should return a "
"UniquePtr<ProfileBufferChunk>");
MOZ_RELEASE_ASSERT(!!chunk, "OOM!?");
MOZ_RELEASE_ASSERT(chunk->BufferBytes() >= len);
MOZ_RELEASE_ASSERT(chunk->ChunkBytes() >=
len + ProfileBufferChunk::SizeofChunkMetadata());
MOZ_RELEASE_ASSERT(chunk->RemainingBytes() == chunk->BufferBytes());
MOZ_RELEASE_ASSERT(chunk->OffsetFirstBlock() == 0);
MOZ_RELEASE_ASSERT(chunk->OffsetPastLastBlock() == 0);
MOZ_RELEASE_ASSERT(chunk->BlockCount() == 0);
MOZ_RELEASE_ASSERT(chunk->ProcessId() == 0);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 0);
MOZ_RELEASE_ASSERT(chunk->BufferSpan().LengthBytes() ==
chunk->BufferBytes());
MOZ_RELEASE_ASSERT(!chunk->GetNext());
MOZ_RELEASE_ASSERT(!chunk->ReleaseNext());
MOZ_RELEASE_ASSERT(chunk->Last() == chunk.get());
}
// Allocate the main test Chunk.
auto chunkA = ProfileBufferChunk::Create(TestLen);
MOZ_RELEASE_ASSERT(!!chunkA, "OOM!?");
MOZ_RELEASE_ASSERT(chunkA->BufferBytes() >= TestLen);
MOZ_RELEASE_ASSERT(chunkA->ChunkBytes() >=
TestLen + ProfileBufferChunk::SizeofChunkMetadata());
MOZ_RELEASE_ASSERT(!chunkA->GetNext());
MOZ_RELEASE_ASSERT(!chunkA->ReleaseNext());
constexpr ProfileBufferIndex chunkARangeStart = 12345;
chunkA->SetRangeStart(chunkARangeStart);
MOZ_RELEASE_ASSERT(chunkA->RangeStart() == chunkARangeStart);
// Get a read-only span over its buffer.
auto bufferA = chunkA->BufferSpan();
static_assert(
std::is_same_v<decltype(bufferA), Span<const ProfileBufferChunk::Byte>>,
"BufferSpan() should return a Span<const Byte>");
MOZ_RELEASE_ASSERT(bufferA.LengthBytes() == chunkA->BufferBytes());
// Add the initial tail block.
constexpr ProfileBufferChunk::Length initTailLen = 10;
auto initTail = chunkA->ReserveInitialBlockAsTail(initTailLen);
static_assert(
std::is_same_v<decltype(initTail), Span<ProfileBufferChunk::Byte>>,
"ReserveInitialBlockAsTail() should return a Span<Byte>");
MOZ_RELEASE_ASSERT(initTail.LengthBytes() == initTailLen);
MOZ_RELEASE_ASSERT(initTail.Elements() == bufferA.Elements());
MOZ_RELEASE_ASSERT(chunkA->OffsetFirstBlock() == initTailLen);
MOZ_RELEASE_ASSERT(chunkA->OffsetPastLastBlock() == initTailLen);
// Add the first complete block.
constexpr ProfileBufferChunk::Length block1Len = 20;
auto block1 = chunkA->ReserveBlock(block1Len);
static_assert(
std::is_same_v<decltype(block1), ProfileBufferChunk::ReserveReturn>,
"ReserveBlock() should return a ReserveReturn");
MOZ_RELEASE_ASSERT(block1.mBlockRangeIndex.ConvertToProfileBufferIndex() ==
chunkARangeStart + initTailLen);
MOZ_RELEASE_ASSERT(block1.mSpan.LengthBytes() == block1Len);
MOZ_RELEASE_ASSERT(block1.mSpan.Elements() ==
bufferA.Elements() + initTailLen);
MOZ_RELEASE_ASSERT(chunkA->OffsetFirstBlock() == initTailLen);
MOZ_RELEASE_ASSERT(chunkA->OffsetPastLastBlock() == initTailLen + block1Len);
MOZ_RELEASE_ASSERT(chunkA->RemainingBytes() != 0);
// Add another block to over-fill the ProfileBufferChunk.
const ProfileBufferChunk::Length remaining =
chunkA->BufferBytes() - (initTailLen + block1Len);
constexpr ProfileBufferChunk::Length overfill = 30;
const ProfileBufferChunk::Length block2Len = remaining + overfill;
ProfileBufferChunk::ReserveReturn block2 = chunkA->ReserveBlock(block2Len);
MOZ_RELEASE_ASSERT(block2.mBlockRangeIndex.ConvertToProfileBufferIndex() ==
chunkARangeStart + initTailLen + block1Len);
MOZ_RELEASE_ASSERT(block2.mSpan.LengthBytes() == remaining);
MOZ_RELEASE_ASSERT(block2.mSpan.Elements() ==
bufferA.Elements() + initTailLen + block1Len);
MOZ_RELEASE_ASSERT(chunkA->OffsetFirstBlock() == initTailLen);
MOZ_RELEASE_ASSERT(chunkA->OffsetPastLastBlock() == chunkA->BufferBytes());
MOZ_RELEASE_ASSERT(chunkA->RemainingBytes() == 0);
// Block must be marked "done" before it can be recycled.
chunkA->MarkDone();
// It must be marked "recycled" before data can be added to it again.
chunkA->MarkRecycled();
// Add an empty initial tail block.
Span<ProfileBufferChunk::Byte> initTail2 =
chunkA->ReserveInitialBlockAsTail(0);
MOZ_RELEASE_ASSERT(initTail2.LengthBytes() == 0);
MOZ_RELEASE_ASSERT(initTail2.Elements() == bufferA.Elements());
MOZ_RELEASE_ASSERT(chunkA->OffsetFirstBlock() == 0);
MOZ_RELEASE_ASSERT(chunkA->OffsetPastLastBlock() == 0);
// Block must be marked "done" before it can be destroyed.
chunkA->MarkDone();
chunkA->SetProcessId(123);
MOZ_RELEASE_ASSERT(chunkA->ProcessId() == 123);
printf("TestChunk done\n");
}
static void TestChunkManagerSingle() {
printf("TestChunkManagerSingle...\n");
// Construct a ProfileBufferChunkManagerSingle for one chunk of size >=1000.
constexpr ProfileBufferChunk::Length ChunkMinBufferBytes = 1000;
ProfileBufferChunkManagerSingle cms{ChunkMinBufferBytes};
// Reference to base class, to exercize virtual methods.
ProfileBufferChunkManager& cm = cms;
# ifdef DEBUG
const char* chunkManagerRegisterer = "TestChunkManagerSingle";
cm.RegisteredWith(chunkManagerRegisterer);
# endif // DEBUG
const auto maxTotalSize = cm.MaxTotalSize();
MOZ_RELEASE_ASSERT(maxTotalSize >= ChunkMinBufferBytes);
cm.SetChunkDestroyedCallback([](const ProfileBufferChunk&) {
MOZ_RELEASE_ASSERT(
false,
"ProfileBufferChunkManagerSingle should never destroy its one chunk");
});
UniquePtr<ProfileBufferChunk> extantReleasedChunks =
cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
// First request.
UniquePtr<ProfileBufferChunk> chunk = cm.GetChunk();
MOZ_RELEASE_ASSERT(!!chunk, "First chunk request should always work");
MOZ_RELEASE_ASSERT(chunk->BufferBytes() >= ChunkMinBufferBytes,
"Unexpected chunk size");
MOZ_RELEASE_ASSERT(!chunk->GetNext(), "There should only be one chunk");
// Keep address, for later checks.
const uintptr_t chunkAddress = reinterpret_cast<uintptr_t>(chunk.get());
extantReleasedChunks = cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
// Second request.
MOZ_RELEASE_ASSERT(!cm.GetChunk(), "Second chunk request should always fail");
extantReleasedChunks = cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
// Add some data to the chunk (to verify recycling later on).
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetFirstBlock == 0);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetPastLastBlock == 0);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 0);
chunk->SetRangeStart(100);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 100);
Unused << chunk->ReserveInitialBlockAsTail(1);
Unused << chunk->ReserveBlock(2);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetFirstBlock == 1);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetPastLastBlock == 1 + 2);
// Release the first chunk.
chunk->MarkDone();
cm.ReleaseChunk(std::move(chunk));
MOZ_RELEASE_ASSERT(!chunk, "chunk UniquePtr should have been moved-from");
// Request after release.
MOZ_RELEASE_ASSERT(!cm.GetChunk(),
"Chunk request after release should also fail");
// Check released chunk.
extantReleasedChunks = cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!!extantReleasedChunks,
"Could not retrieve released chunk");
MOZ_RELEASE_ASSERT(!extantReleasedChunks->GetNext(),
"There should only be one released chunk");
MOZ_RELEASE_ASSERT(
reinterpret_cast<uintptr_t>(extantReleasedChunks.get()) == chunkAddress,
"Released chunk should be first requested one");
MOZ_RELEASE_ASSERT(!cm.GetExtantReleasedChunks(),
"Unexpected extra released chunk(s)");
// Another request after release.
MOZ_RELEASE_ASSERT(!cm.GetChunk(),
"Chunk request after release should also fail");
MOZ_RELEASE_ASSERT(
cm.MaxTotalSize() == maxTotalSize,
"MaxTotalSize() should not change after requests&releases");
// Reset the chunk manager. (Single-only non-virtual function.)
cms.Reset(std::move(extantReleasedChunks));
MOZ_RELEASE_ASSERT(!extantReleasedChunks,
"Released chunk UniquePtr should have been moved-from");
MOZ_RELEASE_ASSERT(
cm.MaxTotalSize() == maxTotalSize,
"MaxTotalSize() should not change when resetting with the same chunk");
// 2nd round, first request. Theoretically async, but this implementation just
// immediately runs the callback.
bool ran = false;
cm.RequestChunk([&](UniquePtr<ProfileBufferChunk> aChunk) {
ran = true;
MOZ_RELEASE_ASSERT(!!aChunk);
chunk = std::move(aChunk);
});
MOZ_RELEASE_ASSERT(ran, "RequestChunk callback not called immediately");
ran = false;
cm.FulfillChunkRequests();
MOZ_RELEASE_ASSERT(!ran, "FulfillChunkRequests should not have any effects");
MOZ_RELEASE_ASSERT(!!chunk, "First chunk request should always work");
MOZ_RELEASE_ASSERT(chunk->BufferBytes() >= ChunkMinBufferBytes,
"Unexpected chunk size");
MOZ_RELEASE_ASSERT(!chunk->GetNext(), "There should only be one chunk");
MOZ_RELEASE_ASSERT(reinterpret_cast<uintptr_t>(chunk.get()) == chunkAddress,
"Requested chunk should be first requested one");
// Verify that chunk is empty and usable.
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetFirstBlock == 0);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetPastLastBlock == 0);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 0);
chunk->SetRangeStart(200);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 200);
Unused << chunk->ReserveInitialBlockAsTail(3);
Unused << chunk->ReserveBlock(4);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetFirstBlock == 3);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetPastLastBlock == 3 + 4);
// Second request.
ran = false;
cm.RequestChunk([&](UniquePtr<ProfileBufferChunk> aChunk) {
ran = true;
MOZ_RELEASE_ASSERT(!aChunk, "Second chunk request should always fail");
});
MOZ_RELEASE_ASSERT(ran, "RequestChunk callback not called");
// This one does nothing.
cm.ForgetUnreleasedChunks();
// Don't forget to mark chunk "Done" before letting it die.
chunk->MarkDone();
chunk = nullptr;
// Create a tiny chunk and reset the chunk manager with it.
chunk = ProfileBufferChunk::Create(1);
MOZ_RELEASE_ASSERT(!!chunk);
auto tinyChunkSize = chunk->BufferBytes();
MOZ_RELEASE_ASSERT(tinyChunkSize >= 1);
MOZ_RELEASE_ASSERT(tinyChunkSize < ChunkMinBufferBytes);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 0);
chunk->SetRangeStart(300);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 300);
cms.Reset(std::move(chunk));
MOZ_RELEASE_ASSERT(!chunk, "chunk UniquePtr should have been moved-from");
MOZ_RELEASE_ASSERT(cm.MaxTotalSize() == tinyChunkSize,
"MaxTotalSize() should match the new chunk size");
chunk = cm.GetChunk();
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 0, "Got non-recycled chunk");
// Enough testing! Clean-up.
Unused << chunk->ReserveInitialBlockAsTail(0);
chunk->MarkDone();
cm.ForgetUnreleasedChunks();
# ifdef DEBUG
cm.DeregisteredFrom(chunkManagerRegisterer);
# endif // DEBUG
printf("TestChunkManagerSingle done\n");
}
static void TestChunkManagerWithLocalLimit() {
printf("TestChunkManagerWithLocalLimit...\n");
// Construct a ProfileBufferChunkManagerWithLocalLimit with chunk of minimum
// size >=100, up to 1000 bytes.
constexpr ProfileBufferChunk::Length MaxTotalBytes = 1000;
constexpr ProfileBufferChunk::Length ChunkMinBufferBytes = 100;
ProfileBufferChunkManagerWithLocalLimit cmll{MaxTotalBytes,
ChunkMinBufferBytes};
// Reference to base class, to exercize virtual methods.
ProfileBufferChunkManager& cm = cmll;
# ifdef DEBUG
const char* chunkManagerRegisterer = "TestChunkManagerWithLocalLimit";
cm.RegisteredWith(chunkManagerRegisterer);
# endif // DEBUG
MOZ_RELEASE_ASSERT(cm.MaxTotalSize() == MaxTotalBytes,
"Max total size should be exactly as given");
unsigned destroyedChunks = 0;
unsigned destroyedBytes = 0;
cm.SetChunkDestroyedCallback([&](const ProfileBufferChunk& aChunks) {
for (const ProfileBufferChunk* chunk = &aChunks; chunk;
chunk = chunk->GetNext()) {
destroyedChunks += 1;
destroyedBytes += chunk->BufferBytes();
}
});
UniquePtr<ProfileBufferChunk> extantReleasedChunks =
cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
// First request.
UniquePtr<ProfileBufferChunk> chunk = cm.GetChunk();
MOZ_RELEASE_ASSERT(!!chunk,
"First chunk immediate request should always work");
const auto chunkActualBufferBytes = chunk->BufferBytes();
MOZ_RELEASE_ASSERT(chunkActualBufferBytes >= ChunkMinBufferBytes,
"Unexpected chunk size");
MOZ_RELEASE_ASSERT(!chunk->GetNext(), "There should only be one chunk");
// Keep address, for later checks.
const uintptr_t chunk1Address = reinterpret_cast<uintptr_t>(chunk.get());
extantReleasedChunks = cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
// Verify that ReleaseChunk accepts zero chunks.
cm.ReleaseChunk(nullptr);
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
// For this test, we need to be able to get at least 2 chunks without hitting
// the limit. (If this failed, it wouldn't necessary be a problem with
// ProfileBufferChunkManagerWithLocalLimit, fiddle with constants at the top
// of this test.)
MOZ_RELEASE_ASSERT(chunkActualBufferBytes < 2 * MaxTotalBytes);
unsigned chunk1ReuseCount = 0;
// We will do enough loops to go through the maximum size a number of times.
const unsigned Rollovers = 3;
const unsigned Loops = Rollovers * MaxTotalBytes / chunkActualBufferBytes;
for (unsigned i = 0; i < Loops; ++i) {
// Add some data to the chunk.
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetFirstBlock == 0);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetPastLastBlock == 0);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == 0);
const ProfileBufferIndex index = 1 + i * chunkActualBufferBytes;
chunk->SetRangeStart(index);
MOZ_RELEASE_ASSERT(chunk->RangeStart() == index);
Unused << chunk->ReserveInitialBlockAsTail(1);
Unused << chunk->ReserveBlock(2);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetFirstBlock == 1);
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mOffsetPastLastBlock == 1 + 2);
// Request a new chunk.
bool ran = false;
UniquePtr<ProfileBufferChunk> newChunk;
cm.RequestChunk([&](UniquePtr<ProfileBufferChunk> aChunk) {
ran = true;
newChunk = std::move(aChunk);
});
MOZ_RELEASE_ASSERT(
!ran, "RequestChunk should not immediately fulfill the request");
cm.FulfillChunkRequests();
MOZ_RELEASE_ASSERT(ran, "FulfillChunkRequests should invoke the callback");
MOZ_RELEASE_ASSERT(!!newChunk, "Chunk request should always work");
MOZ_RELEASE_ASSERT(newChunk->BufferBytes() == chunkActualBufferBytes,
"Unexpected chunk size");
MOZ_RELEASE_ASSERT(!newChunk->GetNext(), "There should only be one chunk");
// Mark previous chunk done and release it.
WaitUntilTimeStampChanges(); // Force "done" timestamp to change.
chunk->MarkDone();
cm.ReleaseChunk(std::move(chunk));
// And cycle to the new chunk.
chunk = std::move(newChunk);
if (reinterpret_cast<uintptr_t>(chunk.get()) == chunk1Address) {
++chunk1ReuseCount;
}
}
// Expect all rollovers except 1 to destroy chunks.
MOZ_RELEASE_ASSERT(destroyedChunks >= (Rollovers - 1) * MaxTotalBytes /
chunkActualBufferBytes,
"Not enough destroyed chunks");
MOZ_RELEASE_ASSERT(destroyedBytes == destroyedChunks * chunkActualBufferBytes,
"Mismatched destroyed chunks and bytes");
MOZ_RELEASE_ASSERT(chunk1ReuseCount >= (Rollovers - 1),
"Not enough reuse of the first chunks");
// Check that chunk manager is reentrant from request callback.
bool ran = false;
bool ranInner = false;
UniquePtr<ProfileBufferChunk> newChunk;
cm.RequestChunk([&](UniquePtr<ProfileBufferChunk> aChunk) {
ran = true;
MOZ_RELEASE_ASSERT(!!aChunk, "Chunk request should always work");
Unused << aChunk->ReserveInitialBlockAsTail(0);
WaitUntilTimeStampChanges(); // Force "done" timestamp to change.
aChunk->MarkDone();
UniquePtr<ProfileBufferChunk> anotherChunk = cm.GetChunk();
MOZ_RELEASE_ASSERT(!!anotherChunk);
Unused << anotherChunk->ReserveInitialBlockAsTail(0);
WaitUntilTimeStampChanges(); // Force "done" timestamp to change.
anotherChunk->MarkDone();
cm.RequestChunk([&](UniquePtr<ProfileBufferChunk> aChunk) {
ranInner = true;
MOZ_RELEASE_ASSERT(!!aChunk, "Chunk request should always work");
Unused << aChunk->ReserveInitialBlockAsTail(0);
WaitUntilTimeStampChanges(); // Force "done" timestamp to change.
aChunk->MarkDone();
});
MOZ_RELEASE_ASSERT(
!ranInner, "RequestChunk should not immediately fulfill the request");
});
MOZ_RELEASE_ASSERT(!ran,
"RequestChunk should not immediately fulfill the request");
MOZ_RELEASE_ASSERT(
!ranInner,
"RequestChunk should not immediately fulfill the inner request");
cm.FulfillChunkRequests();
MOZ_RELEASE_ASSERT(ran, "FulfillChunkRequests should invoke the callback");
MOZ_RELEASE_ASSERT(!ranInner,
"FulfillChunkRequests should not immediately fulfill "
"the inner request");
cm.FulfillChunkRequests();
MOZ_RELEASE_ASSERT(
ran, "2nd FulfillChunkRequests should invoke the inner request callback");
// Enough testing! Clean-up.
Unused << chunk->ReserveInitialBlockAsTail(0);
WaitUntilTimeStampChanges(); // Force "done" timestamp to change.
chunk->MarkDone();
cm.ForgetUnreleasedChunks();
// Special testing of the release algorithm, to make sure released chunks get
// sorted.
constexpr unsigned RandomReleaseChunkLoop = 100;
// Build a vector of chunks, and mark them "done", ready to be released.
Vector<UniquePtr<ProfileBufferChunk>> chunksToRelease;
MOZ_RELEASE_ASSERT(chunksToRelease.reserve(RandomReleaseChunkLoop));
Vector<TimeStamp> chunksTimeStamps;
MOZ_RELEASE_ASSERT(chunksTimeStamps.reserve(RandomReleaseChunkLoop));
for (unsigned i = 0; i < RandomReleaseChunkLoop; ++i) {
UniquePtr<ProfileBufferChunk> chunk = cm.GetChunk();
MOZ_RELEASE_ASSERT(chunk);
Unused << chunk->ReserveInitialBlockAsTail(0);
chunk->MarkDone();
MOZ_RELEASE_ASSERT(!chunk->ChunkHeader().mDoneTimeStamp.IsNull());
chunksTimeStamps.infallibleEmplaceBack(chunk->ChunkHeader().mDoneTimeStamp);
chunksToRelease.infallibleEmplaceBack(std::move(chunk));
if (i % 10 == 0) {
// "Done" timestamps should *usually* increase, let's make extra sure some
// timestamps are actually different.
