gecko-dev/js/public/UbiNode.h

463 строки
18 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_UbiNode_h
#define js_UbiNode_h
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Move.h"
#include "jspubtd.h"
#include "js/GCAPI.h"
#include "js/HashTable.h"
#include "js/TypeDecls.h"
// JS::ubi::Node
//
// JS::ubi::Node is a pointer-like type designed for internal use by heap
// analysis tools. A ubi::Node can refer to:
//
// - a JS value, like a string or object;
// - an internal SpiderMonkey structure, like a shape or a scope chain object
// - an instance of some embedding-provided type: in Firefox, an XPCOM
// object, or an internal DOM node class instance
//
// A ubi::Node instance provides metadata about its referent, and can
// enumerate its referent's outgoing edges, so you can implement heap analysis
// algorithms that walk the graph - finding paths between objects, or
// computing heap dominator trees, say - using ubi::Node, while remaining
// ignorant of the details of the types you're operating on.
//
// Of course, when it comes to presenting the results in a developer-facing
// tool, you'll need to stop being ignorant of those details, because you have
// to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node
// can hand you dynamically checked, properly typed pointers to the original
// objects via the as<T> method, or generate descriptions of the referent
// itself.
//
// ubi::Node instances are lightweight (two-word) value types. Instances:
// - compare equal if and only if they refer to the same object;
// - have hash values that respect their equality relation; and
// - have serializations that are only equal if the ubi::Nodes are equal.
//
// A ubi::Node is only valid for as long as its referent is alive; if its
// referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node
// that refers to a GC-managed object is not automatically a GC root; if the
// GC frees or relocates its referent, the ubi::Node becomes invalid. A
// ubi::Node that refers to a reference-counted object does not bump the
// reference count.
//
// ubi::Node values require no supporting data structures, making them
// feasible for use in memory-constrained devices --- ideally, the memory
// requirements of the algorithm which uses them will be the limiting factor,
// not the demands of ubi::Node itself.
//
// One can construct a ubi::Node value given a pointer to a type that ubi::Node
// supports. In the other direction, one can convert a ubi::Node back to a
// pointer; these downcasts are checked dynamically. In particular, one can
// convert a 'JSRuntime *' to a ubi::Node, yielding a node with an outgoing edge
// for every root registered with the runtime; starting from this, one can walk
// the entire heap. (Of course, one could also start traversal at any other kind
// of type to which one has a pointer.)
//
//
// Extending ubi::Node To Handle Your Embedding's Types
//
// To add support for a new ubi::Node referent type R, you must define a
// specialization of the ubi::Concrete template, ubi::Concrete<R>, which
// inherits from ubi::Base. ubi::Node itself uses the specialization for
// compile-time information (i.e. the checked conversions between R * and
// ubi::Node), and the inheritance for run-time dispatching.
//
//
// ubi::Node Exposes Implementation Details
//
// In many cases, a JavaScript developer's view of their data differs
// substantially from its actual implementation. For example, while the
// ECMAScript specification describes objects as maps from property names to
// sets of attributes (like ECMAScript's [[Value]]), in practice many objects
// have only a pointer to a shape, shared with other similar objects, and
// indexed slots that contain the [[Value]] attributes. As another example, a
// string produced by concatenating two other strings may sometimes be
// represented by a "rope", a structure that points to the two original
// strings.
//
// We intend to use ubi::Node to write tools that report memory usage, so it's
// important that ubi::Node accurately portray how much memory nodes consume.
// Thus, for example, when data that apparently belongs to multiple nodes is
// in fact shared in a common structure, ubi::Node's graph uses a separate
// node for that shared structure, and presents edges to it from the data's
// apparent owners. For example, ubi::Node exposes SpiderMonkey objects'
// shapes and base shapes, and exposes rope string and substring structure,
// because these optimizations become visible when a tool reports how much
// memory a structure consumes.
//
// However, fine granularity is not a goal. When a particular object is the
// exclusive owner of a separate block of memory, ubi::Node may present the
// object and its block as a single node, and add their sizes together when
// reporting the node's size, as there is no meaningful loss of data in this
// case. Thus, for example, a ubi::Node referring to a JavaScript object, when
// asked for the object's size in bytes, includes the object's slot and
// element arrays' sizes in the total. There is no separate ubi::Node value
// representing the slot and element arrays, since they are owned exclusively
// by the object.
//
//
// Presenting Analysis Results To JavaScript Developers
//
// If an analysis provides its results in terms of ubi::Node values, a user
// interface presenting those results will generally need to clean them up
// before they can be understood by JavaScript developers. For example,
// JavaScript developers should not need to understand shapes, only JavaScript
// objects. Similarly, they should not need to understand the distinction
// between DOM nodes and the JavaScript shadow objects that represent them.
