gecko-dev/ef/Utilities/General/GraphUtils.h

347 строки
12 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
*
* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*/
#ifndef GRAPHUTILS_H
#define GRAPHUTILS_H
#include "Fundamentals.h"
template<class Successor>
struct SearchStackEntry
{
Successor *next; // Next child to be searched at this level of the graph
Successor *limit; // Last child+1 to be searched at this level of the graph
};
//
// Search and mark all reachable nodes of the directed graph with the given root.
// The graph must have no more than maxNNodes nodes reachable from the root.
// The stack argument must be a preallocated temporary array of maxNNodes entries of
// type SearchStackEntry<Successor>.
//
// The NodeRef class is a way to refer to nodes in the graph (NodeRefs may be
// pointers to nodes, node indices, etc.).
// The SearchParams is a helper class that graphSimpleSearch uses to access the
// contents of graph nodes. SearchParams must support the following types and
// methods (static or dynamic):
//
// typedef Successor;
// typedef NodeRef;
//
// Successor *getSuccessorsBegin(NodeRef n);
// Successor *getSuccessorsEnd(NodeRef n);
// Return the bounds of an array of Successors of node n.
//
// NodeRef getNodeRef(Successor &s);
// Return the node to which the Successor s refers.
//
// bool isMarked(NodeRef n);
// void setMarked(NodeRef n);
// Each node in the graph is either marked or unmarked.
// All nodes should be in the unmarked state when graphSimpleSearch is called;
// graphSimpleSearch will not traverse any marked nodes it encounters. The
// setMarked method changes the state of a node to marked. Every node
// reachable from the root will be marked when graphSimpleSearch exits.
// setMarked is only called on unmarked nodes.
//
template<class SearchParams, class Successor>
void graphSimpleSearch(SearchParams &searchParams, Successor root, Uint32 DEBUG_ONLY(maxNNodes), SearchStackEntry<Successor> *stack)
{
#ifdef DEBUG
SearchStackEntry<Successor> *stackEnd = stack + maxNNodes;
#endif
SearchStackEntry<Successor> *sp = stack;
// Prepare to visit the root.
Successor *n = &root;
Successor *l = &root + 1;
while (true) {
if (n == l) {
// We're done with all successors between n and l, so pop up one level.
// Finish when we've marked the root.
if (sp == stack)
break;
--sp;
n = sp->next;
l = sp->limit;
} else {
// We still have to visit more successors between n and l. Mark the
// next successor and advance n.
typename SearchParams::NodeRef node = searchParams.getNodeRef(*n++);
if (!searchParams.isMarked(node)) {
// Mark the successor, saving the current place on the stack.
searchParams.setMarked(node);
assert(sp < stackEnd);
sp->next = n;
sp->limit = l;
sp++;
n = searchParams.getSuccessorsBegin(node);
l = searchParams.getSuccessorsEnd(node);
}
}
}
}
//
// Search, mark, and count all reachable nodes of the directed graph with
// the given root (which may be null). The graph must have no more than
// maxNNodes nodes reachable from the root. The stack argument must be a
// preallocated temporary array of maxNNodes entries of type
// SearchStackEntry<Successor>.
//
// This function returns the number of nodes reached, including the root.
//
// The NodeRef class is a way to refer to nodes in the graph (NodeRefs may be
// pointers to nodes, node indices, etc.).
// The SearchParams is a helper class that graphSearch uses to access the
// contents of graph nodes. SearchParams must support the following types and
// methods (static or dynamic):
//
// typedef Successor;
// typedef NodeRef;
//
// Successor *getSuccessorsBegin(NodeRef n);
// Successor *getSuccessorsEnd(NodeRef n);
// Return the bounds of an array of Successors of node n.
//
// bool isNull(Successor &s);
// Returns true if n is null.
//
// NodeRef getNodeRef(Successor &s);
// Return the node to which the Successor s refers.
//
// bool isMarked(NodeRef n);
// void setMarked(NodeRef n);
// Each node in the graph is either marked or unmarked.
// All nodes should be in the unmarked state when graphSearch is called;
// graphSearch will not traverse any marked nodes it encounters. The
// setMarked method changes the state of a node to marked. Every node
// reachable from the root will be marked when graphSearch exits.
// setMarked is only called on unmarked nodes.
//
// void notePredecessor(NodeRef n);
// This method is called on node n once for each time n is a successor
// of any node or the root. The SearchParams class may use this method to
// count predecessors of node n.
//
template<class SearchParams, class Successor>
Uint32 graphSearch(SearchParams &searchParams, Successor &root, Uint32 DEBUG_ONLY(maxNNodes), SearchStackEntry<Successor> *stack)
{
#ifdef DEBUG
SearchStackEntry<Successor> *stackEnd = stack + maxNNodes;
#endif
Uint32 nNodes = 0;
if (!searchParams.isNull(root)) {
SearchStackEntry<Successor> *sp = stack;
// Prepare to visit the root.
Successor *n = &root;
Successor *l = &root + 1;
while (true) {
if (n == l) {
// We're done with all successors between n and l, so pop up one level.
// Finish when we've marked the root.
if (sp == stack)
break;
--sp;
n = sp->next;
l = sp->limit;
} else {
// We still have to visit more successors between n and l. Mark the
// next successor and advance n.
typename SearchParams::NodeRef node = searchParams.getNodeRef(*n++);
searchParams.notePredecessor(node);
if (!searchParams.isMarked(node)) {
// Mark the successor, saving the current place on the stack.
nNodes++;
searchParams.setMarked(node);
assert(sp < stackEnd);
sp->next = n;
sp->limit = l;
sp++;
n = searchParams.getSuccessorsBegin(node);
l = searchParams.getSuccessorsEnd(node);
}
}
}
}
assert(nNodes <= maxNNodes);
return nNodes;
}
//
// A specialized version of graphSearch for graphs with a designated end node.