WaitUntilTimeStampChanges();
}
}
// Shuffle the list.
std::random_device randomDevice;
std::mt19937 generator(randomDevice());
std::shuffle(chunksToRelease.begin(), chunksToRelease.end(), generator);
// And release chunks one by one, checking that the list of released chunks
// is always sorted.
printf("TestChunkManagerWithLocalLimit - Shuffle test timestamps:");
for (unsigned i = 0; i < RandomReleaseChunkLoop; ++i) {
printf(" %f", (chunksToRelease[i]->ChunkHeader().mDoneTimeStamp -
TimeStamp::ProcessCreation())
.ToMicroseconds());
cm.ReleaseChunk(std::move(chunksToRelease[i]));
cm.PeekExtantReleasedChunks([i](const ProfileBufferChunk* releasedChunks) {
MOZ_RELEASE_ASSERT(releasedChunks);
unsigned releasedChunkCount = 1;
for (;;) {
const ProfileBufferChunk* nextChunk = releasedChunks->GetNext();
if (!nextChunk) {
break;
}
++releasedChunkCount;
MOZ_RELEASE_ASSERT(releasedChunks->ChunkHeader().mDoneTimeStamp <=
nextChunk->ChunkHeader().mDoneTimeStamp);
releasedChunks = nextChunk;
}
MOZ_RELEASE_ASSERT(releasedChunkCount == i + 1);
});
}
printf("\n");
// Finally, the whole list of released chunks should have the exact same
// timestamps as the initial list of "done" chunks.
extantReleasedChunks = cm.GetExtantReleasedChunks();
for (unsigned i = 0; i < RandomReleaseChunkLoop; ++i) {
MOZ_RELEASE_ASSERT(extantReleasedChunks, "Not enough released chunks");
MOZ_RELEASE_ASSERT(extantReleasedChunks->ChunkHeader().mDoneTimeStamp ==
chunksTimeStamps[i]);
Unused << std::exchange(extantReleasedChunks,
extantReleasedChunks->ReleaseNext());
}
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Too many released chunks");
# ifdef DEBUG
cm.DeregisteredFrom(chunkManagerRegisterer);
# endif // DEBUG
printf("TestChunkManagerWithLocalLimit done\n");
}
static bool IsSameMetadata(
const ProfileBufferControlledChunkManager::ChunkMetadata& a1,
const ProfileBufferControlledChunkManager::ChunkMetadata& a2) {
return a1.mDoneTimeStamp == a2.mDoneTimeStamp &&
a1.mBufferBytes == a2.mBufferBytes;
};
static bool IsSameUpdate(
const ProfileBufferControlledChunkManager::Update& a1,
const ProfileBufferControlledChunkManager::Update& a2) {
// Final and not-an-update don't carry other data, so we can test these two
// states first.
if (a1.IsFinal() || a2.IsFinal()) {
return a1.IsFinal() && a2.IsFinal();
}
if (a1.IsNotUpdate() || a2.IsNotUpdate()) {
return a1.IsNotUpdate() && a2.IsNotUpdate();
}
// Here, both are "normal" udpates, check member variables:
if (a1.UnreleasedBytes() != a2.UnreleasedBytes()) {
return false;
}
if (a1.ReleasedBytes() != a2.ReleasedBytes()) {
return false;
}
if (a1.OldestDoneTimeStamp() != a2.OldestDoneTimeStamp()) {
return false;
}
if (a1.NewlyReleasedChunksRef().size() !=
a2.NewlyReleasedChunksRef().size()) {
return false;
}
for (unsigned i = 0; i < a1.NewlyReleasedChunksRef().size(); ++i) {
if (!IsSameMetadata(a1.NewlyReleasedChunksRef()[i],
a2.NewlyReleasedChunksRef()[i])) {
return false;
}
}
return true;
}
static void TestControlledChunkManagerUpdate() {
printf("TestControlledChunkManagerUpdate...\n");
using Update = ProfileBufferControlledChunkManager::Update;
// Default construction.
Update update1;
MOZ_RELEASE_ASSERT(update1.IsNotUpdate());
MOZ_RELEASE_ASSERT(!update1.IsFinal());
// Clear an already-cleared update.
update1.Clear();
MOZ_RELEASE_ASSERT(update1.IsNotUpdate());
MOZ_RELEASE_ASSERT(!update1.IsFinal());
// Final construction with nullptr.
const Update final(nullptr);
MOZ_RELEASE_ASSERT(final.IsFinal());
MOZ_RELEASE_ASSERT(!final.IsNotUpdate());
// Copy final to cleared.
update1 = final;
MOZ_RELEASE_ASSERT(update1.IsFinal());
MOZ_RELEASE_ASSERT(!update1.IsNotUpdate());
// Copy final to final.
update1 = final;
MOZ_RELEASE_ASSERT(update1.IsFinal());
MOZ_RELEASE_ASSERT(!update1.IsNotUpdate());
// Clear a final update.
update1.Clear();
MOZ_RELEASE_ASSERT(update1.IsNotUpdate());
MOZ_RELEASE_ASSERT(!update1.IsFinal());
// Move final to cleared.
update1 = Update(nullptr);
MOZ_RELEASE_ASSERT(update1.IsFinal());
MOZ_RELEASE_ASSERT(!update1.IsNotUpdate());
// Move final to final.
update1 = Update(nullptr);
MOZ_RELEASE_ASSERT(update1.IsFinal());
MOZ_RELEASE_ASSERT(!update1.IsNotUpdate());
// Move from not-an-update (effectively same as Clear).
update1 = Update();
MOZ_RELEASE_ASSERT(update1.IsNotUpdate());
MOZ_RELEASE_ASSERT(!update1.IsFinal());
auto CreateBiggerChunkAfter = [](const ProfileBufferChunk& aChunkToBeat) {
while (TimeStamp::NowUnfuzzed() <=
aChunkToBeat.ChunkHeader().mDoneTimeStamp) {
::SleepMilli(1);
}
auto chunk = ProfileBufferChunk::Create(aChunkToBeat.BufferBytes() * 2);
MOZ_RELEASE_ASSERT(!!chunk);
MOZ_RELEASE_ASSERT(chunk->BufferBytes() >= aChunkToBeat.BufferBytes() * 2);
Unused << chunk->ReserveInitialBlockAsTail(0);
chunk->MarkDone();
MOZ_RELEASE_ASSERT(chunk->ChunkHeader().mDoneTimeStamp >
aChunkToBeat.ChunkHeader().mDoneTimeStamp);
return chunk;
};
update1 = Update(1, 2, nullptr, nullptr);
// Create initial update with 2 released chunks and 1 unreleased chunk.
auto released = ProfileBufferChunk::Create(10);
ProfileBufferChunk* c1 = released.get();
Unused << c1->ReserveInitialBlockAsTail(0);
c1->MarkDone();
released->SetLast(CreateBiggerChunkAfter(*c1));
ProfileBufferChunk* c2 = c1->GetNext();
auto unreleased = CreateBiggerChunkAfter(*c2);
ProfileBufferChunk* c3 = unreleased.get();
Update update2(c3->BufferBytes(), c1->BufferBytes() + c2->BufferBytes(), c1,
c1);
MOZ_RELEASE_ASSERT(IsSameUpdate(
update2,
Update(c3->BufferBytes(), c1->BufferBytes() + c2->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp,
{{c1->ChunkHeader().mDoneTimeStamp, c1->BufferBytes()},
{c2->ChunkHeader().mDoneTimeStamp, c2->BufferBytes()}})));
// Check every field, this time only, after that we'll trust that the
// `SameUpdate` test will be enough.
MOZ_RELEASE_ASSERT(!update2.IsNotUpdate());
MOZ_RELEASE_ASSERT(!update2.IsFinal());
MOZ_RELEASE_ASSERT(update2.UnreleasedBytes() == c3->BufferBytes());
MOZ_RELEASE_ASSERT(update2.ReleasedBytes() ==
c1->BufferBytes() + c2->BufferBytes());
MOZ_RELEASE_ASSERT(update2.OldestDoneTimeStamp() ==
c1->ChunkHeader().mDoneTimeStamp);
MOZ_RELEASE_ASSERT(update2.NewlyReleasedChunksRef().size() == 2);
MOZ_RELEASE_ASSERT(
IsSameMetadata(update2.NewlyReleasedChunksRef()[0],
{c1->ChunkHeader().mDoneTimeStamp, c1->BufferBytes()}));
MOZ_RELEASE_ASSERT(
IsSameMetadata(update2.NewlyReleasedChunksRef()[1],
{c2->ChunkHeader().mDoneTimeStamp, c2->BufferBytes()}));
// Fold into not-an-update.
update1.Fold(std::move(update2));
MOZ_RELEASE_ASSERT(IsSameUpdate(
update1,
Update(c3->BufferBytes(), c1->BufferBytes() + c2->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp,
{{c1->ChunkHeader().mDoneTimeStamp, c1->BufferBytes()},
{c2->ChunkHeader().mDoneTimeStamp, c2->BufferBytes()}})));
// Pretend nothing happened.
update2 = Update(c3->BufferBytes(), c1->BufferBytes() + c2->BufferBytes(), c1,
nullptr);
MOZ_RELEASE_ASSERT(IsSameUpdate(
update2, Update(c3->BufferBytes(), c1->BufferBytes() + c2->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp, {})));
update1.Fold(std::move(update2));
MOZ_RELEASE_ASSERT(IsSameUpdate(
update1,
Update(c3->BufferBytes(), c1->BufferBytes() + c2->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp,
{{c1->ChunkHeader().mDoneTimeStamp, c1->BufferBytes()},
{c2->ChunkHeader().mDoneTimeStamp, c2->BufferBytes()}})));
// Pretend there's a new unreleased chunk.
c3->SetLast(CreateBiggerChunkAfter(*c3));
ProfileBufferChunk* c4 = c3->GetNext();
update2 = Update(c3->BufferBytes() + c4->BufferBytes(),
c1->BufferBytes() + c2->BufferBytes(), c1, nullptr);
MOZ_RELEASE_ASSERT(
IsSameUpdate(update2, Update(c3->BufferBytes() + c4->BufferBytes(),
c1->BufferBytes() + c2->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp, {})));
update1.Fold(std::move(update2));
MOZ_RELEASE_ASSERT(IsSameUpdate(
update1,
Update(c3->BufferBytes() + c4->BufferBytes(),
c1->BufferBytes() + c2->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp,
{{c1->ChunkHeader().mDoneTimeStamp, c1->BufferBytes()},
{c2->ChunkHeader().mDoneTimeStamp, c2->BufferBytes()}})));
// Pretend the first unreleased chunk c3 has been released.
released->SetLast(std::exchange(unreleased, unreleased->ReleaseNext()));
update2 =
Update(c4->BufferBytes(),
c1->BufferBytes() + c2->BufferBytes() + c3->BufferBytes(), c1, c3);
MOZ_RELEASE_ASSERT(IsSameUpdate(
update2,
Update(c4->BufferBytes(),
c1->BufferBytes() + c2->BufferBytes() + c3->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp,
{{c3->ChunkHeader().mDoneTimeStamp, c3->BufferBytes()}})));
update1.Fold(std::move(update2));
MOZ_RELEASE_ASSERT(IsSameUpdate(
update1,
Update(c4->BufferBytes(),
c1->BufferBytes() + c2->BufferBytes() + c3->BufferBytes(),
c1->ChunkHeader().mDoneTimeStamp,
{{c1->ChunkHeader().mDoneTimeStamp, c1->BufferBytes()},
{c2->ChunkHeader().mDoneTimeStamp, c2->BufferBytes()},
{c3->ChunkHeader().mDoneTimeStamp, c3->BufferBytes()}})));
// Pretend c1 has been destroyed, so the oldest timestamp is now at c2.
released = released->ReleaseNext();
c1 = nullptr;
update2 = Update(c4->BufferBytes(), c2->BufferBytes() + c3->BufferBytes(), c2,
nullptr);
MOZ_RELEASE_ASSERT(IsSameUpdate(
update2, Update(c4->BufferBytes(), c2->BufferBytes() + c3->BufferBytes(),
c2->ChunkHeader().mDoneTimeStamp, {})));
update1.Fold(std::move(update2));
MOZ_RELEASE_ASSERT(IsSameUpdate(
update1,
Update(c4->BufferBytes(), c2->BufferBytes() + c3->BufferBytes(),
c2->ChunkHeader().mDoneTimeStamp,
{{c2->ChunkHeader().mDoneTimeStamp, c2->BufferBytes()},
{c3->ChunkHeader().mDoneTimeStamp, c3->BufferBytes()}})));
// Pretend c2 has been recycled to make unreleased c5, and c4 has been
// released.
auto recycled = std::exchange(released, released->ReleaseNext());
recycled->MarkRecycled();
Unused << recycled->ReserveInitialBlockAsTail(0);
recycled->MarkDone();
released->SetLast(std::move(unreleased));
unreleased = std::move(recycled);
ProfileBufferChunk* c5 = c2;
c2 = nullptr;
update2 =
Update(c5->BufferBytes(), c3->BufferBytes() + c4->BufferBytes(), c3, c4);
MOZ_RELEASE_ASSERT(IsSameUpdate(
update2,
Update(c5->BufferBytes(), c3->BufferBytes() + c4->BufferBytes(),
c3->ChunkHeader().mDoneTimeStamp,
{{c4->ChunkHeader().mDoneTimeStamp, c4->BufferBytes()}})));
update1.Fold(std::move(update2));
MOZ_RELEASE_ASSERT(IsSameUpdate(
update1,
Update(c5->BufferBytes(), c3->BufferBytes() + c4->BufferBytes(),
c3->ChunkHeader().mDoneTimeStamp,
{{c3->ChunkHeader().mDoneTimeStamp, c3->BufferBytes()},
{c4->ChunkHeader().mDoneTimeStamp, c4->BufferBytes()}})));
// And send a final update.
update1.Fold(Update(nullptr));
MOZ_RELEASE_ASSERT(update1.IsFinal());
MOZ_RELEASE_ASSERT(!update1.IsNotUpdate());
printf("TestControlledChunkManagerUpdate done\n");
}
static void TestControlledChunkManagerWithLocalLimit() {
printf("TestControlledChunkManagerWithLocalLimit...\n");
// Construct a ProfileBufferChunkManagerWithLocalLimit with chunk of minimum
// size >=100, up to 1000 bytes.
constexpr ProfileBufferChunk::Length MaxTotalBytes = 1000;
constexpr ProfileBufferChunk::Length ChunkMinBufferBytes = 100;
ProfileBufferChunkManagerWithLocalLimit cmll{MaxTotalBytes,
ChunkMinBufferBytes};
// Reference to chunk manager base class.
ProfileBufferChunkManager& cm = cmll;
// Reference to controlled chunk manager base class.
ProfileBufferControlledChunkManager& ccm = cmll;
# ifdef DEBUG
const char* chunkManagerRegisterer =
"TestControlledChunkManagerWithLocalLimit";
cm.RegisteredWith(chunkManagerRegisterer);
# endif // DEBUG
MOZ_RELEASE_ASSERT(cm.MaxTotalSize() == MaxTotalBytes,
"Max total size should be exactly as given");
unsigned destroyedChunks = 0;
unsigned destroyedBytes = 0;
cm.SetChunkDestroyedCallback([&](const ProfileBufferChunk& aChunks) {
for (const ProfileBufferChunk* chunk = &aChunks; chunk;
chunk = chunk->GetNext()) {
destroyedChunks += 1;
destroyedBytes += chunk->BufferBytes();
}
});
using Update = ProfileBufferControlledChunkManager::Update;
unsigned updateCount = 0;
ProfileBufferControlledChunkManager::Update update;
MOZ_RELEASE_ASSERT(update.IsNotUpdate());
auto updateCallback = [&](Update&& aUpdate) {
++updateCount;
update.Fold(std::move(aUpdate));
};
ccm.SetUpdateCallback(updateCallback);
MOZ_RELEASE_ASSERT(updateCount == 1,
"SetUpdateCallback should have triggered an update");
MOZ_RELEASE_ASSERT(IsSameUpdate(update, Update(0, 0, TimeStamp{}, {})));
updateCount = 0;
update.Clear();
UniquePtr<ProfileBufferChunk> extantReleasedChunks =
cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
MOZ_RELEASE_ASSERT(updateCount == 1,
"GetExtantReleasedChunks should have triggered an update");
MOZ_RELEASE_ASSERT(IsSameUpdate(update, Update(0, 0, TimeStamp{}, {})));
updateCount = 0;
update.Clear();
// First request.
UniquePtr<ProfileBufferChunk> chunk = cm.GetChunk();
MOZ_RELEASE_ASSERT(!!chunk,
"First chunk immediate request should always work");
const auto chunkActualBufferBytes = chunk->BufferBytes();
// Keep address, for later checks.
const uintptr_t chunk1Address = reinterpret_cast<uintptr_t>(chunk.get());
MOZ_RELEASE_ASSERT(updateCount == 1,
"GetChunk should have triggered an update");
MOZ_RELEASE_ASSERT(
IsSameUpdate(update, Update(chunk->BufferBytes(), 0, TimeStamp{}, {})));
updateCount = 0;
update.Clear();
extantReleasedChunks = cm.GetExtantReleasedChunks();
MOZ_RELEASE_ASSERT(!extantReleasedChunks, "Unexpected released chunk(s)");
MOZ_RELEASE_ASSERT(updateCount == 1,
"GetExtantReleasedChunks should have triggered an update");
MOZ_RELEASE_ASSERT(
IsSameUpdate(update, Update(chunk->BufferBytes(), 0, TimeStamp{}, {})));
updateCount = 0;
update.Clear();
// For this test, we need to be able to get at least 2 chunks without hitting
// the limit. (If this failed, it wouldn't necessary be a problem with
// ProfileBufferChunkManagerWithLocalLimit, fiddle with constants at the top
// of this test.)
MOZ_RELEASE_ASSERT(chunkActualBufferBytes < 2 * MaxTotalBytes);
ProfileBufferChunk::Length previousUnreleasedBytes = chunk->BufferBytes();
ProfileBufferChunk::Length previousReleasedBytes = 0;
TimeStamp previousOldestDoneTimeStamp;
unsigned chunk1ReuseCount = 0;
// We will do enough loops to go through the maximum size a number of times.
const unsigned Rollovers = 3;
const unsigned Loops = Rollovers * MaxTotalBytes / chunkActualBufferBytes;
for (unsigned i = 0; i < Loops; ++i) {
// Add some data to the chunk.
const ProfileBufferIndex index =
ProfileBufferIndex(chunkActualBufferBytes) * i + 1;
chunk->SetRangeStart(index);
Unused << chunk->ReserveInitialBlockAsTail(1);
Unused << chunk->ReserveBlock(2);
// Request a new chunk.
UniquePtr<ProfileBufferChunk> newChunk;
cm.RequestChunk([&](UniquePtr<ProfileBufferChunk> aChunk) {
newChunk = std::move(aChunk);
});
MOZ_RELEASE_ASSERT(updateCount == 0,
"RequestChunk() shouldn't have triggered an update");
cm.FulfillChunkRequests();
MOZ_RELEASE_ASSERT(!!newChunk, "Chunk request should always work");
MOZ_RELEASE_ASSERT(newChunk->BufferBytes() == chunkActualBufferBytes,
"Unexpected chunk size");
MOZ_RELEASE_ASSERT(!newChunk->GetNext(), "There should only be one chunk");
MOZ_RELEASE_ASSERT(updateCount == 1,
"FulfillChunkRequests() after a request should have "
"triggered an update");
MOZ_RELEASE_ASSERT(!update.IsFinal());
MOZ_RELEASE_ASSERT(!update.IsNotUpdate());
MOZ_RELEASE_ASSERT(update.UnreleasedBytes() ==
previousUnreleasedBytes + newChunk->BufferBytes());
previousUnreleasedBytes = update.UnreleasedBytes();
MOZ_RELEASE_ASSERT(update.ReleasedBytes() <= previousReleasedBytes);
previousReleasedBytes = update.ReleasedBytes();
MOZ_RELEASE_ASSERT(previousOldestDoneTimeStamp.IsNull() ||
update.OldestDoneTimeStamp() >=
previousOldestDoneTimeStamp);
previousOldestDoneTimeStamp = update.OldestDoneTimeStamp();
MOZ_RELEASE_ASSERT(update.NewlyReleasedChunksRef().empty());
updateCount = 0;
update.Clear();
// Make sure the "Done" timestamp below cannot be the same as from the
// previous loop.
const TimeStamp now = TimeStamp::NowUnfuzzed();
while (TimeStamp::NowUnfuzzed() == now) {
::SleepMilli(1);
}
// Mark previous chunk done and release it.
WaitUntilTimeStampChanges(); // Force "done" timestamp to change.
chunk->MarkDone();
const auto doneTimeStamp = chunk->ChunkHeader().mDoneTimeStamp;
const auto bufferBytes = chunk->BufferBytes();
cm.ReleaseChunk(std::move(chunk));
MOZ_RELEASE_ASSERT(updateCount == 1,
"ReleaseChunk() should have triggered an update");
MOZ_RELEASE_ASSERT(!update.IsFinal());
MOZ_RELEASE_ASSERT(!update.IsNotUpdate());
MOZ_RELEASE_ASSERT(update.UnreleasedBytes() ==
previousUnreleasedBytes - bufferBytes);
previousUnreleasedBytes = update.UnreleasedBytes();
MOZ_RELEASE_ASSERT(update.ReleasedBytes() ==
previousReleasedBytes + bufferBytes);
previousReleasedBytes = update.ReleasedBytes();
MOZ_RELEASE_ASSERT(previousOldestDoneTimeStamp.IsNull() ||
update.OldestDoneTimeStamp() >=
previousOldestDoneTimeStamp);
previousOldestDoneTimeStamp = update.OldestDoneTimeStamp();
MOZ_RELEASE_ASSERT(update.OldestDoneTimeStamp() <= doneTimeStamp);
MOZ_RELEASE_ASSERT(update.NewlyReleasedChunksRef().size() == 1);
MOZ_RELEASE_ASSERT(update.NewlyReleasedChunksRef()[0].mDoneTimeStamp ==
doneTimeStamp);
MOZ_RELEASE_ASSERT(update.NewlyReleasedChunksRef()[0].mBufferBytes ==
bufferBytes);
updateCount = 0;
update.Clear();
// And cycle to the new chunk.
chunk = std::move(newChunk);
if (reinterpret_cast<uintptr_t>(chunk.get()) == chunk1Address) {
++chunk1ReuseCount;
}
}
// Enough testing! Clean-up.
Unused << chunk->ReserveInitialBlockAsTail(0);
chunk->MarkDone();
cm.ForgetUnreleasedChunks();
MOZ_RELEASE_ASSERT(
updateCount == 1,
"ForgetUnreleasedChunks() should have triggered an update");
MOZ_RELEASE_ASSERT(!update.IsFinal());
MOZ_RELEASE_ASSERT(!update.IsNotUpdate());
MOZ_RELEASE_ASSERT(update.UnreleasedBytes() == 0);
MOZ_RELEASE_ASSERT(update.ReleasedBytes() == previousReleasedBytes);
MOZ_RELEASE_ASSERT(update.NewlyReleasedChunksRef().empty() == 1);
updateCount = 0;
update.Clear();
ccm.SetUpdateCallback({});
MOZ_RELEASE_ASSERT(updateCount == 1,
"SetUpdateCallback({}) should have triggered an update");
MOZ_RELEASE_ASSERT(update.IsFinal());
# ifdef DEBUG
cm.DeregisteredFrom(chunkManagerRegisterer);
# endif // DEBUG
printf("TestControlledChunkManagerWithLocalLimit done\n");
}
# define VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED( \
aProfileChunkedBuffer, aStart, aEnd, aPushed, aCleared, aFailed) \
{ \
ProfileChunkedBuffer::State state = (aProfileChunkedBuffer).GetState(); \
MOZ_RELEASE_ASSERT(state.mRangeStart == (aStart)); \
MOZ_RELEASE_ASSERT(state.mRangeEnd == (aEnd)); \
MOZ_RELEASE_ASSERT(state.mPushedBlockCount == (aPushed)); \
MOZ_RELEASE_ASSERT(state.mClearedBlockCount == (aCleared)); \
MOZ_RELEASE_ASSERT(state.mFailedPutBytes == (aFailed)); \
}
static void TestChunkedBuffer() {
printf("TestChunkedBuffer...\n");
ProfileBufferBlockIndex blockIndex;
MOZ_RELEASE_ASSERT(!blockIndex);
MOZ_RELEASE_ASSERT(blockIndex == nullptr);
// Create an out-of-session ProfileChunkedBuffer.
ProfileChunkedBuffer cb(ProfileChunkedBuffer::ThreadSafety::WithMutex);
MOZ_RELEASE_ASSERT(cb.BufferLength().isNothing());
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
int result = 0;
result = cb.ReserveAndPut(
[]() {
MOZ_RELEASE_ASSERT(false);
return 1;
},
[](Maybe<ProfileBufferEntryWriter>& aEW) { return aEW ? 2 : 3; });
MOZ_RELEASE_ASSERT(result == 3);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
result = 0;
result = cb.Put(
1, [](Maybe<ProfileBufferEntryWriter>& aEW) { return aEW ? 1 : 2; });
MOZ_RELEASE_ASSERT(result == 2);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
blockIndex = cb.PutFrom(&result, 1);
MOZ_RELEASE_ASSERT(!blockIndex);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
blockIndex = cb.PutObjects(123, result, "hello");
MOZ_RELEASE_ASSERT(!blockIndex);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
blockIndex = cb.PutObject(123);
MOZ_RELEASE_ASSERT(!blockIndex);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
auto chunks = cb.GetAllChunks();
static_assert(std::is_same_v<decltype(chunks), UniquePtr<ProfileBufferChunk>>,
"ProfileChunkedBuffer::GetAllChunks() should return a "
"UniquePtr<ProfileBufferChunk>");
MOZ_RELEASE_ASSERT(!chunks, "Expected no chunks when out-of-session");
bool ran = false;
result = 0;
result = cb.Read([&](ProfileChunkedBuffer::Reader* aReader) {
ran = true;
MOZ_RELEASE_ASSERT(!aReader);
return 3;
});
MOZ_RELEASE_ASSERT(ran);
MOZ_RELEASE_ASSERT(result == 3);
cb.ReadEach([](ProfileBufferEntryReader&) { MOZ_RELEASE_ASSERT(false); });
result = 0;
result = cb.ReadAt(nullptr, [](Maybe<ProfileBufferEntryReader>&& er) {
MOZ_RELEASE_ASSERT(er.isNothing());
return 4;
});
MOZ_RELEASE_ASSERT(result == 4);
// Use ProfileBufferChunkManagerWithLocalLimit, which will give away
// ProfileBufferChunks that can contain 128 bytes, using up to 1KB of memory
// (including usable 128 bytes and headers).
constexpr size_t bufferMaxSize = 1024;
constexpr ProfileChunkedBuffer::Length chunkMinSize = 128;
ProfileBufferChunkManagerWithLocalLimit cm(bufferMaxSize, chunkMinSize);
cb.SetChunkManager(cm);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
// Let the chunk manager fulfill the initial request for an extra chunk.
cm.FulfillChunkRequests();
MOZ_RELEASE_ASSERT(cm.MaxTotalSize() == bufferMaxSize);
MOZ_RELEASE_ASSERT(cb.BufferLength().isSome());
MOZ_RELEASE_ASSERT(*cb.BufferLength() == bufferMaxSize);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1, 1, 0, 0, 0);
// Write an int with the main `ReserveAndPut` function.
const int test = 123;
ran = false;
blockIndex = nullptr;
bool success = cb.ReserveAndPut(
[]() { return sizeof(test); },
[&](Maybe<ProfileBufferEntryWriter>& aEW) {
ran = true;
if (!aEW) {
return false;
}
blockIndex = aEW->CurrentBlockIndex();
MOZ_RELEASE_ASSERT(aEW->RemainingBytes() == sizeof(test));
aEW->WriteObject(test);
MOZ_RELEASE_ASSERT(aEW->RemainingBytes() == 0);
return true;
});
MOZ_RELEASE_ASSERT(ran);
MOZ_RELEASE_ASSERT(success);
MOZ_RELEASE_ASSERT(blockIndex.ConvertToProfileBufferIndex() == 1);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cb, 1, 1 + ULEB128Size(sizeof(test)) + sizeof(test), 1, 0, 0);
ran = false;
result = 0;
result = cb.Read([&](ProfileChunkedBuffer::Reader* aReader) {
ran = true;
MOZ_RELEASE_ASSERT(!!aReader);
// begin() and end() should be at the range edges (verified above).
MOZ_RELEASE_ASSERT(
aReader->begin().CurrentBlockIndex().ConvertToProfileBufferIndex() ==
1);
MOZ_RELEASE_ASSERT(
aReader->end().CurrentBlockIndex().ConvertToProfileBufferIndex() == 0);
// Null ProfileBufferBlockIndex clamped to the beginning.
MOZ_RELEASE_ASSERT(aReader->At(nullptr) == aReader->begin());
MOZ_RELEASE_ASSERT(aReader->At(blockIndex) == aReader->begin());
// At(begin) same as begin().
MOZ_RELEASE_ASSERT(aReader->At(aReader->begin().CurrentBlockIndex()) ==
aReader->begin());
// At(past block) same as end().
MOZ_RELEASE_ASSERT(
aReader->At(ProfileBufferBlockIndex::CreateFromProfileBufferIndex(
1 + 1 + sizeof(test))) == aReader->end());
size_t read = 0;
aReader->ForEach([&](ProfileBufferEntryReader& er) {
++read;
MOZ_RELEASE_ASSERT(er.RemainingBytes() == sizeof(test));
const auto value = er.ReadObject<decltype(test)>();
MOZ_RELEASE_ASSERT(value == test);
MOZ_RELEASE_ASSERT(er.RemainingBytes() == 0);
});
MOZ_RELEASE_ASSERT(read == 1);
read = 0;
for (auto er : *aReader) {
static_assert(std::is_same_v<decltype(er), ProfileBufferEntryReader>,
"ProfileChunkedBuffer::Reader range-for should produce "
"ProfileBufferEntryReader objects");
++read;
MOZ_RELEASE_ASSERT(er.RemainingBytes() == sizeof(test));
const auto value = er.ReadObject<decltype(test)>();
MOZ_RELEASE_ASSERT(value == test);
MOZ_RELEASE_ASSERT(er.RemainingBytes() == 0);
};
MOZ_RELEASE_ASSERT(read == 1);
return 5;
});
MOZ_RELEASE_ASSERT(ran);
MOZ_RELEASE_ASSERT(result == 5);
// Read the int directly from the ProfileChunkedBuffer, without block index.
size_t read = 0;
cb.ReadEach([&](ProfileBufferEntryReader& er) {
++read;
MOZ_RELEASE_ASSERT(er.RemainingBytes() == sizeof(test));
const auto value = er.ReadObject<decltype(test)>();
MOZ_RELEASE_ASSERT(value == test);
MOZ_RELEASE_ASSERT(er.RemainingBytes() == 0);
});
MOZ_RELEASE_ASSERT(read == 1);
// Read the int directly from the ProfileChunkedBuffer, with block index.
read = 0;
blockIndex = nullptr;
cb.ReadEach(
[&](ProfileBufferEntryReader& er, ProfileBufferBlockIndex aBlockIndex) {
++read;
MOZ_RELEASE_ASSERT(!!aBlockIndex);
MOZ_RELEASE_ASSERT(!blockIndex);
blockIndex = aBlockIndex;
MOZ_RELEASE_ASSERT(er.RemainingBytes() == sizeof(test));
const auto value = er.ReadObject<decltype(test)>();
MOZ_RELEASE_ASSERT(value == test);
MOZ_RELEASE_ASSERT(er.RemainingBytes() == 0);
});
MOZ_RELEASE_ASSERT(read == 1);
MOZ_RELEASE_ASSERT(!!blockIndex);
MOZ_RELEASE_ASSERT(blockIndex != nullptr);
// Read the int from its block index.
read = 0;
result = 0;
result = cb.ReadAt(blockIndex, [&](Maybe<ProfileBufferEntryReader>&& er) {
++read;
MOZ_RELEASE_ASSERT(er.isSome());
MOZ_RELEASE_ASSERT(er->CurrentBlockIndex() == blockIndex);
MOZ_RELEASE_ASSERT(!er->NextBlockIndex());
MOZ_RELEASE_ASSERT(er->RemainingBytes() == sizeof(test));
const auto value = er->ReadObject<decltype(test)>();
MOZ_RELEASE_ASSERT(value == test);
MOZ_RELEASE_ASSERT(er->RemainingBytes() == 0);
return 6;
});
MOZ_RELEASE_ASSERT(result == 6);
MOZ_RELEASE_ASSERT(read == 1);
// No changes after reads.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cb, 1, 1 + ULEB128Size(sizeof(test)) + sizeof(test), 1, 0, 0);
// Steal the underlying ProfileBufferChunks from the ProfileChunkedBuffer.
chunks = cb.GetAllChunks();
MOZ_RELEASE_ASSERT(!!chunks, "Expected at least one chunk");
MOZ_RELEASE_ASSERT(!!chunks->GetNext(), "Expected two chunks");
MOZ_RELEASE_ASSERT(!chunks->GetNext()->GetNext(), "Expected only two chunks");
const ProfileChunkedBuffer::Length chunkActualSize = chunks->BufferBytes();
MOZ_RELEASE_ASSERT(chunkActualSize >= chunkMinSize);
MOZ_RELEASE_ASSERT(chunks->RangeStart() == 1);
MOZ_RELEASE_ASSERT(chunks->OffsetFirstBlock() == 0);
MOZ_RELEASE_ASSERT(chunks->OffsetPastLastBlock() == 1 + sizeof(test));
// GetAllChunks() should have advanced the index one full chunk forward.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1 + chunkActualSize,
1 + chunkActualSize, 1, 0, 0);
// Nothing more to read from the now-empty ProfileChunkedBuffer.
cb.ReadEach([](ProfileBufferEntryReader&) { MOZ_RELEASE_ASSERT(false); });
cb.ReadEach([](ProfileBufferEntryReader&, ProfileBufferBlockIndex) {
MOZ_RELEASE_ASSERT(false);
});
result = 0;
result = cb.ReadAt(nullptr, [](Maybe<ProfileBufferEntryReader>&& er) {
MOZ_RELEASE_ASSERT(er.isNothing());
return 7;
});
MOZ_RELEASE_ASSERT(result == 7);
// Read the int from the stolen chunks.
read = 0;
ProfileChunkedBuffer::ReadEach(
chunks.get(), nullptr,
[&](ProfileBufferEntryReader& er, ProfileBufferBlockIndex aBlockIndex) {
++read;
MOZ_RELEASE_ASSERT(aBlockIndex == blockIndex);
MOZ_RELEASE_ASSERT(er.RemainingBytes() == sizeof(test));
const auto value = er.ReadObject<decltype(test)>();
MOZ_RELEASE_ASSERT(value == test);
MOZ_RELEASE_ASSERT(er.RemainingBytes() == 0);
});
MOZ_RELEASE_ASSERT(read == 1);
// No changes after reads.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, 1 + chunkActualSize,
1 + chunkActualSize, 1, 0, 0);
// Write lots of numbers (by memcpy), which should trigger Chunk destructions.
ProfileBufferBlockIndex firstBlockIndex;
MOZ_RELEASE_ASSERT(!firstBlockIndex);
ProfileBufferBlockIndex lastBlockIndex;
MOZ_RELEASE_ASSERT(!lastBlockIndex);
const size_t lots = 2 * bufferMaxSize / (1 + sizeof(int));
for (size_t i = 1; i < lots; ++i) {
ProfileBufferBlockIndex blockIndex = cb.PutFrom(&i, sizeof(i));
MOZ_RELEASE_ASSERT(!!blockIndex);
MOZ_RELEASE_ASSERT(blockIndex > firstBlockIndex);
if (!firstBlockIndex) {
firstBlockIndex = blockIndex;
}
MOZ_RELEASE_ASSERT(blockIndex > lastBlockIndex);
lastBlockIndex = blockIndex;
}
ProfileChunkedBuffer::State stateAfterPuts = cb.GetState();
ProfileBufferIndex startAfterPuts = stateAfterPuts.mRangeStart;
MOZ_RELEASE_ASSERT(startAfterPuts > 1 + chunkActualSize);
ProfileBufferIndex endAfterPuts = stateAfterPuts.mRangeEnd;
MOZ_RELEASE_ASSERT(endAfterPuts > startAfterPuts);
uint64_t pushedAfterPuts = stateAfterPuts.mPushedBlockCount;
MOZ_RELEASE_ASSERT(pushedAfterPuts > 0);
uint64_t clearedAfterPuts = stateAfterPuts.mClearedBlockCount;
MOZ_RELEASE_ASSERT(clearedAfterPuts > 0);
MOZ_RELEASE_ASSERT(stateAfterPuts.mFailedPutBytes == 0);
// Read extant numbers, which should at least follow each other.
read = 0;
size_t i = 0;
cb.ReadEach(
[&](ProfileBufferEntryReader& er, ProfileBufferBlockIndex aBlockIndex) {
++read;
MOZ_RELEASE_ASSERT(!!aBlockIndex);
MOZ_RELEASE_ASSERT(aBlockIndex > firstBlockIndex);
MOZ_RELEASE_ASSERT(aBlockIndex <= lastBlockIndex);
MOZ_RELEASE_ASSERT(er.RemainingBytes() == sizeof(size_t));
const auto value = er.ReadObject<size_t>();
if (i == 0) {
i = value;
} else {
MOZ_RELEASE_ASSERT(value == ++i);
}
MOZ_RELEASE_ASSERT(er.RemainingBytes() == 0);
});
MOZ_RELEASE_ASSERT(read != 0);
MOZ_RELEASE_ASSERT(read < lots);
// Read first extant number.
read = 0;
i = 0;
blockIndex = nullptr;
success =
cb.ReadAt(firstBlockIndex, [&](Maybe<ProfileBufferEntryReader>&& er) {
MOZ_ASSERT(er.isSome());
++read;
MOZ_RELEASE_ASSERT(er->CurrentBlockIndex() > firstBlockIndex);
MOZ_RELEASE_ASSERT(!!er->NextBlockIndex());
MOZ_RELEASE_ASSERT(er->NextBlockIndex() > firstBlockIndex);
MOZ_RELEASE_ASSERT(er->NextBlockIndex() < lastBlockIndex);
blockIndex = er->NextBlockIndex();
MOZ_RELEASE_ASSERT(er->RemainingBytes() == sizeof(size_t));
const auto value = er->ReadObject<size_t>();
MOZ_RELEASE_ASSERT(i == 0);
i = value;
MOZ_RELEASE_ASSERT(er->RemainingBytes() == 0);
return 7;
});
MOZ_RELEASE_ASSERT(success);
MOZ_RELEASE_ASSERT(read == 1);
// Read other extant numbers one by one.
do {
bool success =
cb.ReadAt(blockIndex, [&](Maybe<ProfileBufferEntryReader>&& er) {
MOZ_ASSERT(er.isSome());
++read;
MOZ_RELEASE_ASSERT(er->CurrentBlockIndex() == blockIndex);
MOZ_RELEASE_ASSERT(!er->NextBlockIndex() ||
er->NextBlockIndex() > blockIndex);
MOZ_RELEASE_ASSERT(!er->NextBlockIndex() ||
er->NextBlockIndex() > firstBlockIndex);
MOZ_RELEASE_ASSERT(!er->NextBlockIndex() ||
er->NextBlockIndex() <= lastBlockIndex);
MOZ_RELEASE_ASSERT(er->NextBlockIndex()
? blockIndex < lastBlockIndex
: blockIndex == lastBlockIndex,
"er->NextBlockIndex() should only be null when "
"blockIndex is at the last block");
blockIndex = er->NextBlockIndex();
MOZ_RELEASE_ASSERT(er->RemainingBytes() == sizeof(size_t));
const auto value = er->ReadObject<size_t>();
MOZ_RELEASE_ASSERT(value == ++i);
MOZ_RELEASE_ASSERT(er->RemainingBytes() == 0);
return true;
});
MOZ_RELEASE_ASSERT(success);
} while (blockIndex);
MOZ_RELEASE_ASSERT(read > 1);
// No changes after reads.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cb, startAfterPuts, endAfterPuts, pushedAfterPuts, clearedAfterPuts, 0);
# ifdef DEBUG
// cb.Dump();
# endif
cb.Clear();
# ifdef DEBUG
// cb.Dump();
# endif
ProfileChunkedBuffer::State stateAfterClear = cb.GetState();
ProfileBufferIndex startAfterClear = stateAfterClear.mRangeStart;
MOZ_RELEASE_ASSERT(startAfterClear > startAfterPuts);
ProfileBufferIndex endAfterClear = stateAfterClear.mRangeEnd;
MOZ_RELEASE_ASSERT(endAfterClear == startAfterClear);
MOZ_RELEASE_ASSERT(stateAfterClear.mPushedBlockCount == 0);
MOZ_RELEASE_ASSERT(stateAfterClear.mClearedBlockCount == 0);
MOZ_RELEASE_ASSERT(stateAfterClear.mFailedPutBytes == 0);
// Start writer threads.
constexpr int ThreadCount = 32;
std::thread threads[ThreadCount];
for (int threadNo = 0; threadNo < ThreadCount; ++threadNo) {
threads[threadNo] = std::thread(
[&](int aThreadNo) {
::SleepMilli(1);
constexpr int pushCount = 1024;
for (int push = 0; push < pushCount; ++push) {
// Reserve as many bytes as the thread number (but at least enough
// to store an int), and write an increasing int.
const bool success =
cb.Put(std::max(aThreadNo, int(sizeof(push))),
[&](Maybe<ProfileBufferEntryWriter>& aEW) {
if (!aEW) {
return false;
}
aEW->WriteObject(aThreadNo * 1000000 + push);
// Advance writer to the end.
for (size_t r = aEW->RemainingBytes(); r != 0; --r) {
aEW->WriteObject<char>('_');
}
return true;
});
MOZ_RELEASE_ASSERT(success);
}
},
threadNo);
}
// Wait for all writer threads to die.
for (auto&& thread : threads) {
thread.join();
}
# ifdef DEBUG
// cb.Dump();
# endif
ProfileChunkedBuffer::State stateAfterMTPuts = cb.GetState();
ProfileBufferIndex startAfterMTPuts = stateAfterMTPuts.mRangeStart;
MOZ_RELEASE_ASSERT(startAfterMTPuts > startAfterClear);
ProfileBufferIndex endAfterMTPuts = stateAfterMTPuts.mRangeEnd;
MOZ_RELEASE_ASSERT(endAfterMTPuts > startAfterMTPuts);
MOZ_RELEASE_ASSERT(stateAfterMTPuts.mPushedBlockCount > 0);
MOZ_RELEASE_ASSERT(stateAfterMTPuts.mClearedBlockCount > 0);
MOZ_RELEASE_ASSERT(stateAfterMTPuts.mFailedPutBytes == 0);
// Reset to out-of-session.
cb.ResetChunkManager();
ProfileChunkedBuffer::State stateAfterReset = cb.GetState();
ProfileBufferIndex startAfterReset = stateAfterReset.mRangeStart;
MOZ_RELEASE_ASSERT(startAfterReset == endAfterMTPuts);
ProfileBufferIndex endAfterReset = stateAfterReset.mRangeEnd;
MOZ_RELEASE_ASSERT(endAfterReset == startAfterReset);
MOZ_RELEASE_ASSERT(stateAfterReset.mPushedBlockCount == 0);
MOZ_RELEASE_ASSERT(stateAfterReset.mClearedBlockCount == 0);
MOZ_RELEASE_ASSERT(stateAfterReset.mFailedPutBytes == 0);
success = cb.ReserveAndPut(
[]() {
MOZ_RELEASE_ASSERT(false);
return 1;
},
[](Maybe<ProfileBufferEntryWriter>& aEW) { return !!aEW; });
MOZ_RELEASE_ASSERT(!success);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
success =
cb.Put(1, [](Maybe<ProfileBufferEntryWriter>& aEW) { return !!aEW; });
MOZ_RELEASE_ASSERT(!success);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
blockIndex = cb.PutFrom(&success, 1);
MOZ_RELEASE_ASSERT(!blockIndex);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
blockIndex = cb.PutObjects(123, success, "hello");
MOZ_RELEASE_ASSERT(!blockIndex);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
blockIndex = cb.PutObject(123);
MOZ_RELEASE_ASSERT(!blockIndex);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
chunks = cb.GetAllChunks();
MOZ_RELEASE_ASSERT(!chunks, "Expected no chunks when out-of-session");
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
cb.ReadEach([](ProfileBufferEntryReader&) { MOZ_RELEASE_ASSERT(false); });
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
success = cb.ReadAt(nullptr, [](Maybe<ProfileBufferEntryReader>&& er) {
MOZ_RELEASE_ASSERT(er.isNothing());
return true;
});
MOZ_RELEASE_ASSERT(success);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cb, startAfterReset, endAfterReset,
0, 0, 0);
printf("TestChunkedBuffer done\n");
}
static void TestChunkedBufferSingle() {
printf("TestChunkedBufferSingle...\n");
constexpr ProfileChunkedBuffer::Length chunkMinSize = 128;
// Create a ProfileChunkedBuffer that will own&use a
// ProfileBufferChunkManagerSingle, which will give away one
// ProfileBufferChunk that can contain 128 bytes.