// The end node must have no successors. There may be other nodes with no successors.
// Unlike all other nodes, which must be reachable from the root, the end node does
// not have to be reachable from the root; if it's not reachable, it will have no
// predecessors.
//
// The end node may be the root node, in which case the graph consists of exactly
// one node.
//
// graphSearchWithEnd guarantees that the end node will be marked and counted,
// even if it is not reachable from the root.
//
template<class SearchParams, class Successor>
Uint32 graphSearchWithEnd(SearchParams &searchParams, Successor &root, Successor &end,
Uint32 maxNNodes, SearchStackEntry<Successor> *stack)
{
assert(!searchParams.isNull(end));
typename SearchParams::NodeRef endNode = searchParams.getNodeRef(end);
assert(searchParams.getSuccessorsBegin(endNode) == searchParams.getSuccessorsEnd(endNode));
searchParams.setMarked(endNode);
return 1 + graphSearch(searchParams, root, maxNNodes, stack);
}
//
// Perform a depth-first search of the directed graph with the given root
// (which may be null). This search will assign a unique integer between 0
// and nNodes-1 to each node in the graph according to the graph's depth-
// first ordering (see [ASU86], page 661). The graph must have exactly nNodes
// nodes reachable from the root. The stack argument must be a preallocated
// temporary array of nNodes entries of type SearchStackEntry<Successor>.
//
// The NodeRef class is a way to refer to nodes in the graph (NodeRefs may be
// pointers to nodes, node indices, etc.).
// The DFSParams is a helper class that depthFirstSearch uses to access the
// contents of graph nodes. DFSParams must support the following types and
// methods (static or dynamic):
//
// typedef Successor;
// typedef NodeRef;
//
// Successor *getSuccessorsBegin(NodeRef n);
// Successor *getSuccessorsEnd(NodeRef n);
// Return the bounds of an array of Successors of node n.
//
// bool isNull(Successor &s);
// Returns true if n is null.
//
// NodeRef getNodeRef(Successor &s);
// Return the node to which the Successor s refers.
//
// bool isUnvisited(NodeRef n);
// bool isNumbered(NodeRef n);
// void setVisited(NodeRef n);
// void setNumbered(NodeRef n, Int32 i);
// Each node in the graph is in one of three states:
// unvisited, visited, or numbered.
// All nodes should be in the unvisited state when depthFirstSearch is
// called. The setVisited and setNumbered methods change the state of
// a node to visited or numbered; i is the node's depth-first ordering
// index. Every node will be numbered when depthFirstSearch exits.
// setVisited is only called on an unvisited node. setNumbered is only
// called on an unvisited or visited node.
// isUnvisited and isNumbered query the current state of a node.
//
// void noteIncomingBackwardEdge(NodeRef n);
// This method is called on node n once for each time n is the target
// of any backward edge. The DFSParams class may use this method to
// determine if the graph contains cycles and which nodes are cycle
// headers.
//
template<class DFSParams, class Successor>
void depthFirstSearch(DFSParams &dfsParams, Successor &root, Uint32 nNodes, SearchStackEntry<Successor> *stack)
{
#ifdef DEBUG
SearchStackEntry<Successor> *stackEnd = stack + nNodes;
#endif
if (!dfsParams.isNull(root)) {
SearchStackEntry<Successor> *sp = stack;
// Prepare to visit the root.
Successor *n = &root;
Successor *l = &root + 1;
while (true) {
if (n == l) {
// We're done with all successors between n and l, so number the
// source node (which is on the stack) and pop up one level.
// Finish when we've marked the root.
if (sp == stack)
break;
--sp;
n = sp->next;
l = sp->limit;
dfsParams.setNumbered(dfsParams.getNodeRef(n[-1]), --nNodes);
} else {
// We still have to visit more successors between n and l. Visit the
// next successor and advance n.
typename DFSParams::NodeRef node = dfsParams.getNodeRef(*n++);
if (dfsParams.isUnvisited(node)) {
// Visit the successor, saving the current place on the stack.
dfsParams.setVisited(node);
assert(sp < stackEnd);
sp->next = n;
sp->limit = l;
sp++;
n = dfsParams.getSuccessorsBegin(node);
l = dfsParams.getSuccessorsEnd(node);
} else
// We have a cycle if we ever encounter a successor that has been visited
// but not yet numbered.
if (!dfsParams.isNumbered(node))
dfsParams.noteIncomingBackwardEdge(node);
}
}
}
assert(nNodes == 0);
}
//
// A specialized version of depthFirstSearch for graphs with a designated end node.
// The end node must have no successors. There may be other nodes with no successors.
// Unlike all other nodes, which must be reachable from the root, the end node does
// not have to be reachable from the root; if it's not reachable, it will have no
// predecessors.
//
// The end node may be the root node, in which case the graph consists of exactly
// one node.
//
// depthFirstSearchWithEnd guarantees that the end node will be assigned the number nNodes-1.
//
template<class DFSParams, class Successor>
void depthFirstSearchWithEnd(DFSParams &dfsParams, Successor &root, Successor &end,
Uint32 nNodes, SearchStackEntry<Successor> *stack)
{
assert(!dfsParams.isNull(end));
typename DFSParams::NodeRef endNode = dfsParams.getNodeRef(end);
assert(dfsParams.getSuccessorsBegin(endNode) == dfsParams.getSuccessorsEnd(endNode));
dfsParams.setNumbered(endNode, --nNodes);
depthFirstSearch(dfsParams, root, nNodes, stack);
}
#endif