ProfileChunkedBuffer cbSingle(
ProfileChunkedBuffer::ThreadSafety::WithoutMutex,
MakeUnique<ProfileBufferChunkManagerSingle>(chunkMinSize));
MOZ_RELEASE_ASSERT(cbSingle.BufferLength().isSome());
const ProfileChunkedBuffer::Length bufferBytes = *cbSingle.BufferLength();
MOZ_RELEASE_ASSERT(bufferBytes >= chunkMinSize);
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cbSingle, 1, 1, 0, 0, 0);
// We will write this many blocks to fill the chunk.
constexpr size_t testBlocks = 4;
const ProfileChunkedBuffer::Length blockBytes = bufferBytes / testBlocks;
MOZ_RELEASE_ASSERT(ULEB128Size(blockBytes) == 1,
"This test assumes block sizes are small enough so that "
"their ULEB128-encoded size is 1 byte");
const ProfileChunkedBuffer::Length entryBytes =
blockBytes - ULEB128Size(blockBytes);
// First buffer-filling test: Try to write a too-big entry at the end of the
// chunk.
// Write all but one block.
for (size_t i = 0; i < testBlocks - 1; ++i) {
cbSingle.Put(entryBytes, [&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
while (aEW->RemainingBytes() > 0) {
**aEW = '0' + i;
++(*aEW);
}
});
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbSingle, 1, 1 + blockBytes * (i + 1), i + 1, 0, 0);
}
// Write the last block so that it's too big (by 1 byte) to fit in the chunk,
// this should fail.
const ProfileChunkedBuffer::Length remainingBytesForLastBlock =
bufferBytes - blockBytes * (testBlocks - 1);
MOZ_RELEASE_ASSERT(ULEB128Size(remainingBytesForLastBlock) == 1,
"This test assumes block sizes are small enough so that "
"their ULEB128-encoded size is 1 byte");
const ProfileChunkedBuffer::Length entryToFitRemainingBytes =
remainingBytesForLastBlock - ULEB128Size(remainingBytesForLastBlock);
cbSingle.Put(entryToFitRemainingBytes + 1,
[&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isNothing());
});
// The buffer state should not have changed, apart from the failed bytes.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbSingle, 1, 1 + blockBytes * (testBlocks - 1), testBlocks - 1, 0,
remainingBytesForLastBlock + 1);
size_t read = 0;
cbSingle.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.RemainingBytes() == entryBytes);
while (aER.RemainingBytes() > 0) {
MOZ_RELEASE_ASSERT(*aER == '0' + read);
++aER;
}
++read;
});
MOZ_RELEASE_ASSERT(read == testBlocks - 1);
// ~Interlude~ Test AppendContent:
// Create another ProfileChunkedBuffer that will use a
// ProfileBufferChunkManagerWithLocalLimit, which will give away
// ProfileBufferChunks that can contain 128 bytes, using up to 1KB of memory
// (including usable 128 bytes and headers).
constexpr size_t bufferMaxSize = 1024;
ProfileBufferChunkManagerWithLocalLimit cmTarget(bufferMaxSize, chunkMinSize);
ProfileChunkedBuffer cbTarget(ProfileChunkedBuffer::ThreadSafety::WithMutex,
cmTarget);
// It should start empty.
cbTarget.ReadEach(
[](ProfileBufferEntryReader&) { MOZ_RELEASE_ASSERT(false); });
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cbTarget, 1, 1, 0, 0, 0);
// Copy the contents from cbSingle to cbTarget.
cbTarget.AppendContents(cbSingle);
// And verify that we now have the same contents in cbTarget.
read = 0;
cbTarget.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.RemainingBytes() == entryBytes);
while (aER.RemainingBytes() > 0) {
MOZ_RELEASE_ASSERT(*aER == '0' + read);
++aER;
}
++read;
});
MOZ_RELEASE_ASSERT(read == testBlocks - 1);
// The state should be the same as the source.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbTarget, 1, 1 + blockBytes * (testBlocks - 1), testBlocks - 1, 0, 0);
# ifdef DEBUG
// cbSingle.Dump();
// cbTarget.Dump();
# endif
// Because we failed to write a too-big chunk above, the chunk was marked
// full, so that entries should be consistently rejected from now on.
cbSingle.Put(1, [&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isNothing());
});
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbSingle, 1, 1 + blockBytes * ((testBlocks - 1)), testBlocks - 1, 0,
remainingBytesForLastBlock + 1 + ULEB128Size(1u) + 1);
// Clear the buffer before the next test.
cbSingle.Clear();
// Clear() should move the index to the next chunk range -- even if it's
// really reusing the same chunk.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cbSingle, 1 + bufferBytes,
1 + bufferBytes, 0, 0, 0);
cbSingle.ReadEach(
[&](ProfileBufferEntryReader& aER) { MOZ_RELEASE_ASSERT(false); });
// Second buffer-filling test: Try to write a final entry that just fits at
// the end of the chunk.
// Write all but one block.
for (size_t i = 0; i < testBlocks - 1; ++i) {
cbSingle.Put(entryBytes, [&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
while (aEW->RemainingBytes() > 0) {
**aEW = 'a' + i;
++(*aEW);
}
});
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbSingle, 1 + bufferBytes, 1 + bufferBytes + blockBytes * (i + 1),
i + 1, 0, 0);
}
read = 0;
cbSingle.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.RemainingBytes() == entryBytes);
while (aER.RemainingBytes() > 0) {
MOZ_RELEASE_ASSERT(*aER == 'a' + read);
++aER;
}
++read;
});
MOZ_RELEASE_ASSERT(read == testBlocks - 1);
// Write the last block so that it fits exactly in the chunk.
cbSingle.Put(entryToFitRemainingBytes,
[&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
while (aEW->RemainingBytes() > 0) {
**aEW = 'a' + (testBlocks - 1);
++(*aEW);
}
});
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbSingle, 1 + bufferBytes, 1 + bufferBytes + blockBytes * testBlocks,
testBlocks, 0, 0);
read = 0;
cbSingle.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(
aER.RemainingBytes() ==
((read < testBlocks) ? entryBytes : entryToFitRemainingBytes));
while (aER.RemainingBytes() > 0) {
MOZ_RELEASE_ASSERT(*aER == 'a' + read);
++aER;
}
++read;
});
MOZ_RELEASE_ASSERT(read == testBlocks);
// Because the single chunk has been filled, it shouldn't be possible to write
// more entries.
cbSingle.Put(1, [&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isNothing());
});
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbSingle, 1 + bufferBytes, 1 + bufferBytes + blockBytes * testBlocks,
testBlocks, 0, ULEB128Size(1u) + 1);
cbSingle.Clear();
// Clear() should move the index to the next chunk range -- even if it's
// really reusing the same chunk.
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(cbSingle, 1 + bufferBytes * 2,
1 + bufferBytes * 2, 0, 0, 0);
cbSingle.ReadEach(
[&](ProfileBufferEntryReader& aER) { MOZ_RELEASE_ASSERT(false); });
// Clear() recycles the released chunk, so we should be able to record new
// entries.
cbSingle.Put(entryBytes, [&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
while (aEW->RemainingBytes() > 0) {
**aEW = 'x';
++(*aEW);
}
});
VERIFY_PCB_START_END_PUSHED_CLEARED_FAILED(
cbSingle, 1 + bufferBytes * 2,
1 + bufferBytes * 2 + ULEB128Size(entryBytes) + entryBytes, 1, 0, 0);
read = 0;
cbSingle.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(read == 0);
MOZ_RELEASE_ASSERT(aER.RemainingBytes() == entryBytes);
while (aER.RemainingBytes() > 0) {
MOZ_RELEASE_ASSERT(*aER == 'x');
++aER;
}
++read;
});
MOZ_RELEASE_ASSERT(read == 1);
printf("TestChunkedBufferSingle done\n");
}
static void TestModuloBuffer(ModuloBuffer<>& mb, uint32_t MBSize) {
using MB = ModuloBuffer<>;
MOZ_RELEASE_ASSERT(mb.BufferLength().Value() == MBSize);
// Iterator comparisons.
MOZ_RELEASE_ASSERT(mb.ReaderAt(2) == mb.ReaderAt(2));
MOZ_RELEASE_ASSERT(mb.ReaderAt(2) != mb.ReaderAt(3));
MOZ_RELEASE_ASSERT(mb.ReaderAt(2) < mb.ReaderAt(3));
MOZ_RELEASE_ASSERT(mb.ReaderAt(2) <= mb.ReaderAt(2));
MOZ_RELEASE_ASSERT(mb.ReaderAt(2) <= mb.ReaderAt(3));
MOZ_RELEASE_ASSERT(mb.ReaderAt(3) > mb.ReaderAt(2));
MOZ_RELEASE_ASSERT(mb.ReaderAt(2) >= mb.ReaderAt(2));
MOZ_RELEASE_ASSERT(mb.ReaderAt(3) >= mb.ReaderAt(2));
// Iterators indices don't wrap around (even though they may be pointing at
// the same location).
MOZ_RELEASE_ASSERT(mb.ReaderAt(2) != mb.ReaderAt(MBSize + 2));
MOZ_RELEASE_ASSERT(mb.ReaderAt(MBSize + 2) != mb.ReaderAt(2));
// Dereference.
static_assert(std::is_same<decltype(*mb.ReaderAt(0)), const MB::Byte&>::value,
"Dereferencing from a reader should return const Byte*");
static_assert(std::is_same<decltype(*mb.WriterAt(0)), MB::Byte&>::value,
"Dereferencing from a writer should return Byte*");
// Contiguous between 0 and MBSize-1.
MOZ_RELEASE_ASSERT(&*mb.ReaderAt(MBSize - 1) ==
&*mb.ReaderAt(0) + (MBSize - 1));
// Wraps around.
MOZ_RELEASE_ASSERT(&*mb.ReaderAt(MBSize) == &*mb.ReaderAt(0));
MOZ_RELEASE_ASSERT(&*mb.ReaderAt(MBSize + MBSize - 1) ==
&*mb.ReaderAt(MBSize - 1));
MOZ_RELEASE_ASSERT(&*mb.ReaderAt(MBSize + MBSize) == &*mb.ReaderAt(0));
// Power of 2 modulo wrapping.
MOZ_RELEASE_ASSERT(&*mb.ReaderAt(uint32_t(-1)) == &*mb.ReaderAt(MBSize - 1));
MOZ_RELEASE_ASSERT(&*mb.ReaderAt(static_cast<MB::Index>(-1)) ==
&*mb.ReaderAt(MBSize - 1));
// Arithmetic.
MB::Reader arit = mb.ReaderAt(0);
MOZ_RELEASE_ASSERT(++arit == mb.ReaderAt(1));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(1));
MOZ_RELEASE_ASSERT(--arit == mb.ReaderAt(0));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(0));
MOZ_RELEASE_ASSERT(arit++ == mb.ReaderAt(0));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(1));
MOZ_RELEASE_ASSERT(arit-- == mb.ReaderAt(1));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(0));
MOZ_RELEASE_ASSERT(arit + 3 == mb.ReaderAt(3));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(0));
MOZ_RELEASE_ASSERT(4 + arit == mb.ReaderAt(4));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(0));
// (Can't have assignments inside asserts, hence the split.)
const bool checkPlusEq = ((arit += 3) == mb.ReaderAt(3));
MOZ_RELEASE_ASSERT(checkPlusEq);
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(3));
MOZ_RELEASE_ASSERT((arit - 2) == mb.ReaderAt(1));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(3));
const bool checkMinusEq = ((arit -= 2) == mb.ReaderAt(1));
MOZ_RELEASE_ASSERT(checkMinusEq);
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(1));
// Random access.
MOZ_RELEASE_ASSERT(&arit[3] == &*(arit + 3));
MOZ_RELEASE_ASSERT(arit == mb.ReaderAt(1));
// Iterator difference.
MOZ_RELEASE_ASSERT(mb.ReaderAt(3) - mb.ReaderAt(1) == 2);
MOZ_RELEASE_ASSERT(mb.ReaderAt(1) - mb.ReaderAt(3) == MB::Index(-2));
// Only testing Writer, as Reader is just a subset with no code differences.
MB::Writer it = mb.WriterAt(0);
MOZ_RELEASE_ASSERT(it.CurrentIndex() == 0);
// Write two characters at the start.
it.WriteObject('x');
it.WriteObject('y');
// Backtrack to read them.
it -= 2;
// PeekObject should read without moving.
MOZ_RELEASE_ASSERT(it.PeekObject<char>() == 'x');
MOZ_RELEASE_ASSERT(it.CurrentIndex() == 0);
// ReadObject should read and move past the character.
MOZ_RELEASE_ASSERT(it.ReadObject<char>() == 'x');
MOZ_RELEASE_ASSERT(it.CurrentIndex() == 1);
MOZ_RELEASE_ASSERT(it.PeekObject<char>() == 'y');
MOZ_RELEASE_ASSERT(it.CurrentIndex() == 1);
MOZ_RELEASE_ASSERT(it.ReadObject<char>() == 'y');
MOZ_RELEASE_ASSERT(it.CurrentIndex() == 2);
// Checking that a reader can be created from a writer.
MB::Reader it2(it);
MOZ_RELEASE_ASSERT(it2.CurrentIndex() == 2);
// Or assigned.
it2 = it;
MOZ_RELEASE_ASSERT(it2.CurrentIndex() == 2);
// Iterator traits.
static_assert(std::is_same<std::iterator_traits<MB::Reader>::difference_type,
MB::Index>::value,
"ModuloBuffer::Reader::difference_type should be Index");
static_assert(std::is_same<std::iterator_traits<MB::Reader>::value_type,
MB::Byte>::value,
"ModuloBuffer::Reader::value_type should be Byte");
static_assert(std::is_same<std::iterator_traits<MB::Reader>::pointer,
const MB::Byte*>::value,
"ModuloBuffer::Reader::pointer should be const Byte*");
static_assert(std::is_same<std::iterator_traits<MB::Reader>::reference,
const MB::Byte&>::value,
"ModuloBuffer::Reader::reference should be const Byte&");
static_assert(std::is_base_of<
std::input_iterator_tag,
std::iterator_traits<MB::Reader>::iterator_category>::value,
"ModuloBuffer::Reader::iterator_category should be derived "
"from input_iterator_tag");
static_assert(std::is_base_of<
std::forward_iterator_tag,
std::iterator_traits<MB::Reader>::iterator_category>::value,
"ModuloBuffer::Reader::iterator_category should be derived "
"from forward_iterator_tag");
static_assert(std::is_base_of<
std::bidirectional_iterator_tag,
std::iterator_traits<MB::Reader>::iterator_category>::value,
"ModuloBuffer::Reader::iterator_category should be derived "
"from bidirectional_iterator_tag");
static_assert(
std::is_same<std::iterator_traits<MB::Reader>::iterator_category,
std::random_access_iterator_tag>::value,
"ModuloBuffer::Reader::iterator_category should be "
"random_access_iterator_tag");
// Use as input iterator by std::string constructor (which is only considered
// with proper input iterators.)
std::string s(mb.ReaderAt(0), mb.ReaderAt(2));
MOZ_RELEASE_ASSERT(s == "xy");
// Write 4-byte number at index 2.
it.WriteObject(int32_t(123));
MOZ_RELEASE_ASSERT(it.CurrentIndex() == 6);
// And another, which should now wrap around (but index continues on.)
it.WriteObject(int32_t(456));
MOZ_RELEASE_ASSERT(it.CurrentIndex() == MBSize + 2);
// Even though index==MBSize+2, we can read the object we wrote at 2.
MOZ_RELEASE_ASSERT(it.ReadObject<int32_t>() == 123);
MOZ_RELEASE_ASSERT(it.CurrentIndex() == MBSize + 6);
// And similarly, index MBSize+6 points at the same location as index 6.
MOZ_RELEASE_ASSERT(it.ReadObject<int32_t>() == 456);
MOZ_RELEASE_ASSERT(it.CurrentIndex() == MBSize + MBSize + 2);
}
void TestModuloBuffer() {
printf("TestModuloBuffer...\n");
// Testing ModuloBuffer with default template arguments.
using MB = ModuloBuffer<>;
// Only 8-byte buffers, to easily test wrap-around.
constexpr uint32_t MBSize = 8;
// MB with self-allocated heap buffer.
MB mbByLength(MakePowerOfTwo32<MBSize>());
TestModuloBuffer(mbByLength, MBSize);
// MB taking ownership of a provided UniquePtr to a buffer.
auto uniqueBuffer = MakeUnique<uint8_t[]>(MBSize);
MB mbByUniquePtr(MakeUnique<uint8_t[]>(MBSize), MakePowerOfTwo32<MBSize>());
TestModuloBuffer(mbByUniquePtr, MBSize);
// MB using part of a buffer on the stack. The buffer is three times the
// required size: The middle third is where ModuloBuffer will work, the first
// and last thirds are only used to later verify that ModuloBuffer didn't go
// out of its bounds.
uint8_t buffer[MBSize * 3];
// Pre-fill the buffer with a known pattern, so we can later see what changed.
for (size_t i = 0; i < MBSize * 3; ++i) {
buffer[i] = uint8_t('A' + i);
}
MB mbByBuffer(&buffer[MBSize], MakePowerOfTwo32<MBSize>());
TestModuloBuffer(mbByBuffer, MBSize);
// Check that only the provided stack-based sub-buffer was modified.
uint32_t changed = 0;
for (size_t i = MBSize; i < MBSize * 2; ++i) {
changed += (buffer[i] == uint8_t('A' + i)) ? 0 : 1;
}
// Expect at least 75% changes.
MOZ_RELEASE_ASSERT(changed >= MBSize * 6 / 8);
// Everything around the sub-buffer should be unchanged.
for (size_t i = 0; i < MBSize; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
for (size_t i = MBSize * 2; i < MBSize * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
// Check that move-construction is allowed. This verifies that we do not
// crash from a double free, when `mbByBuffer` and `mbByStolenBuffer` are both
// destroyed at the end of this function.
MB mbByStolenBuffer = std::move(mbByBuffer);
TestModuloBuffer(mbByStolenBuffer, MBSize);
// Check that only the provided stack-based sub-buffer was modified.
changed = 0;
for (size_t i = MBSize; i < MBSize * 2; ++i) {
changed += (buffer[i] == uint8_t('A' + i)) ? 0 : 1;
}
// Expect at least 75% changes.
MOZ_RELEASE_ASSERT(changed >= MBSize * 6 / 8);
// Everything around the sub-buffer should be unchanged.
for (size_t i = 0; i < MBSize; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
for (size_t i = MBSize * 2; i < MBSize * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
// This test function does a `ReadInto` as directed, and checks that the
// result is the same as if the copy had been done manually byte-by-byte.
// `TestReadInto(3, 7, 2)` copies from index 3 to index 7, 2 bytes long.
// Return the output string (from `ReadInto`) for external checks.
auto TestReadInto = [](MB::Index aReadFrom, MB::Index aWriteTo,
MB::Length aBytes) {
constexpr uint32_t TRISize = 16;
// Prepare an input buffer, all different elements.
uint8_t input[TRISize + 1] = "ABCDEFGHIJKLMNOP";
const MB mbInput(input, MakePowerOfTwo32<TRISize>());
// Prepare an output buffer, different from input.
uint8_t output[TRISize + 1] = "abcdefghijklmnop";
MB mbOutput(output, MakePowerOfTwo32<TRISize>());
// Run ReadInto.
auto writer = mbOutput.WriterAt(aWriteTo);
mbInput.ReaderAt(aReadFrom).ReadInto(writer, aBytes);
// Do the same operation manually.
uint8_t outputCheck[TRISize + 1] = "abcdefghijklmnop";
MB mbOutputCheck(outputCheck, MakePowerOfTwo32<TRISize>());
auto readerCheck = mbInput.ReaderAt(aReadFrom);
auto writerCheck = mbOutputCheck.WriterAt(aWriteTo);
for (MB::Length i = 0; i < aBytes; ++i) {
*writerCheck++ = *readerCheck++;
}
// Compare the two outputs.
for (uint32_t i = 0; i < TRISize; ++i) {
# ifdef TEST_MODULOBUFFER_FAILURE_DEBUG
// Only used when debugging failures.
if (output[i] != outputCheck[i]) {
printf(
"*** from=%u to=%u bytes=%u i=%u\ninput: '%s'\noutput: "
"'%s'\ncheck: '%s'\n",
unsigned(aReadFrom), unsigned(aWriteTo), unsigned(aBytes),
unsigned(i), input, output, outputCheck);
}
# endif
MOZ_RELEASE_ASSERT(output[i] == outputCheck[i]);
}
# ifdef TEST_MODULOBUFFER_HELPER
// Only used when adding more tests.
printf("*** from=%u to=%u bytes=%u output: %s\n", unsigned(aReadFrom),
unsigned(aWriteTo), unsigned(aBytes), output);
# endif
return std::string(reinterpret_cast<const char*>(output));
};
// A few manual checks:
constexpr uint32_t TRISize = 16;
MOZ_RELEASE_ASSERT(TestReadInto(0, 0, 0) == "abcdefghijklmnop");
MOZ_RELEASE_ASSERT(TestReadInto(0, 0, TRISize) == "ABCDEFGHIJKLMNOP");
MOZ_RELEASE_ASSERT(TestReadInto(0, 5, TRISize) == "LMNOPABCDEFGHIJK");
MOZ_RELEASE_ASSERT(TestReadInto(5, 0, TRISize) == "FGHIJKLMNOPABCDE");
// Test everything! (16^3 = 4096, not too much.)
for (MB::Index r = 0; r < TRISize; ++r) {
for (MB::Index w = 0; w < TRISize; ++w) {
for (MB::Length len = 0; len < TRISize; ++len) {
TestReadInto(r, w, len);
}
}
}
printf("TestModuloBuffer done\n");
}
void TestBlocksRingBufferAPI() {
printf("TestBlocksRingBufferAPI...\n");
// Create a 16-byte buffer, enough to store up to 3 entries (1 byte size + 4
// bytes uint64_t).
constexpr uint32_t MBSize = 16;
uint8_t buffer[MBSize * 3];
for (size_t i = 0; i < MBSize * 3; ++i) {
buffer[i] = uint8_t('A' + i);
}
// Start a temporary block to constrain buffer lifetime.
{
BlocksRingBuffer rb(BlocksRingBuffer::ThreadSafety::WithMutex,
&buffer[MBSize], MakePowerOfTwo32<MBSize>());
# define VERIFY_START_END_PUSHED_CLEARED(aStart, aEnd, aPushed, aCleared) \
{ \
BlocksRingBuffer::State state = rb.GetState(); \
MOZ_RELEASE_ASSERT(state.mRangeStart.ConvertToProfileBufferIndex() == \
(aStart)); \
MOZ_RELEASE_ASSERT(state.mRangeEnd.ConvertToProfileBufferIndex() == \
(aEnd)); \
MOZ_RELEASE_ASSERT(state.mPushedBlockCount == (aPushed)); \
MOZ_RELEASE_ASSERT(state.mClearedBlockCount == (aCleared)); \
}
// All entries will contain one 32-bit number. The resulting blocks will
// have the following structure:
// - 1 byte for the LEB128 size of 4
// - 4 bytes for the number.
// E.g., if we have entries with `123` and `456`:
// .-- Index 0 reserved for empty ProfileBufferBlockIndex, nothing there.
// | .-- first readable block at index 1
// | |.-- first block at index 1
// | ||.-- 1 byte for the entry size, which is `4` (32 bits)
// | ||| .-- entry starts at index 2, contains 32-bit int
// | ||| | .-- entry and block finish *after* index 5 (so 6)
// | ||| | | .-- second block starts at index 6
// | ||| | | | etc.
// | ||| | | | .-- End readable blocks: 11
// v vvv v v V v
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// - S[4 | int(123) ] [4 | int(456) ]E
// Empty buffer to start with.
// Start&end indices still at 1 (0 is reserved for the default
// ProfileBufferBlockIndex{} that cannot point at a valid entry), nothing
// cleared.
VERIFY_START_END_PUSHED_CLEARED(1, 1, 0, 0);
// Default ProfileBufferBlockIndex.
ProfileBufferBlockIndex bi0;
if (bi0) {
MOZ_RELEASE_ASSERT(false,
"if (ProfileBufferBlockIndex{}) should fail test");
}
if (!bi0) {
} else {
MOZ_RELEASE_ASSERT(false,
"if (!ProfileBufferBlockIndex{}) should succeed test");
}
MOZ_RELEASE_ASSERT(!bi0);
MOZ_RELEASE_ASSERT(bi0 == bi0);
MOZ_RELEASE_ASSERT(bi0 <= bi0);
MOZ_RELEASE_ASSERT(bi0 >= bi0);
MOZ_RELEASE_ASSERT(!(bi0 != bi0));
MOZ_RELEASE_ASSERT(!(bi0 < bi0));
MOZ_RELEASE_ASSERT(!(bi0 > bi0));
// Default ProfileBufferBlockIndex can be used, but returns no valid entry.
rb.ReadAt(bi0, [](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isNothing());
});
// Push `1` directly.
MOZ_RELEASE_ASSERT(
rb.PutObject(uint32_t(1)).ConvertToProfileBufferIndex() == 1);
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// - S[4 | int(1) ]E
VERIFY_START_END_PUSHED_CLEARED(1, 6, 1, 0);
// Push `2` through ReserveAndPut, check output ProfileBufferBlockIndex.
auto bi2 = rb.ReserveAndPut([]() { return sizeof(uint32_t); },
[](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
aEW->WriteObject(uint32_t(2));
return aEW->CurrentBlockIndex();
});
static_assert(std::is_same<decltype(bi2), ProfileBufferBlockIndex>::value,
"All index-returning functions should return a "
"ProfileBufferBlockIndex");
MOZ_RELEASE_ASSERT(bi2.ConvertToProfileBufferIndex() == 6);
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// - S[4 | int(1) ] [4 | int(2) ]E
VERIFY_START_END_PUSHED_CLEARED(1, 11, 2, 0);
// Check single entry at bi2, store next block index.
auto i2Next =
rb.ReadAt(bi2, [bi2](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isSome());
MOZ_RELEASE_ASSERT(aMaybeReader->CurrentBlockIndex() == bi2);
MOZ_RELEASE_ASSERT(aMaybeReader->NextBlockIndex() == nullptr);
size_t entrySize = aMaybeReader->RemainingBytes();
MOZ_RELEASE_ASSERT(aMaybeReader->ReadObject<uint32_t>() == 2);
// The next block index is after this block, which is made of the
// entry size (coded as ULEB128) followed by the entry itself.
return bi2.ConvertToProfileBufferIndex() + ULEB128Size(entrySize) +
entrySize;
});
auto bi2Next = rb.GetState().mRangeEnd;
MOZ_RELEASE_ASSERT(bi2Next.ConvertToProfileBufferIndex() == i2Next);
// bi2Next is at the end, nothing to read.
rb.ReadAt(bi2Next, [](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isNothing());
});
// ProfileBufferBlockIndex tests.
if (bi2) {
} else {
MOZ_RELEASE_ASSERT(
false,
"if (non-default-ProfileBufferBlockIndex) should succeed test");
}
if (!bi2) {
MOZ_RELEASE_ASSERT(
false, "if (!non-default-ProfileBufferBlockIndex) should fail test");
}
MOZ_RELEASE_ASSERT(!!bi2);
MOZ_RELEASE_ASSERT(bi2 == bi2);
MOZ_RELEASE_ASSERT(bi2 <= bi2);
MOZ_RELEASE_ASSERT(bi2 >= bi2);
MOZ_RELEASE_ASSERT(!(bi2 != bi2));
MOZ_RELEASE_ASSERT(!(bi2 < bi2));
MOZ_RELEASE_ASSERT(!(bi2 > bi2));
MOZ_RELEASE_ASSERT(bi0 != bi2);
MOZ_RELEASE_ASSERT(bi0 < bi2);
MOZ_RELEASE_ASSERT(bi0 <= bi2);
MOZ_RELEASE_ASSERT(!(bi0 == bi2));
MOZ_RELEASE_ASSERT(!(bi0 > bi2));
MOZ_RELEASE_ASSERT(!(bi0 >= bi2));
MOZ_RELEASE_ASSERT(bi2 != bi0);
MOZ_RELEASE_ASSERT(bi2 > bi0);
MOZ_RELEASE_ASSERT(bi2 >= bi0);
MOZ_RELEASE_ASSERT(!(bi2 == bi0));
MOZ_RELEASE_ASSERT(!(bi2 < bi0));
MOZ_RELEASE_ASSERT(!(bi2 <= bi0));
MOZ_RELEASE_ASSERT(bi2 != bi2Next);
MOZ_RELEASE_ASSERT(bi2 < bi2Next);
MOZ_RELEASE_ASSERT(bi2 <= bi2Next);
MOZ_RELEASE_ASSERT(!(bi2 == bi2Next));
MOZ_RELEASE_ASSERT(!(bi2 > bi2Next));
MOZ_RELEASE_ASSERT(!(bi2 >= bi2Next));
MOZ_RELEASE_ASSERT(bi2Next != bi2);
MOZ_RELEASE_ASSERT(bi2Next > bi2);
MOZ_RELEASE_ASSERT(bi2Next >= bi2);
MOZ_RELEASE_ASSERT(!(bi2Next == bi2));
MOZ_RELEASE_ASSERT(!(bi2Next < bi2));
MOZ_RELEASE_ASSERT(!(bi2Next <= bi2));
// Push `3` through Put, check writer output
// is returned to the initial caller.
auto put3 =
rb.Put(sizeof(uint32_t), [&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
aEW->WriteObject(uint32_t(3));
MOZ_RELEASE_ASSERT(aEW->CurrentBlockIndex() == bi2Next);
return float(aEW->CurrentBlockIndex().ConvertToProfileBufferIndex());
});
static_assert(std::is_same<decltype(put3), float>::value,
"Expect float as returned by callback.");
MOZ_RELEASE_ASSERT(put3 == 11.0);
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (16)
// - S[4 | int(1) ] [4 | int(2) ] [4 | int(3) ]E
VERIFY_START_END_PUSHED_CLEARED(1, 16, 3, 0);
// Re-Read single entry at bi2, it should now have a next entry.
rb.ReadAt(bi2, [&](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isSome());
MOZ_RELEASE_ASSERT(aMaybeReader->CurrentBlockIndex() == bi2);
MOZ_RELEASE_ASSERT(aMaybeReader->ReadObject<uint32_t>() == 2);
MOZ_RELEASE_ASSERT(aMaybeReader->NextBlockIndex() == bi2Next);
});
// Check that we have `1` to `3`.
uint32_t count = 0;
rb.ReadEach([&](ProfileBufferEntryReader& aReader) {
MOZ_RELEASE_ASSERT(aReader.ReadObject<uint32_t>() == ++count);
});
MOZ_RELEASE_ASSERT(count == 3);
// Push `4`, store its ProfileBufferBlockIndex for later.
// This will wrap around, and clear the first entry.
ProfileBufferBlockIndex bi4 = rb.PutObject(uint32_t(4));
// Before:
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (16)
// - S[4 | int(1) ] [4 | int(2) ] [4 | int(3) ]E
// 1. First entry cleared:
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (16)
// - ? ? ? ? ? S[4 | int(2) ] [4 | int(3) ]E
// 2. New entry starts at 15 and wraps around: (shown on separate line)
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (16)
// - ? ? ? ? ? S[4 | int(2) ] [4 | int(3) ]
// 16 17 18 19 20 21 ...
// [4 | int(4) ]E
// (collapsed)
// 16 17 18 19 20 21 6 7 8 9 10 11 12 13 14 15 (16)
// [4 | int(4) ]E ? S[4 | int(2) ] [4 | int(3) ]
VERIFY_START_END_PUSHED_CLEARED(6, 21, 4, 1);
// Check that we have `2` to `4`.
count = 1;
rb.ReadEach([&](ProfileBufferEntryReader& aReader) {
MOZ_RELEASE_ASSERT(aReader.ReadObject<uint32_t>() == ++count);
});
MOZ_RELEASE_ASSERT(count == 4);
// Push 5 through Put, no returns.
// This will clear the second entry.
// Check that the EntryWriter can access bi4 but not bi2.
auto bi5 =
rb.Put(sizeof(uint32_t), [&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
aEW->WriteObject(uint32_t(5));
return aEW->CurrentBlockIndex();
});
auto bi6 = rb.GetState().mRangeEnd;
// 16 17 18 19 20 21 22 23 24 25 26 11 12 13 14 15 (16)
// [4 | int(4) ] [4 | int(5) ]E ? S[4 | int(3) ]
VERIFY_START_END_PUSHED_CLEARED(11, 26, 5, 2);
// Read single entry at bi2, should now gracefully fail.
rb.ReadAt(bi2, [](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isNothing());
});
// Read single entry at bi5.
rb.ReadAt(bi5, [](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isSome());
MOZ_RELEASE_ASSERT(aMaybeReader->ReadObject<uint32_t>() == 5);
});
rb.Read([&](BlocksRingBuffer::Reader* aReader) {
MOZ_RELEASE_ASSERT(!!aReader);
// begin() and end() should be at the range edges (verified above).
MOZ_RELEASE_ASSERT(
aReader->begin().CurrentBlockIndex().ConvertToProfileBufferIndex() ==
11);
MOZ_RELEASE_ASSERT(
aReader->end().CurrentBlockIndex().ConvertToProfileBufferIndex() ==
26);
// Null ProfileBufferBlockIndex clamped to the beginning.
MOZ_RELEASE_ASSERT(aReader->At(bi0) == aReader->begin());
// Cleared block index clamped to the beginning.
MOZ_RELEASE_ASSERT(aReader->At(bi2) == aReader->begin());
// At(begin) same as begin().
MOZ_RELEASE_ASSERT(aReader->At(aReader->begin().CurrentBlockIndex()) ==
aReader->begin());
// bi5 at expected position.
MOZ_RELEASE_ASSERT(
aReader->At(bi5).CurrentBlockIndex().ConvertToProfileBufferIndex() ==
21);
// bi6 at expected position at the end.
MOZ_RELEASE_ASSERT(aReader->At(bi6) == aReader->end());
// At(end) same as end().
MOZ_RELEASE_ASSERT(aReader->At(aReader->end().CurrentBlockIndex()) ==
aReader->end());
});
// Check that we have `3` to `5`.
count = 2;
rb.ReadEach([&](ProfileBufferEntryReader& aReader) {
MOZ_RELEASE_ASSERT(aReader.ReadObject<uint32_t>() == ++count);
});
MOZ_RELEASE_ASSERT(count == 5);
// Clear everything before `4`, this should clear `3`.
rb.ClearBefore(bi4);
// 16 17 18 19 20 21 22 23 24 25 26 11 12 13 14 15
// S[4 | int(4) ] [4 | int(5) ]E ? ? ? ? ? ?
VERIFY_START_END_PUSHED_CLEARED(16, 26, 5, 3);
// Check that we have `4` to `5`.
count = 3;
rb.ReadEach([&](ProfileBufferEntryReader& aReader) {
MOZ_RELEASE_ASSERT(aReader.ReadObject<uint32_t>() == ++count);
});
MOZ_RELEASE_ASSERT(count == 5);
// Clear everything before `4` again, nothing to clear.
rb.ClearBefore(bi4);
VERIFY_START_END_PUSHED_CLEARED(16, 26, 5, 3);
// Clear everything, this should clear `4` and `5`, and bring the start
// index where the end index currently is.
rb.ClearBefore(bi6);
// 16 17 18 19 20 21 22 23 24 25 26 11 12 13 14 15
// ? ? ? ? ? ? ? ? ? ? SE? ? ? ? ? ?
VERIFY_START_END_PUSHED_CLEARED(26, 26, 5, 5);
// Check that we have nothing to read.
rb.ReadEach([&](auto&&) { MOZ_RELEASE_ASSERT(false); });
// Read single entry at bi5, should now gracefully fail.
rb.ReadAt(bi5, [](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isNothing());
});
// Clear everything before now-cleared `4`, nothing to clear.
rb.ClearBefore(bi4);
VERIFY_START_END_PUSHED_CLEARED(26, 26, 5, 5);
// Push `6` directly.
MOZ_RELEASE_ASSERT(rb.PutObject(uint32_t(6)) == bi6);
// 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// ? ? ? ? ? ? ? ? ? ? S[4 | int(6) ]E ?
VERIFY_START_END_PUSHED_CLEARED(26, 31, 6, 5);
{
// Create a 2nd buffer and fill it with `7` and `8`.
uint8_t buffer2[MBSize];
BlocksRingBuffer rb2(BlocksRingBuffer::ThreadSafety::WithoutMutex,
buffer2, MakePowerOfTwo32<MBSize>());
rb2.PutObject(uint32_t(7));
rb2.PutObject(uint32_t(8));
// Main buffer shouldn't have changed.
VERIFY_START_END_PUSHED_CLEARED(26, 31, 6, 5);
// Append contents of rb2 to rb, this should end up being the same as
// pushing the two numbers.
rb.AppendContents(rb2);
// 32 33 34 35 36 37 38 39 40 41 26 27 28 29 30 31
// int(7) ] [4 | int(8) ]E ? S[4 | int(6) ] [4 |
VERIFY_START_END_PUSHED_CLEARED(26, 41, 8, 5);
// Append contents of rb2 to rb again, to verify that rb2 was not modified
// above. This should clear `6` and the first `7`.
rb.AppendContents(rb2);
// 48 49 50 51 36 37 38 39 40 41 42 43 44 45 46 47
// int(8) ]E ? S[4 | int(8) ] [4 | int(7) ] [4 |
VERIFY_START_END_PUSHED_CLEARED(36, 51, 10, 7);
// End of block where rb2 lives, to verify that it is not needed anymore
// for its copied values to survive in rb.
}
VERIFY_START_END_PUSHED_CLEARED(36, 51, 10, 7);
// bi6 should now have been cleared.
rb.ReadAt(bi6, [](Maybe<ProfileBufferEntryReader>&& aMaybeReader) {
MOZ_RELEASE_ASSERT(aMaybeReader.isNothing());
});
// Check that we have `8`, `7`, `8`.
count = 0;
uint32_t expected[3] = {8, 7, 8};
rb.ReadEach([&](ProfileBufferEntryReader& aReader) {
MOZ_RELEASE_ASSERT(count < 3);
MOZ_RELEASE_ASSERT(aReader.ReadObject<uint32_t>() == expected[count++]);
});
MOZ_RELEASE_ASSERT(count == 3);
// End of block where rb lives, BlocksRingBuffer destructor should call
// entry destructor for remaining entries.
}
// Check that only the provided stack-based sub-buffer was modified.
uint32_t changed = 0;
for (size_t i = MBSize; i < MBSize * 2; ++i) {
changed += (buffer[i] == uint8_t('A' + i)) ? 0 : 1;
}
// Expect at least 75% changes.
MOZ_RELEASE_ASSERT(changed >= MBSize * 6 / 8);
// Everything around the sub-buffer should be unchanged.
for (size_t i = 0; i < MBSize; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
for (size_t i = MBSize * 2; i < MBSize * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
printf("TestBlocksRingBufferAPI done\n");
}
void TestBlocksRingBufferUnderlyingBufferChanges() {
printf("TestBlocksRingBufferUnderlyingBufferChanges...\n");
// Out-of-session BlocksRingBuffer to start with.
BlocksRingBuffer rb(BlocksRingBuffer::ThreadSafety::WithMutex);
// Block index to read at. Initially "null", but may be changed below.
ProfileBufferBlockIndex bi;
// Test all rb APIs when rb is out-of-session and therefore doesn't have an
// underlying buffer.
auto testOutOfSession = [&]() {
MOZ_RELEASE_ASSERT(rb.BufferLength().isNothing());
BlocksRingBuffer::State state = rb.GetState();
// When out-of-session, range start and ends are the same, and there are no
// pushed&cleared blocks.
MOZ_RELEASE_ASSERT(state.mRangeStart == state.mRangeEnd);
MOZ_RELEASE_ASSERT(state.mPushedBlockCount == 0);
MOZ_RELEASE_ASSERT(state.mClearedBlockCount == 0);
// `Put()` functions run the callback with `Nothing`.
int32_t ran = 0;
rb.Put(1, [&](Maybe<ProfileBufferEntryWriter>& aMaybeEntryWriter) {
MOZ_RELEASE_ASSERT(aMaybeEntryWriter.isNothing());
++ran;
});
MOZ_RELEASE_ASSERT(ran == 1);
// `PutFrom` won't do anything, and returns the null
// ProfileBufferBlockIndex.
MOZ_RELEASE_ASSERT(rb.PutFrom(&ran, sizeof(ran)) ==
ProfileBufferBlockIndex{});
MOZ_RELEASE_ASSERT(rb.PutObject(ran) == ProfileBufferBlockIndex{});
// `Read()` functions run the callback with `Nothing`.
ran = 0;
rb.Read([&](BlocksRingBuffer::Reader* aReader) {
MOZ_RELEASE_ASSERT(!aReader);
++ran;
});
MOZ_RELEASE_ASSERT(ran == 1);
ran = 0;
rb.ReadAt(ProfileBufferBlockIndex{},
[&](Maybe<ProfileBufferEntryReader>&& aMaybeEntryReader) {
MOZ_RELEASE_ASSERT(aMaybeEntryReader.isNothing());
++ran;
});
MOZ_RELEASE_ASSERT(ran == 1);
ran = 0;
rb.ReadAt(bi, [&](Maybe<ProfileBufferEntryReader>&& aMaybeEntryReader) {
MOZ_RELEASE_ASSERT(aMaybeEntryReader.isNothing());
++ran;
});
MOZ_RELEASE_ASSERT(ran == 1);
// `ReadEach` shouldn't run the callback (nothing to read).
rb.ReadEach([](auto&&) { MOZ_RELEASE_ASSERT(false); });
};
// As `testOutOfSession()` attempts to modify the buffer, we run it twice to
// make sure one run doesn't influence the next one.
testOutOfSession();
testOutOfSession();
rb.ClearBefore(bi);
testOutOfSession();
testOutOfSession();
rb.Clear();
testOutOfSession();
testOutOfSession();
rb.Reset();
testOutOfSession();
testOutOfSession();
constexpr uint32_t MBSize = 32;
rb.Set(MakePowerOfTwo<BlocksRingBuffer::Length, MBSize>());
constexpr bool EMPTY = true;
constexpr bool NOT_EMPTY = false;
// Test all rb APIs when rb has an underlying buffer.
auto testInSession = [&](bool aExpectEmpty) {
MOZ_RELEASE_ASSERT(rb.BufferLength().isSome());
BlocksRingBuffer::State state = rb.GetState();
if (aExpectEmpty) {
MOZ_RELEASE_ASSERT(state.mRangeStart == state.mRangeEnd);
MOZ_RELEASE_ASSERT(state.mPushedBlockCount == 0);
MOZ_RELEASE_ASSERT(state.mClearedBlockCount == 0);
} else {
MOZ_RELEASE_ASSERT(state.mRangeStart < state.mRangeEnd);
MOZ_RELEASE_ASSERT(state.mPushedBlockCount > 0);
MOZ_RELEASE_ASSERT(state.mClearedBlockCount <= state.mPushedBlockCount);
}
int32_t ran = 0;
// The following three `Put...` will write three int32_t of value 1.
bi = rb.Put(sizeof(ran),
[&](Maybe<ProfileBufferEntryWriter>& aMaybeEntryWriter) {
MOZ_RELEASE_ASSERT(aMaybeEntryWriter.isSome());
++ran;
aMaybeEntryWriter->WriteObject(ran);
return aMaybeEntryWriter->CurrentBlockIndex();
});
MOZ_RELEASE_ASSERT(ran == 1);
MOZ_RELEASE_ASSERT(rb.PutFrom(&ran, sizeof(ran)) !=
ProfileBufferBlockIndex{});
MOZ_RELEASE_ASSERT(rb.PutObject(ran) != ProfileBufferBlockIndex{});
ran = 0;
rb.Read([&](BlocksRingBuffer::Reader* aReader) {
MOZ_RELEASE_ASSERT(!!aReader);
++ran;
});
MOZ_RELEASE_ASSERT(ran == 1);
ran = 0;
rb.ReadEach([&](ProfileBufferEntryReader& aEntryReader) {
MOZ_RELEASE_ASSERT(aEntryReader.RemainingBytes() == sizeof(ran));
MOZ_RELEASE_ASSERT(aEntryReader.ReadObject<decltype(ran)>() == 1);
++ran;
});
MOZ_RELEASE_ASSERT(ran >= 3);
ran = 0;
rb.ReadAt(ProfileBufferBlockIndex{},
[&](Maybe<ProfileBufferEntryReader>&& aMaybeEntryReader) {
MOZ_RELEASE_ASSERT(aMaybeEntryReader.isNothing());
++ran;
});
MOZ_RELEASE_ASSERT(ran == 1);
ran = 0;
rb.ReadAt(bi, [&](Maybe<ProfileBufferEntryReader>&& aMaybeEntryReader) {
MOZ_RELEASE_ASSERT(aMaybeEntryReader.isNothing() == !bi);
++ran;
});
MOZ_RELEASE_ASSERT(ran == 1);
};
testInSession(EMPTY);
testInSession(NOT_EMPTY);
rb.Set(MakePowerOfTwo<BlocksRingBuffer::Length, 32>());
MOZ_RELEASE_ASSERT(rb.BufferLength().isSome());
rb.ReadEach([](auto&&) { MOZ_RELEASE_ASSERT(false); });
testInSession(EMPTY);
testInSession(NOT_EMPTY);
rb.Reset();
testOutOfSession();
testOutOfSession();
uint8_t buffer[MBSize * 3];
for (size_t i = 0; i < MBSize * 3; ++i) {
buffer[i] = uint8_t('A' + i);
}
rb.Set(&buffer[MBSize], MakePowerOfTwo<BlocksRingBuffer::Length, MBSize>());
MOZ_RELEASE_ASSERT(rb.BufferLength().isSome());
rb.ReadEach([](auto&&) { MOZ_RELEASE_ASSERT(false); });
testInSession(EMPTY);
testInSession(NOT_EMPTY);
rb.Reset();
testOutOfSession();
testOutOfSession();
rb.Set(&buffer[MBSize], MakePowerOfTwo<BlocksRingBuffer::Length, MBSize>());
MOZ_RELEASE_ASSERT(rb.BufferLength().isSome());
rb.ReadEach([](auto&&) { MOZ_RELEASE_ASSERT(false); });
testInSession(EMPTY);
testInSession(NOT_EMPTY);
// Remove the current underlying buffer, this should clear all entries.
rb.Reset();
// Check that only the provided stack-based sub-buffer was modified.
uint32_t changed = 0;
for (size_t i = MBSize; i < MBSize * 2; ++i) {
changed += (buffer[i] == uint8_t('A' + i)) ? 0 : 1;
}
// Expect at least 75% changes.
MOZ_RELEASE_ASSERT(changed >= MBSize * 6 / 8);
// Everything around the sub-buffer should be unchanged.
for (size_t i = 0; i < MBSize; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
for (size_t i = MBSize * 2; i < MBSize * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
testOutOfSession();
testOutOfSession();
printf("TestBlocksRingBufferUnderlyingBufferChanges done\n");
}
void TestBlocksRingBufferThreading() {
printf("TestBlocksRingBufferThreading...\n");
constexpr uint32_t MBSize = 8192;
uint8_t buffer[MBSize * 3];
for (size_t i = 0; i < MBSize * 3; ++i) {
buffer[i] = uint8_t('A' + i);
}
BlocksRingBuffer rb(BlocksRingBuffer::ThreadSafety::WithMutex,
&buffer[MBSize], MakePowerOfTwo32<MBSize>());
// Start reader thread.
std::atomic<bool> stopReader{false};
std::thread reader([&]() {
for (;;) {
BlocksRingBuffer::State state = rb.GetState();
printf(
"Reader: range=%llu..%llu (%llu bytes) pushed=%llu cleared=%llu "
"(alive=%llu)\n",
static_cast<unsigned long long>(
state.mRangeStart.ConvertToProfileBufferIndex()),
static_cast<unsigned long long>(
state.mRangeEnd.ConvertToProfileBufferIndex()),
static_cast<unsigned long long>(
state.mRangeEnd.ConvertToProfileBufferIndex()) -
static_cast<unsigned long long>(
state.mRangeStart.ConvertToProfileBufferIndex()),
static_cast<unsigned long long>(state.mPushedBlockCount),
static_cast<unsigned long long>(state.mClearedBlockCount),
static_cast<unsigned long long>(state.mPushedBlockCount -
state.mClearedBlockCount));
if (stopReader) {
break;
}
::SleepMilli(1);
}
});
// Start writer threads.
constexpr int ThreadCount = 32;
std::thread threads[ThreadCount];
for (int threadNo = 0; threadNo < ThreadCount; ++threadNo) {
threads[threadNo] = std::thread(
[&](int aThreadNo) {
::SleepMilli(1);
constexpr int pushCount = 1024;
for (int push = 0; push < pushCount; ++push) {
// Reserve as many bytes as the thread number (but at least enough
// to store an int), and write an increasing int.
rb.Put(std::max(aThreadNo, int(sizeof(push))),
[&](Maybe<ProfileBufferEntryWriter>& aEW) {
MOZ_RELEASE_ASSERT(aEW.isSome());
aEW->WriteObject(aThreadNo * 1000000 + push);
*aEW += aEW->RemainingBytes();
});
}
},
threadNo);
}
// Wait for all writer threads to die.
for (auto&& thread : threads) {
thread.join();
}
// Stop reader thread.
stopReader = true;
reader.join();
// Check that only the provided stack-based sub-buffer was modified.
uint32_t changed = 0;
for (size_t i = MBSize; i < MBSize * 2; ++i) {
changed += (buffer[i] == uint8_t('A' + i)) ? 0 : 1;
}
// Expect at least 75% changes.
MOZ_RELEASE_ASSERT(changed >= MBSize * 6 / 8);
// Everything around the sub-buffer should be unchanged.
for (size_t i = 0; i < MBSize; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
for (size_t i = MBSize * 2; i < MBSize * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
printf("TestBlocksRingBufferThreading done\n");
}
void TestBlocksRingBufferSerialization() {
printf("TestBlocksRingBufferSerialization...\n");
constexpr uint32_t MBSize = 64;
uint8_t buffer[MBSize * 3];
for (size_t i = 0; i < MBSize * 3; ++i) {
buffer[i] = uint8_t('A' + i);
}
BlocksRingBuffer rb(BlocksRingBuffer::ThreadSafety::WithMutex,
&buffer[MBSize], MakePowerOfTwo32<MBSize>());
// Will expect literal string to always have the same address.
# define THE_ANSWER "The answer is "
const char* theAnswer = THE_ANSWER;
rb.PutObjects('0', WrapProfileBufferLiteralCStringPointer(THE_ANSWER), 42,
std::string(" but pi="), 3.14);
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
char c0;
const char* answer;
int integer;
std::string str;
double pi;
aER.ReadIntoObjects(c0, answer, integer, str, pi);
MOZ_RELEASE_ASSERT(c0 == '0');
MOZ_RELEASE_ASSERT(answer == theAnswer);
MOZ_RELEASE_ASSERT(integer == 42);
MOZ_RELEASE_ASSERT(str == " but pi=");
MOZ_RELEASE_ASSERT(pi == 3.14);
});
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
char c0 = aER.ReadObject<char>();
MOZ_RELEASE_ASSERT(c0 == '0');
const char* answer = aER.ReadObject<const char*>();
MOZ_RELEASE_ASSERT(answer == theAnswer);
int integer = aER.ReadObject<int>();
MOZ_RELEASE_ASSERT(integer == 42);
std::string str = aER.ReadObject<std::string>();
MOZ_RELEASE_ASSERT(str == " but pi=");
double pi = aER.ReadObject<double>();
MOZ_RELEASE_ASSERT(pi == 3.14);
});
rb.Clear();
// Write an int and store its ProfileBufferBlockIndex.
ProfileBufferBlockIndex blockIndex = rb.PutObject(123);
// It should be non-0.
MOZ_RELEASE_ASSERT(blockIndex != ProfileBufferBlockIndex{});
// Write that ProfileBufferBlockIndex.
rb.PutObject(blockIndex);
rb.Read([&](BlocksRingBuffer::Reader* aR) {
BlocksRingBuffer::BlockIterator it = aR->begin();
const BlocksRingBuffer::BlockIterator itEnd = aR->end();
MOZ_RELEASE_ASSERT(it != itEnd);
MOZ_RELEASE_ASSERT((*it).ReadObject<int>() == 123);
++it;
MOZ_RELEASE_ASSERT(it != itEnd);
MOZ_RELEASE_ASSERT((*it).ReadObject<ProfileBufferBlockIndex>() ==
blockIndex);
++it;
MOZ_RELEASE_ASSERT(it == itEnd);
});
rb.Clear();
rb.PutObjects(
std::make_tuple('0', WrapProfileBufferLiteralCStringPointer(THE_ANSWER),
42, std::string(" but pi="), 3.14));
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.ReadObject<char>() == '0');
MOZ_RELEASE_ASSERT(aER.ReadObject<const char*>() == theAnswer);
MOZ_RELEASE_ASSERT(aER.ReadObject<int>() == 42);
MOZ_RELEASE_ASSERT(aER.ReadObject<std::string>() == " but pi=");
MOZ_RELEASE_ASSERT(aER.ReadObject<double>() == 3.14);
});
rb.Clear();
rb.PutObjects(MakeTuple('0',
WrapProfileBufferLiteralCStringPointer(THE_ANSWER),
42, std::string(" but pi="), 3.14));
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.ReadObject<char>() == '0');
MOZ_RELEASE_ASSERT(aER.ReadObject<const char*>() == theAnswer);
MOZ_RELEASE_ASSERT(aER.ReadObject<int>() == 42);
MOZ_RELEASE_ASSERT(aER.ReadObject<std::string>() == " but pi=");
MOZ_RELEASE_ASSERT(aER.ReadObject<double>() == 3.14);
});
rb.Clear();
{
UniqueFreePtr<char> ufps(strdup(THE_ANSWER));
rb.PutObjects(ufps);
}
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
auto ufps = aER.ReadObject<UniqueFreePtr<char>>();
MOZ_RELEASE_ASSERT(!!ufps);
MOZ_RELEASE_ASSERT(std::string(THE_ANSWER) == ufps.get());
});
rb.Clear();
int intArray[] = {1, 2, 3, 4, 5};
rb.PutObjects(Span(intArray));
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
int intArrayOut[sizeof(intArray) / sizeof(intArray[0])] = {0};
auto outSpan = Span(intArrayOut);
aER.ReadIntoObject(outSpan);
for (size_t i = 0; i < sizeof(intArray) / sizeof(intArray[0]); ++i) {
MOZ_RELEASE_ASSERT(intArrayOut[i] == intArray[i]);
}
});
rb.Clear();
rb.PutObjects(Maybe<int>(Nothing{}), Maybe<int>(Some(123)));
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
Maybe<int> mi0, mi1;
aER.ReadIntoObjects(mi0, mi1);
MOZ_RELEASE_ASSERT(mi0.isNothing());
MOZ_RELEASE_ASSERT(mi1.isSome());
MOZ_RELEASE_ASSERT(*mi1 == 123);
});
rb.Clear();
using V = Variant<int, double, int>;
V v0(VariantIndex<0>{}, 123);
V v1(3.14);
V v2(VariantIndex<2>{}, 456);
rb.PutObjects(v0, v1, v2);
rb.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v0);
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v1);
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v2);
});
// 2nd BlocksRingBuffer to contain the 1st one. It has be be more than twice
// the size.
constexpr uint32_t MBSize2 = MBSize * 4;
uint8_t buffer2[MBSize2 * 3];
for (size_t i = 0; i < MBSize2 * 3; ++i) {
buffer2[i] = uint8_t('B' + i);
}
BlocksRingBuffer rb2(BlocksRingBuffer::ThreadSafety::WithoutMutex,
&buffer2[MBSize2], MakePowerOfTwo32<MBSize2>());
rb2.PutObject(rb);
// 3rd BlocksRingBuffer deserialized from the 2nd one.
uint8_t buffer3[MBSize * 3];
for (size_t i = 0; i < MBSize * 3; ++i) {
buffer3[i] = uint8_t('C' + i);
}
BlocksRingBuffer rb3(BlocksRingBuffer::ThreadSafety::WithoutMutex,
&buffer3[MBSize], MakePowerOfTwo32<MBSize>());
rb2.ReadEach([&](ProfileBufferEntryReader& aER) { aER.ReadIntoObject(rb3); });
// And a 4th heap-allocated one.
UniquePtr<BlocksRingBuffer> rb4up;
rb2.ReadEach([&](ProfileBufferEntryReader& aER) {
rb4up = aER.ReadObject<UniquePtr<BlocksRingBuffer>>();
});
MOZ_RELEASE_ASSERT(!!rb4up);
// Clear 1st and 2nd BlocksRingBuffers, to ensure we have made a deep copy
// into the 3rd&4th ones.
rb.Clear();
rb2.Clear();
// And now the 3rd one should have the same contents as the 1st one had.
rb3.ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v0);
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v1);
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v2);
});
// And 4th.
rb4up->ReadEach([&](ProfileBufferEntryReader& aER) {
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v0);
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v1);
MOZ_RELEASE_ASSERT(aER.ReadObject<V>() == v2);
});
// In fact, the 3rd and 4th ones should have the same state, because they were
// created the same way.
MOZ_RELEASE_ASSERT(rb3.GetState().mRangeStart ==
rb4up->GetState().mRangeStart);
MOZ_RELEASE_ASSERT(rb3.GetState().mRangeEnd == rb4up->GetState().mRangeEnd);
MOZ_RELEASE_ASSERT(rb3.GetState().mPushedBlockCount ==
rb4up->GetState().mPushedBlockCount);
MOZ_RELEASE_ASSERT(rb3.GetState().mClearedBlockCount ==
rb4up->GetState().mClearedBlockCount);
// Check that only the provided stack-based sub-buffer was modified.
uint32_t changed = 0;
for (size_t i = MBSize; i < MBSize * 2; ++i) {
changed += (buffer[i] == uint8_t('A' + i)) ? 0 : 1;
}
// Expect at least 75% changes.
MOZ_RELEASE_ASSERT(changed >= MBSize * 6 / 8);
// Everything around the sub-buffers should be unchanged.
for (size_t i = 0; i < MBSize; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
for (size_t i = MBSize * 2; i < MBSize * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer[i] == uint8_t('A' + i));
}
for (size_t i = 0; i < MBSize2; ++i) {
MOZ_RELEASE_ASSERT(buffer2[i] == uint8_t('B' + i));
}
for (size_t i = MBSize2 * 2; i < MBSize2 * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer2[i] == uint8_t('B' + i));
}
for (size_t i = 0; i < MBSize; ++i) {
MOZ_RELEASE_ASSERT(buffer3[i] == uint8_t('C' + i));
}
for (size_t i = MBSize * 2; i < MBSize * 3; ++i) {
MOZ_RELEASE_ASSERT(buffer3[i] == uint8_t('C' + i));
}
printf("TestBlocksRingBufferSerialization done\n");
}
void TestLiteralEmptyStringView() {
printf("TestLiteralEmptyStringView...\n");
static_assert(mozilla::LiteralEmptyStringView<char>() ==
std::string_view(""));
static_assert(!!mozilla::LiteralEmptyStringView<char>().data());
static_assert(mozilla::LiteralEmptyStringView<char>().length() == 0);
static_assert(mozilla::LiteralEmptyStringView<char16_t>() ==
std::basic_string_view<char16_t>(u""));
static_assert(!!mozilla::LiteralEmptyStringView<char16_t>().data());
static_assert(mozilla::LiteralEmptyStringView<char16_t>().length() == 0);
printf("TestLiteralEmptyStringView done\n");
}
template <typename CHAR>
void TestProfilerStringView() {
if constexpr (std::is_same_v<CHAR, char>) {
printf("TestProfilerStringView<char>...\n");
} else if constexpr (std::is_same_v<CHAR, char16_t>) {
printf("TestProfilerStringView<char16_t>...\n");
} else {
MOZ_RELEASE_ASSERT(false,
"TestProfilerStringView only handles char and char16_t");
}
// Used to verify implicit constructions, as this will normally be used in
// function parameters.
auto BSV = [](mozilla::ProfilerStringView<CHAR>&& aBSV) {
return std::move(aBSV);
};
// These look like string literals, as expected by some string constructors.
const CHAR empty[0 + 1] = {CHAR('\0')};
const CHAR hi[2 + 1] = {
CHAR('h'),
CHAR('i'),
CHAR('\0'),
};
// Literal empty string.
MOZ_RELEASE_ASSERT(BSV(empty).Data());
MOZ_RELEASE_ASSERT(BSV(empty).Data()[0] == CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(empty).Length() == 0);
MOZ_RELEASE_ASSERT(BSV(empty).IsLiteral());
MOZ_RELEASE_ASSERT(!BSV(empty).IsReference());
// Literal non-empty string.
MOZ_RELEASE_ASSERT(BSV(hi).Data());
MOZ_RELEASE_ASSERT(BSV(hi).Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(BSV(hi).Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(BSV(hi).Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(hi).Length() == 2);
MOZ_RELEASE_ASSERT(BSV(hi).IsLiteral());
MOZ_RELEASE_ASSERT(!BSV(hi).IsReference());
// std::string_view to a literal empty string.
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(empty)).Data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(empty)).Data()[0] ==
CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(empty)).Length() == 0);
MOZ_RELEASE_ASSERT(!BSV(std::basic_string_view<CHAR>(empty)).IsLiteral());
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(empty)).IsReference());
// std::string_view to a literal non-empty string.
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(hi)).Data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(hi)).Data()[0] ==
CHAR('h'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(hi)).Data()[1] ==
CHAR('i'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(hi)).Data()[2] ==
CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(hi)).Length() == 2);
MOZ_RELEASE_ASSERT(!BSV(std::basic_string_view<CHAR>(hi)).IsLiteral());
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>(hi)).IsReference());
// Default std::string_view points at nullptr, ProfilerStringView converts it
// to the literal empty string.
MOZ_RELEASE_ASSERT(!std::basic_string_view<CHAR>().data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>()).Data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>()).Data()[0] ==
CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>()).Length() == 0);
MOZ_RELEASE_ASSERT(BSV(std::basic_string_view<CHAR>()).IsLiteral());
MOZ_RELEASE_ASSERT(!BSV(std::basic_string_view<CHAR>()).IsReference());
// std::string to a literal empty string.
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(empty)).Data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(empty)).Data()[0] ==
CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(empty)).Length() == 0);
MOZ_RELEASE_ASSERT(!BSV(std::basic_string<CHAR>(empty)).IsLiteral());
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(empty)).IsReference());
// std::string to a literal non-empty string.
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(hi)).Data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(hi)).Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(hi)).Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(hi)).Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(hi)).Length() == 2);
MOZ_RELEASE_ASSERT(!BSV(std::basic_string<CHAR>(hi)).IsLiteral());
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>(hi)).IsReference());
// Default std::string contains an empty null-terminated string.
MOZ_RELEASE_ASSERT(std::basic_string<CHAR>().data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>()).Data());
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>()).Data()[0] == CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>()).Length() == 0);
MOZ_RELEASE_ASSERT(!BSV(std::basic_string<CHAR>()).IsLiteral());
MOZ_RELEASE_ASSERT(BSV(std::basic_string<CHAR>()).IsReference());
// Class that quacks like nsTString (with Data(), Length(), IsLiteral()), to
// check that ProfilerStringView can read from them.
class FakeNsTString {
public:
FakeNsTString(const CHAR* aData, size_t aLength, bool aIsLiteral)
: mData(aData), mLength(aLength), mIsLiteral(aIsLiteral) {}
const CHAR* Data() const { return mData; }
size_t Length() const { return mLength; }
bool IsLiteral() const { return mIsLiteral; }
private:
const CHAR* mData;
size_t mLength;
bool mIsLiteral;
};
// FakeNsTString to nullptr.
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(nullptr, 0, true)).Data());
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(nullptr, 0, true)).Data()[0] ==
CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(nullptr, 0, true)).Length() == 0);
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(nullptr, 0, true)).IsLiteral());
MOZ_RELEASE_ASSERT(!BSV(FakeNsTString(nullptr, 0, true)).IsReference());
// FakeNsTString to a literal empty string.
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(empty, 0, true)).Data());
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(empty, 0, true)).Data()[0] ==
CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(empty, 0, true)).Length() == 0);
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(empty, 0, true)).IsLiteral());
MOZ_RELEASE_ASSERT(!BSV(FakeNsTString(empty, 0, true)).IsReference());
// FakeNsTString to a literal non-empty string.
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, true)).Data());
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, true)).Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, true)).Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, true)).Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, true)).Length() == 2);
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, true)).IsLiteral());
MOZ_RELEASE_ASSERT(!BSV(FakeNsTString(hi, 2, true)).IsReference());
// FakeNsTString to a non-literal non-empty string.
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, false)).Data());
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, false)).Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, false)).Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, false)).Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, false)).Length() == 2);
MOZ_RELEASE_ASSERT(!BSV(FakeNsTString(hi, 2, false)).IsLiteral());
MOZ_RELEASE_ASSERT(BSV(FakeNsTString(hi, 2, false)).IsReference());
// Serialization and deserialization (with ownership).
constexpr size_t bufferMaxSize = 1024;
constexpr ProfileChunkedBuffer::Length chunkMinSize = 128;
ProfileBufferChunkManagerWithLocalLimit cm(bufferMaxSize, chunkMinSize);
ProfileChunkedBuffer cb(ProfileChunkedBuffer::ThreadSafety::WithMutex, cm);
// Literal string, serialized as raw pointer.
MOZ_RELEASE_ASSERT(cb.PutObject(BSV(hi)));
{
unsigned read = 0;
ProfilerStringView<CHAR> outerBSV;
cb.ReadEach([&](ProfileBufferEntryReader& aER) {
++read;
auto bsv = aER.ReadObject<ProfilerStringView<CHAR>>();
MOZ_RELEASE_ASSERT(bsv.Data());
MOZ_RELEASE_ASSERT(bsv.Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(bsv.Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(bsv.Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(bsv.Length() == 2);
MOZ_RELEASE_ASSERT(bsv.IsLiteral());
MOZ_RELEASE_ASSERT(!bsv.IsReference());
outerBSV = std::move(bsv);
});
MOZ_RELEASE_ASSERT(read == 1);
MOZ_RELEASE_ASSERT(outerBSV.Data());
MOZ_RELEASE_ASSERT(outerBSV.Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(outerBSV.Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(outerBSV.Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(outerBSV.Length() == 2);
MOZ_RELEASE_ASSERT(outerBSV.IsLiteral());
MOZ_RELEASE_ASSERT(!outerBSV.IsReference());
}
cb.Clear();
// Non-literal string, content is serialized.
std::basic_string<CHAR> hiString(hi);
MOZ_RELEASE_ASSERT(cb.PutObject(BSV(hiString)));
{
unsigned read = 0;
ProfilerStringView<CHAR> outerBSV;
cb.ReadEach([&](ProfileBufferEntryReader& aER) {
++read;
auto bsv = aER.ReadObject<ProfilerStringView<CHAR>>();
MOZ_RELEASE_ASSERT(bsv.Data());
MOZ_RELEASE_ASSERT(bsv.Data() != hiString.data());
MOZ_RELEASE_ASSERT(bsv.Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(bsv.Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(bsv.Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(bsv.Length() == 2);
// Special ownership case, neither a literal nor a reference!
MOZ_RELEASE_ASSERT(!bsv.IsLiteral());
MOZ_RELEASE_ASSERT(!bsv.IsReference());
// Test move of ownership.
outerBSV = std::move(bsv);
// NOLINTNEXTLINE(bugprone-use-after-move, clang-analyzer-cplusplus.Move)
MOZ_RELEASE_ASSERT(bsv.Length() == 0);
});
MOZ_RELEASE_ASSERT(read == 1);
MOZ_RELEASE_ASSERT(outerBSV.Data());
MOZ_RELEASE_ASSERT(outerBSV.Data() != hiString.data());
MOZ_RELEASE_ASSERT(outerBSV.Data()[0] == CHAR('h'));
MOZ_RELEASE_ASSERT(outerBSV.Data()[1] == CHAR('i'));
MOZ_RELEASE_ASSERT(outerBSV.Data()[2] == CHAR('\0'));
MOZ_RELEASE_ASSERT(outerBSV.Length() == 2);
MOZ_RELEASE_ASSERT(!outerBSV.IsLiteral());
MOZ_RELEASE_ASSERT(!outerBSV.IsReference());
}
if constexpr (std::is_same_v<CHAR, char>) {
printf("TestProfilerStringView<char> done\n");
} else if constexpr (std::is_same_v<CHAR, char16_t>) {
printf("TestProfilerStringView<char16_t> done\n");
}
}
void TestProfilerDependencies() {
TestPowerOfTwoMask();
TestPowerOfTwo();
TestLEB128();
TestChunk();
TestChunkManagerSingle();
TestChunkManagerWithLocalLimit();
TestControlledChunkManagerUpdate();
TestControlledChunkManagerWithLocalLimit();
TestChunkedBuffer();
TestChunkedBufferSingle();
TestModuloBuffer();
TestBlocksRingBufferAPI();
TestBlocksRingBufferUnderlyingBufferChanges();
TestBlocksRingBufferThreading();
TestBlocksRingBufferSerialization();
TestLiteralEmptyStringView();
TestProfilerStringView<char>();
TestProfilerStringView<char16_t>();
}
// Increase the depth, to a maximum (to avoid too-deep recursion).
static constexpr size_t NextDepth(size_t aDepth) {
constexpr size_t MAX_DEPTH = 128;
return (aDepth < MAX_DEPTH) ? (aDepth + 1) : aDepth;
}
Atomic<bool, Relaxed> sStopFibonacci;
// Compute fibonacci the hard way (recursively: `f(n)=f(n-1)+f(n-2)`), and
// prevent inlining.
// The template parameter makes each depth be a separate function, to better
// distinguish them in the profiler output.
template <size_t DEPTH = 0>
MOZ_NEVER_INLINE unsigned long long Fibonacci(unsigned long long n) {
AUTO_BASE_PROFILER_LABEL_DYNAMIC_STRING("fib", OTHER, std::to_string(DEPTH));
if (n == 0) {
return 0;
}
if (n == 1) {
return 1;
}
if (DEPTH < 5 && sStopFibonacci) {
return 1'000'000'000;
}
TimeStamp start = TimeStamp::NowUnfuzzed();
static constexpr size_t MAX_MARKER_DEPTH = 10;
unsigned long long f2 = Fibonacci<NextDepth(DEPTH)>(n - 2);
if (DEPTH == 0) {
BASE_PROFILER_MARKER_UNTYPED("Half-way through Fibonacci", OTHER);
}
unsigned long long f1 = Fibonacci<NextDepth(DEPTH)>(n - 1);
if (DEPTH < MAX_MARKER_DEPTH) {
BASE_PROFILER_MARKER_TEXT("fib", OTHER,
MarkerTiming::IntervalUntilNowFrom(start),
std::to_string(DEPTH));
}
return f2 + f1;
}
void TestProfiler() {
printf("TestProfiler starting -- pid: %d, tid: %d\n",
baseprofiler::profiler_current_process_id(),
baseprofiler::profiler_current_thread_id());
// ::SleepMilli(10000);
TestProfilerDependencies();
{
printf("profiler_init()...\n");
AUTO_BASE_PROFILER_INIT;
MOZ_RELEASE_ASSERT(!baseprofiler::profiler_is_active());
MOZ_RELEASE_ASSERT(!baseprofiler::profiler_thread_is_being_profiled());
MOZ_RELEASE_ASSERT(!baseprofiler::profiler_thread_is_sleeping());
const int mainThreadId =
mozilla::baseprofiler::profiler_current_thread_id();
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::profiler_main_thread_id() ==
mainThreadId);
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::profiler_is_main_thread());
std::thread testThread([&]() {
const int testThreadId =
mozilla::baseprofiler::profiler_current_thread_id();
MOZ_RELEASE_ASSERT(testThreadId != mainThreadId);
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::profiler_main_thread_id() !=
testThreadId);
MOZ_RELEASE_ASSERT(!mozilla::baseprofiler::profiler_is_main_thread());
});
testThread.join();
printf("profiler_start()...\n");
Vector<const char*> filters;
// Profile all registered threads.
MOZ_RELEASE_ASSERT(filters.append(""));
const uint32_t features = baseprofiler::ProfilerFeature::Leaf |
baseprofiler::ProfilerFeature::StackWalk |
baseprofiler::ProfilerFeature::Threads;
baseprofiler::profiler_start(baseprofiler::BASE_PROFILER_DEFAULT_ENTRIES,
BASE_PROFILER_DEFAULT_INTERVAL, features,
filters.begin(), filters.length());
MOZ_RELEASE_ASSERT(baseprofiler::profiler_is_active());
MOZ_RELEASE_ASSERT(baseprofiler::profiler_thread_is_being_profiled());
MOZ_RELEASE_ASSERT(!baseprofiler::profiler_thread_is_sleeping());
sStopFibonacci = false;
std::thread threadFib([]() {
AUTO_BASE_PROFILER_REGISTER_THREAD("fibonacci");
SleepMilli(5);
auto cause = baseprofiler::profiler_capture_backtrace();
AUTO_BASE_PROFILER_MARKER_TEXT(
"fibonacci", OTHER, MarkerStack::TakeBacktrace(std::move(cause)),
"First leaf call");
static const unsigned long long fibStart = 37;
printf("Fibonacci(%llu)...\n", fibStart);
AUTO_BASE_PROFILER_LABEL("Label around Fibonacci", OTHER);
unsigned long long f = Fibonacci(fibStart);
printf("Fibonacci(%llu) = %llu\n", fibStart, f);
});
std::thread threadCancelFib([]() {
AUTO_BASE_PROFILER_REGISTER_THREAD("fibonacci canceller");
SleepMilli(5);
AUTO_BASE_PROFILER_MARKER_TEXT("fibonacci", OTHER, {}, "Canceller");
static const int waitMaxSeconds = 10;
for (int i = 0; i < waitMaxSeconds; ++i) {
if (sStopFibonacci) {
AUTO_BASE_PROFILER_LABEL_DYNAMIC_STRING("fibCancel", OTHER,
std::to_string(i));
return;
}
AUTO_BASE_PROFILER_THREAD_SLEEP;
SleepMilli(1000);
}
AUTO_BASE_PROFILER_LABEL_DYNAMIC_STRING("fibCancel", OTHER,
"Cancelling!");
sStopFibonacci = true;
});
{
AUTO_BASE_PROFILER_MARKER_TEXT("main thread", OTHER, {},
"joining fibonacci thread");
AUTO_BASE_PROFILER_THREAD_SLEEP;
threadFib.join();
}
{
AUTO_BASE_PROFILER_MARKER_TEXT("main thread", OTHER, {},
"joining fibonacci-canceller thread");
sStopFibonacci = true;
AUTO_BASE_PROFILER_THREAD_SLEEP;
threadCancelFib.join();
}
// Just making sure all payloads know how to (de)serialize and stream.
MOZ_RELEASE_ASSERT(
baseprofiler::AddMarker("markers 2.0 without options (omitted)",
mozilla::baseprofiler::category::OTHER));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 without options (implicit brace-init)",
mozilla::baseprofiler::category::OTHER, {}));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 without options (explicit init)",
mozilla::baseprofiler::category::OTHER, MarkerOptions()));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 without options (explicit brace-init)",
mozilla::baseprofiler::category::OTHER, MarkerOptions{}));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 with one option (implicit)",
mozilla::baseprofiler::category::OTHER, MarkerInnerWindowId(123)));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 with one option (implicit brace-init)",
mozilla::baseprofiler::category::OTHER, {MarkerInnerWindowId(123)}));
MOZ_RELEASE_ASSERT(
baseprofiler::AddMarker("markers 2.0 with one option (explicit init)",
mozilla::baseprofiler::category::OTHER,
MarkerOptions(MarkerInnerWindowId(123))));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 with one option (explicit brace-init)",
mozilla::baseprofiler::category::OTHER,
MarkerOptions{MarkerInnerWindowId(123)}));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 with two options (implicit brace-init)",
mozilla::baseprofiler::category::OTHER,
{MarkerInnerWindowId(123), MarkerStack::Capture()}));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 with two options (explicit init)",
mozilla::baseprofiler::category::OTHER,
MarkerOptions(MarkerInnerWindowId(123), MarkerStack::Capture())));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"markers 2.0 with two options (explicit brace-init)",
mozilla::baseprofiler::category::OTHER,
MarkerOptions{MarkerInnerWindowId(123), MarkerStack::Capture()}));
MOZ_RELEASE_ASSERT(
baseprofiler::AddMarker("default-templated markers 2.0 without options",
mozilla::baseprofiler::category::OTHER));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"default-templated markers 2.0 with option",
mozilla::baseprofiler::category::OTHER, MarkerInnerWindowId(123)));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"explicitly-default-templated markers 2.0 without options",
mozilla::baseprofiler::category::OTHER, {},
::mozilla::baseprofiler::markers::NoPayload{}));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"explicitly-default-templated markers 2.0 with option",
mozilla::baseprofiler::category::OTHER, MarkerInnerWindowId(123),
::mozilla::baseprofiler::markers::NoPayload{}));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"tracing", mozilla::baseprofiler::category::OTHER, {},
mozilla::baseprofiler::markers::Tracing{}, "category"));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"text", mozilla::baseprofiler::category::OTHER, {},
mozilla::baseprofiler::markers::TextMarker{}, "text text"));
MOZ_RELEASE_ASSERT(baseprofiler::AddMarker(
"media sample", mozilla::baseprofiler::category::OTHER, {},
mozilla::baseprofiler::markers::MediaSampleMarker{}, 123, 456));
printf("Sleep 1s...\n");
{
AUTO_BASE_PROFILER_THREAD_SLEEP;
SleepMilli(1000);
}
printf("baseprofiler_pause()...\n");
baseprofiler::profiler_pause();
Maybe<baseprofiler::ProfilerBufferInfo> info =
baseprofiler::profiler_get_buffer_info();
MOZ_RELEASE_ASSERT(info.isSome());
printf("Profiler buffer range: %llu .. %llu (%llu bytes)\n",
static_cast<unsigned long long>(info->mRangeStart),
static_cast<unsigned long long>(info->mRangeEnd),
// sizeof(ProfileBufferEntry) == 9
(static_cast<unsigned long long>(info->mRangeEnd) -
static_cast<unsigned long long>(info->mRangeStart)) *
9);
printf("Stats: min(us) .. mean(us) .. max(us) [count]\n");
printf("- Intervals: %7.1f .. %7.1f .. %7.1f [%u]\n",
info->mIntervalsUs.min,
info->mIntervalsUs.sum / info->mIntervalsUs.n,
info->mIntervalsUs.max, info->mIntervalsUs.n);
printf("- Overheads: %7.1f .. %7.1f .. %7.1f [%u]\n",
info->mOverheadsUs.min,
info->mOverheadsUs.sum / info->mOverheadsUs.n,
info->mOverheadsUs.max, info->mOverheadsUs.n);
printf(" - Locking: %7.1f .. %7.1f .. %7.1f [%u]\n",
info->mLockingsUs.min, info->mLockingsUs.sum / info->mLockingsUs.n,
info->mLockingsUs.max, info->mLockingsUs.n);
printf(" - Clearning: %7.1f .. %7.1f .. %7.1f [%u]\n",
info->mCleaningsUs.min,
info->mCleaningsUs.sum / info->mCleaningsUs.n,
info->mCleaningsUs.max, info->mCleaningsUs.n);
printf(" - Counters: %7.1f .. %7.1f .. %7.1f [%u]\n",
info->mCountersUs.min, info->mCountersUs.sum / info->mCountersUs.n,
info->mCountersUs.max, info->mCountersUs.n);
printf(" - Threads: %7.1f .. %7.1f .. %7.1f [%u]\n",
info->mThreadsUs.min, info->mThreadsUs.sum / info->mThreadsUs.n,
info->mThreadsUs.max, info->mThreadsUs.n);
printf("baseprofiler_get_profile()...\n");
UniquePtr<char[]> profile = baseprofiler::profiler_get_profile();
// Use a string view over the profile contents, for easier testing.
std::string_view profileSV = profile.get();
constexpr const auto svnpos = std::string_view::npos;
// TODO: Properly parse profile and check fields.
// Check for some expected marker schema JSON output.
MOZ_RELEASE_ASSERT(profileSV.find("\"markerSchema\": [") != svnpos);
MOZ_RELEASE_ASSERT(profileSV.find("\"name\": \"Text\",") != svnpos);
MOZ_RELEASE_ASSERT(profileSV.find("\"name\": \"tracing\",") != svnpos);
MOZ_RELEASE_ASSERT(profileSV.find("\"name\": \"MediaSample\",") != svnpos);
MOZ_RELEASE_ASSERT(profileSV.find("\"display\": [") != svnpos);
MOZ_RELEASE_ASSERT(profileSV.find("\"marker-chart\"") != svnpos);
MOZ_RELEASE_ASSERT(profileSV.find("\"marker-table\"") != svnpos);
MOZ_RELEASE_ASSERT(profileSV.find("\"format\": \"string\"") != svnpos);
// TODO: Add more checks for what's expected in the profile. Some of them
// are done in gtest's.
printf("baseprofiler_save_profile_to_file()...\n");
baseprofiler::profiler_save_profile_to_file("TestProfiler_profile.json");
printf("profiler_stop()...\n");
baseprofiler::profiler_stop();
MOZ_RELEASE_ASSERT(!baseprofiler::profiler_is_active());
MOZ_RELEASE_ASSERT(!baseprofiler::profiler_thread_is_being_profiled());
MOZ_RELEASE_ASSERT(!baseprofiler::profiler_thread_is_sleeping());
printf("profiler_shutdown()...\n");
}
printf("TestProfiler done\n");
}
// Minimal string escaping, similar to how C++ stringliterals should be entered,
// to help update comparison strings in tests below.
void printEscaped(std::string_view aString) {
for (const char c : aString) {
switch (c) {
case '\n':
fprintf(stderr, "\\n\n");
break;
case '"':
fprintf(stderr, "\\\"");
break;
case '\\':
fprintf(stderr, "\\\\");
break;
default:
if (c >= ' ' && c <= '~') {
fprintf(stderr, "%c", c);
} else {
fprintf(stderr, "\\x%02x", unsigned(c));
}
break;
}
}
}
// Run aF(SpliceableChunkedJSONWriter&, UniqueJSONStrings&) from inside a JSON
// array, then output the string table, and compare the full output to
// aExpected.
template <typename F>
static void VerifyUniqueStringContents(
F&& aF, std::string_view aExpectedData,
std::string_view aExpectedUniqueStrings,
mozilla::baseprofiler::UniqueJSONStrings* aUniqueStringsOrNull = nullptr) {
mozilla::baseprofiler::SpliceableChunkedJSONWriter writer;
// By default use a local UniqueJSONStrings, otherwise use the one provided.
mozilla::baseprofiler::UniqueJSONStrings localUniqueStrings(
mozilla::JSONWriter::SingleLineStyle);
mozilla::baseprofiler::UniqueJSONStrings& uniqueStrings =
aUniqueStringsOrNull ? *aUniqueStringsOrNull : localUniqueStrings;
writer.Start(mozilla::JSONWriter::SingleLineStyle);
{
writer.StartArrayProperty("data", mozilla::JSONWriter::SingleLineStyle);
{ std::forward<F>(aF)(writer, uniqueStrings); }
writer.EndArray();
writer.StartArrayProperty("stringTable",
mozilla::JSONWriter::SingleLineStyle);
{ uniqueStrings.SpliceStringTableElements(writer); }
writer.EndArray();
}
writer.End();
UniquePtr<char[]> jsonString = writer.ChunkedWriteFunc().CopyData();
MOZ_RELEASE_ASSERT(jsonString);
std::string_view jsonStringView(jsonString.get());
std::string expected = "{\"data\": [";
expected += aExpectedData;
expected += "], \"stringTable\": [";
expected += aExpectedUniqueStrings;
expected += "]}\n";
if (jsonStringView != expected) {
fprintf(stderr,
"Expected:\n"
"------\n");
printEscaped(expected);
fprintf(stderr,
"\n"
"------\n"
"Actual:\n"
"------\n");
printEscaped(jsonStringView);
fprintf(stderr,
"\n"
"------\n");
}
MOZ_RELEASE_ASSERT(jsonStringView == expected);
}
void TestUniqueJSONStrings() {
printf("TestUniqueJSONStrings...\n");
using SCJW = mozilla::baseprofiler::SpliceableChunkedJSONWriter;
using UJS = mozilla::baseprofiler::UniqueJSONStrings;
// Empty everything.
VerifyUniqueStringContents([](SCJW& aWriter, UJS& aUniqueStrings) {}, "", "");
// Empty unique strings.
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aWriter.StringElement("string");
},
R"("string")", "");
// One unique string.
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aUniqueStrings.WriteElement(aWriter, "string");
},
"0", R"("string")");
// One unique string twice.
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aUniqueStrings.WriteElement(aWriter, "string");
aUniqueStrings.WriteElement(aWriter, "string");
},
"0, 0", R"("string")");
// Two single unique strings.
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aUniqueStrings.WriteElement(aWriter, "string0");
aUniqueStrings.WriteElement(aWriter, "string1");
},
"0, 1", R"("string0", "string1")");
// Two unique strings with repetition.
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aUniqueStrings.WriteElement(aWriter, "string0");
aUniqueStrings.WriteElement(aWriter, "string1");
aUniqueStrings.WriteElement(aWriter, "string0");
},
"0, 1, 0", R"("string0", "string1")");
// Mix some object properties, for coverage.
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aUniqueStrings.WriteElement(aWriter, "string0");
aWriter.StartObjectElement(mozilla::JSONWriter::SingleLineStyle);
{
aUniqueStrings.WriteProperty(aWriter, "p0", "prop");
aUniqueStrings.WriteProperty(aWriter, "p1", "string0");
aUniqueStrings.WriteProperty(aWriter, "p2", "prop");
}
aWriter.EndObject();
aUniqueStrings.WriteElement(aWriter, "string1");
aUniqueStrings.WriteElement(aWriter, "string0");
aUniqueStrings.WriteElement(aWriter, "prop");
},
R"(0, {"p0": 1, "p1": 0, "p2": 1}, 2, 0, 1)",
R"("string0", "prop", "string1")");
// Unique string table with pre-existing data.
{
UJS ujs(mozilla::JSONWriter::SingleLineStyle);
{
SCJW writer;
ujs.WriteElement(writer, "external0");
ujs.WriteElement(writer, "external1");
ujs.WriteElement(writer, "external0");
}
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aUniqueStrings.WriteElement(aWriter, "string0");
aUniqueStrings.WriteElement(aWriter, "string1");
aUniqueStrings.WriteElement(aWriter, "string0");
},
"2, 3, 2", R"("external0", "external1", "string0", "string1")", &ujs);
}
// Unique string table with pre-existing data from another table.
{
UJS ujs(mozilla::JSONWriter::SingleLineStyle);
{
SCJW writer;
ujs.WriteElement(writer, "external0");
ujs.WriteElement(writer, "external1");
ujs.WriteElement(writer, "external0");
}
UJS ujsCopy(ujs, mozilla::JSONWriter::SingleLineStyle);
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aUniqueStrings.WriteElement(aWriter, "string0");
aUniqueStrings.WriteElement(aWriter, "string1");
aUniqueStrings.WriteElement(aWriter, "string0");
},
"2, 3, 2", R"("external0", "external1", "string0", "string1")", &ujs);
}
// Unique string table through SpliceableJSONWriter.
VerifyUniqueStringContents(
[](SCJW& aWriter, UJS& aUniqueStrings) {
aWriter.SetUniqueStrings(aUniqueStrings);
aWriter.UniqueStringElement("string0");
aWriter.StartObjectElement(mozilla::JSONWriter::SingleLineStyle);
{
aWriter.UniqueStringProperty("p0", "prop");
aWriter.UniqueStringProperty("p1", "string0");
aWriter.UniqueStringProperty("p2", "prop");
}
aWriter.EndObject();
aWriter.UniqueStringElement("string1");
aWriter.UniqueStringElement("string0");
aWriter.UniqueStringElement("prop");
aWriter.ResetUniqueStrings();
},
R"(0, {"p0": 1, "p1": 0, "p2": 1}, 2, 0, 1)",
R"("string0", "prop", "string1")");
printf("TestUniqueJSONStrings done\n");
}
void StreamMarkers(const mozilla::ProfileChunkedBuffer& aBuffer,
mozilla::baseprofiler::SpliceableJSONWriter& aWriter) {
aWriter.StartArrayProperty("data");
{
aBuffer.ReadEach([&](mozilla::ProfileBufferEntryReader& aEntryReader) {
mozilla::ProfileBufferEntryKind entryKind =
aEntryReader.ReadObject<mozilla::ProfileBufferEntryKind>();
MOZ_RELEASE_ASSERT(entryKind == mozilla::ProfileBufferEntryKind::Marker);
const bool success =
mozilla::base_profiler_markers_detail::DeserializeAfterKindAndStream(
aEntryReader, aWriter, 0, [&](mozilla::ProfileChunkedBuffer&) {
aWriter.StringElement("Real backtrace would be here");
});
MOZ_RELEASE_ASSERT(success);
});
}
aWriter.EndArray();
}
void PrintMarkers(const mozilla::ProfileChunkedBuffer& aBuffer) {
mozilla::baseprofiler::SpliceableJSONWriter writer(
mozilla::MakeUnique<mozilla::baseprofiler::OStreamJSONWriteFunc>(
std::cout));
mozilla::baseprofiler::UniqueJSONStrings uniqueStrings;
writer.SetUniqueStrings(uniqueStrings);
writer.Start();
{
StreamMarkers(aBuffer, writer);
writer.StartArrayProperty("stringTable");
{ uniqueStrings.SpliceStringTableElements(writer); }
writer.EndArray();
}
writer.End();
writer.ResetUniqueStrings();
}
static void SubTestMarkerCategory(
const mozilla::MarkerCategory& aMarkerCategory,
const mozilla::baseprofiler::ProfilingCategoryPair& aProfilingCategoryPair,
const mozilla::baseprofiler::ProfilingCategory& aProfilingCategory) {
MOZ_RELEASE_ASSERT(aMarkerCategory.CategoryPair() == aProfilingCategoryPair,
"Unexpected MarkerCategory::CategoryPair()");
MOZ_RELEASE_ASSERT(
mozilla::MarkerCategory(aProfilingCategoryPair).CategoryPair() ==
aProfilingCategoryPair,
"MarkerCategory(<name>).CategoryPair() should return <name>");
MOZ_RELEASE_ASSERT(aMarkerCategory.GetCategory() == aProfilingCategory,
"Unexpected MarkerCategory::GetCategory()");
mozilla::ProfileBufferChunkManagerSingle chunkManager(512);
mozilla::ProfileChunkedBuffer buffer(
mozilla::ProfileChunkedBuffer::ThreadSafety::WithoutMutex, chunkManager);
mozilla::ProfileBufferBlockIndex i = buffer.PutObject(aMarkerCategory);
MOZ_RELEASE_ASSERT(i != mozilla::ProfileBufferBlockIndex{},
"Failed serialization");
buffer.ReadEach([&](mozilla::ProfileBufferEntryReader& aER,
mozilla::ProfileBufferBlockIndex aIndex) {
MOZ_RELEASE_ASSERT(aIndex == i, "Unexpected deserialization index");
const auto readCategory = aER.ReadObject<mozilla::MarkerCategory>();
MOZ_RELEASE_ASSERT(aER.RemainingBytes() == 0,
"Unexpected extra serialized bytes");
MOZ_RELEASE_ASSERT(readCategory.CategoryPair() == aProfilingCategoryPair,
"Incorrect deserialization value");
});
}
void TestMarkerCategory() {
printf("TestMarkerCategory...\n");
mozilla::ProfileBufferChunkManagerSingle chunkManager(512);
mozilla::ProfileChunkedBuffer buffer(
mozilla::ProfileChunkedBuffer::ThreadSafety::WithoutMutex, chunkManager);
# define CATEGORY_ENUM_BEGIN_CATEGORY(name, labelAsString, color)
# define CATEGORY_ENUM_SUBCATEGORY(supercategory, name, labelAsString) \
static_assert( \
std::is_same_v<decltype(mozilla::baseprofiler::category::name), \
const mozilla::MarkerCategory>, \
"baseprofiler::category::<name> should be a const MarkerCategory"); \
\
SubTestMarkerCategory( \
mozilla::baseprofiler::category::name, \
mozilla::baseprofiler::ProfilingCategoryPair::name, \
mozilla::baseprofiler::ProfilingCategory::supercategory);
# define CATEGORY_ENUM_END_CATEGORY
MOZ_PROFILING_CATEGORY_LIST(CATEGORY_ENUM_BEGIN_CATEGORY,
CATEGORY_ENUM_SUBCATEGORY,
CATEGORY_ENUM_END_CATEGORY)
# undef CATEGORY_ENUM_BEGIN_CATEGORY
# undef CATEGORY_ENUM_SUBCATEGORY
# undef CATEGORY_ENUM_END_CATEGORY
printf("TestMarkerCategory done\n");
}
void TestMarkerThreadId() {
printf("TestMarkerThreadId...\n");
MOZ_RELEASE_ASSERT(MarkerThreadId{}.IsUnspecified());
MOZ_RELEASE_ASSERT(!MarkerThreadId::MainThread().IsUnspecified());
MOZ_RELEASE_ASSERT(!MarkerThreadId::CurrentThread().IsUnspecified());
MOZ_RELEASE_ASSERT(!MarkerThreadId{42}.IsUnspecified());
MOZ_RELEASE_ASSERT(MarkerThreadId{42}.ThreadId() == 42);
// We'll assume that this test runs in the main thread (which should be true
// when called from the `main` function).
MOZ_RELEASE_ASSERT(MarkerThreadId::MainThread().ThreadId() ==
mozilla::baseprofiler::profiler_main_thread_id());
MOZ_RELEASE_ASSERT(MarkerThreadId::CurrentThread().ThreadId() ==
mozilla::baseprofiler::profiler_current_thread_id());
MOZ_RELEASE_ASSERT(MarkerThreadId::CurrentThread().ThreadId() ==
mozilla::baseprofiler::profiler_main_thread_id());
std::thread testThread([]() {
MOZ_RELEASE_ASSERT(!MarkerThreadId::MainThread().IsUnspecified());
MOZ_RELEASE_ASSERT(!MarkerThreadId::CurrentThread().IsUnspecified());
MOZ_RELEASE_ASSERT(MarkerThreadId::MainThread().ThreadId() ==
mozilla::baseprofiler::profiler_main_thread_id());
MOZ_RELEASE_ASSERT(MarkerThreadId::CurrentThread().ThreadId() ==
mozilla::baseprofiler::profiler_current_thread_id());
MOZ_RELEASE_ASSERT(MarkerThreadId::CurrentThread().ThreadId() !=
mozilla::baseprofiler::profiler_main_thread_id());
});
testThread.join();
printf("TestMarkerThreadId done\n");
}
void TestMarkerNoPayload() {
printf("TestMarkerNoPayload...\n");
mozilla::ProfileBufferChunkManagerSingle chunkManager(512);
mozilla::ProfileChunkedBuffer buffer(
mozilla::ProfileChunkedBuffer::ThreadSafety::WithoutMutex, chunkManager);
mozilla::ProfileBufferBlockIndex i0 =
mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "literal", mozilla::baseprofiler::category::OTHER_Profiling);
MOZ_RELEASE_ASSERT(i0);
const std::string dynamic = "dynamic";
mozilla::ProfileBufferBlockIndex i1 =
mozilla::baseprofiler::AddMarkerToBuffer(
buffer, dynamic,
mozilla::baseprofiler::category::GRAPHICS_FlushingAsyncPaints, {});
MOZ_RELEASE_ASSERT(i1);
MOZ_RELEASE_ASSERT(i1 > i0);
mozilla::ProfileBufferBlockIndex i2 =
mozilla::baseprofiler::AddMarkerToBuffer(
buffer, std::string_view("string_view"),
mozilla::baseprofiler::category::GRAPHICS_FlushingAsyncPaints, {});
MOZ_RELEASE_ASSERT(i2);
MOZ_RELEASE_ASSERT(i2 > i1);
# ifdef DEBUG
buffer.Dump();
# endif
PrintMarkers(buffer);
printf("TestMarkerNoPayload done\n");
}
void TestUserMarker() {
printf("TestUserMarker...\n");
// User-defined marker type with text.
// It's fine to define it right in the function where it's used.
struct MarkerTypeTestMinimal {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("test-minimal");
}
static void StreamJSONMarkerData(
mozilla::baseprofiler::SpliceableJSONWriter& aWriter,
const std::string& aText) {
aWriter.StringProperty("text", aText);
}
static mozilla::MarkerSchema MarkerTypeDisplay() {
using MS = mozilla::MarkerSchema;
MS schema{MS::Location::markerChart, MS::Location::markerTable};
schema.SetTooltipLabel("tooltip for test-minimal");
schema.AddKeyLabelFormatSearchable("text", "Text", MS::Format::string,
MS::Searchable::searchable);
return schema;
}
};
mozilla::ProfileBufferChunkManagerSingle chunkManager(1024);
mozilla::ProfileChunkedBuffer buffer(
mozilla::ProfileChunkedBuffer::ThreadSafety::WithoutMutex, chunkManager);
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling, {},
MarkerTypeTestMinimal{}, std::string("payload text")));
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerThreadId(123), MarkerTypeTestMinimal{},
std::string("ThreadId(123)")));
auto start = mozilla::TimeStamp::NowUnfuzzed();
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerTiming::InstantAt(start), MarkerTypeTestMinimal{},
std::string("InstantAt(start)")));
auto then = mozilla::TimeStamp::NowUnfuzzed();
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerTiming::IntervalStart(start), MarkerTypeTestMinimal{},
std::string("IntervalStart(start)")));
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerTiming::IntervalEnd(then), MarkerTypeTestMinimal{},
std::string("IntervalEnd(then)")));
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerTiming::Interval(start, then), MarkerTypeTestMinimal{},
std::string("Interval(start, then)")));
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerTiming::IntervalUntilNowFrom(start),
MarkerTypeTestMinimal{}, std::string("IntervalUntilNowFrom(start)")));
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerStack::NoStack(), MarkerTypeTestMinimal{},
std::string("NoStack")));
// Note: We cannot test stack-capture here, because the profiler is not
// initialized.
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, "test2", mozilla::baseprofiler::category::OTHER_Profiling,
mozilla::MarkerInnerWindowId(123), MarkerTypeTestMinimal{},
std::string("InnerWindowId(123)")));
# ifdef DEBUG
buffer.Dump();
# endif
PrintMarkers(buffer);
printf("TestUserMarker done\n");
}
void TestPredefinedMarkers() {
printf("TestPredefinedMarkers...\n");
mozilla::ProfileBufferChunkManagerSingle chunkManager(1024);
mozilla::ProfileChunkedBuffer buffer(
mozilla::ProfileChunkedBuffer::ThreadSafety::WithoutMutex, chunkManager);
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, std::string_view("tracing"),
mozilla::baseprofiler::category::OTHER, {},
mozilla::baseprofiler::markers::Tracing{}, "category"));
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, std::string_view("text"), mozilla::baseprofiler::category::OTHER,
{}, mozilla::baseprofiler::markers::TextMarker{}, "text text"));
MOZ_RELEASE_ASSERT(mozilla::baseprofiler::AddMarkerToBuffer(
buffer, std::string_view("media"), mozilla::baseprofiler::category::OTHER,
{}, mozilla::baseprofiler::markers::MediaSampleMarker{}, 123, 456));
# ifdef DEBUG
buffer.Dump();
# endif
PrintMarkers(buffer);
printf("TestPredefinedMarkers done\n");
}
void TestProfilerMarkers() {
printf("TestProfilerMarkers -- pid: %d, tid: %d\n",
mozilla::baseprofiler::profiler_current_process_id(),
mozilla::baseprofiler::profiler_current_thread_id());
// ::SleepMilli(10000);
TestUniqueJSONStrings();
TestMarkerCategory();
TestMarkerThreadId();
TestMarkerNoPayload();
TestUserMarker();
TestPredefinedMarkers();
printf("TestProfilerMarkers done\n");
}
#else // MOZ_GECKO_PROFILER
// Testing that macros are still #defined (but do nothing) when
// MOZ_GECKO_PROFILER is disabled.
void TestProfiler() {
// These don't need to make sense, we just want to know that they're defined
// and don't do anything.
# ifndef AUTO_BASE_PROFILER_INIT
# error AUTO_BASE_PROFILER_INIT not #defined
# endif // AUTO_BASE_PROFILER_INIT
AUTO_BASE_PROFILER_INIT;
// This wouldn't build if the macro did output its arguments.
# ifndef AUTO_BASE_PROFILER_MARKER_TEXT
# error AUTO_BASE_PROFILER_MARKER_TEXT not #defined
# endif // AUTO_BASE_PROFILER_MARKER_TEXT
AUTO_BASE_PROFILER_MARKER_TEXT(catch, catch, catch, catch);
# ifndef AUTO_BASE_PROFILER_LABEL
# error AUTO_BASE_PROFILER_LABEL not #defined
# endif // AUTO_BASE_PROFILER_LABEL
AUTO_BASE_PROFILER_LABEL(catch, catch);
# ifndef AUTO_BASE_PROFILER_THREAD_SLEEP
# error AUTO_BASE_PROFILER_THREAD_SLEEP not #defined
# endif // AUTO_BASE_PROFILER_THREAD_SLEEP
AUTO_BASE_PROFILER_THREAD_SLEEP;
# ifndef BASE_PROFILER_MARKER_UNTYPED
# error BASE_PROFILER_MARKER_UNTYPED not #defined
# endif // BASE_PROFILER_MARKER_UNTYPED
BASE_PROFILER_MARKER_UNTYPED(catch, catch);
BASE_PROFILER_MARKER_UNTYPED(catch, catch, catch);
# ifndef BASE_PROFILER_MARKER
# error BASE_PROFILER_MARKER not #defined
# endif // BASE_PROFILER_MARKER
BASE_PROFILER_MARKER(catch, catch, catch, catch);
BASE_PROFILER_MARKER(catch, catch, catch, catch, catch);
# ifndef BASE_PROFILER_MARKER_TEXT
# error BASE_PROFILER_MARKER_TEXT not #defined
# endif // BASE_PROFILER_MARKER_TEXT
BASE_PROFILER_MARKER_TEXT(catch, catch, catch, catch);
MOZ_RELEASE_ASSERT(!mozilla::baseprofiler::profiler_get_backtrace(),
"profiler_get_backtrace should return nullptr");
mozilla::ProfileChunkedBuffer buffer;
MOZ_RELEASE_ASSERT(
!mozilla::baseprofiler::profiler_capture_backtrace_into(buffer),
"profiler_capture_backtrace_into should return false");
MOZ_RELEASE_ASSERT(!mozilla::baseprofiler::profiler_capture_backtrace(),
"profiler_capture_backtrace should return nullptr");
}
// Testing that macros are still #defined (but do nothing) when
// MOZ_GECKO_PROFILER is disabled.
void TestProfilerMarkers() {
// These don't need to make sense, we just want to know that they're defined
// and don't do anything.
}
#endif // MOZ_GECKO_PROFILER else
#if defined(XP_WIN)
int wmain()
#else
int main()
#endif // defined(XP_WIN)
{
#ifdef MOZ_GECKO_PROFILER
printf("BaseTestProfiler -- pid: %d, tid: %d\n",
baseprofiler::profiler_current_process_id(),
baseprofiler::profiler_current_thread_id());
// ::SleepMilli(10000);
#endif // MOZ_GECKO_PROFILER
// Note that there are two `TestProfiler{,Markers}` functions above, depending
// on whether MOZ_GECKO_PROFILER is #defined.
TestProfiler();
TestProfilerMarkers();
return 0;
}