//
//
// Rooting Restrictions
//
// At present there is no way to root ubi::Node instances, so instances can't be
// live across any operation that might GC. Analyses using ubi::Node must either
// run to completion and convert their results to some other rootable type, or
// save their intermediate state in some rooted structure if they must GC before
// they complete. (For algorithms like path-finding and dominator tree
// computation, we implement the algorithm avoiding any operation that could
// cause a GC --- and use AutoCheckCannotGC to verify this.)
//
// If this restriction prevents us from implementing interesting tools, we may
// teach the GC how to root ubi::Nodes, fix up hash tables that use them as
// keys, etc.
// Forward declarations of SpiderMonkey's ubi::Node reference types.
namespace js {
class LazyScript;
class Shape;
class BaseShape;
namespace jit {
class JitCode;
}
namespace types {
struct TypeObject;
}
}
namespace JS {
namespace ubi {
class Edge;
class EdgeRange;
// The base class implemented by each ubi::Node referent type. Subclasses must
// not add data members to this class.
class Base {
friend class Node;
// For performance's sake, we'd prefer to avoid a virtual destructor; and
// an empty constructor seems consistent with the 'lightweight value type'
// visible behavior we're trying to achieve. But if the destructor isn't
// virtual, and a subclass overrides it, the subclass's destructor will be
// ignored. Is there a way to make the compiler catch that error?
protected:
// Space for the actual pointer. Concrete subclasses should define a
// properly typed 'get' member function to access this.
void *ptr;
Base(void *ptr) : ptr(ptr) { }
public:
bool operator==(const Base &rhs) const {
// Some compilers will indeed place objects of different types at
// the same address, so technically, we should include the vtable
// in this comparison. But it seems unlikely to cause problems in
// practice.
return ptr == rhs.ptr;
}
bool operator!=(const Base &rhs) const { return !(*this == rhs); }
// Return a human-readable name for the referent's type. The result should
// be statically allocated. (You can use MOZ_UTF16("strings") for this.)
//
// This must always return Concrete<T>::concreteTypeName; we use that
// pointer as a tag for this particular referent type.
virtual const jschar *typeName() const = 0;
// Return the size of this node, in bytes. Include any structures that this
// node owns exclusively that are not exposed as their own ubi::Nodes.
virtual size_t size() const = 0;
// Return an EdgeRange that initially contains all the referent's outgoing
// edges. The EdgeRange should be freed with 'js_delete'. (You could use
// ScopedDJSeletePtr<EdgeRange> to manage it.) On OOM, report an exception
// on |cx| and return nullptr.
virtual EdgeRange *edges(JSContext *cx) const = 0;
private:
Base(const Base &rhs) MOZ_DELETE;
Base &operator=(const Base &rhs) MOZ_DELETE;
};
// A traits template with a specialization for each referent type that
// ubi::Node supports. The specialization must be the concrete subclass of
// Base that represents a pointer to the referent type. It must also
// include the members described here.
template<typename Referent>
struct Concrete {
// The specific jschar array returned by Concrete<T>::typeName.
static const jschar concreteTypeName[];
// Construct an instance of this concrete class in |storage| referring
// to |referent|. Implementations typically use a placement 'new'.
//
// In some cases, |referent| will contain dynamic type information that
// identifies it a some more specific subclass of |Referent|. For example,
// when |Referent| is |JSObject|, then |referent->getClass()| could tell us
// that it's actually a JSFunction. Similarly, if |Referent| is
// |nsISupports|, we would like a ubi::Node that knows its final
// implementation type.
//
// So, we delegate the actual construction to this specialization, which
// knows Referent's details.
static void construct(void *storage, Referent *referent);
};
// A container for a Base instance; all members simply forward to the contained instance.
// This container allows us to pass ubi::Node instances by value.
class Node {
// Storage in which we allocate Base subclasses.
mozilla::AlignedStorage2<Base> storage;
Base *base() { return storage.addr(); }
const Base *base() const { return storage.addr(); }
template<typename T>
void construct(T *ptr) {
static_assert(sizeof(Concrete<T>) == sizeof(*base()),
"ubi::Base specializations must be the same size as ubi::Base");
Concrete<T>::construct(base(), ptr);
}
typedef void (Node::* ConvertibleToBool)();
void nonNull() {}
public:
Node() { construct<void>(nullptr); }
template<typename T>
Node(T *ptr) {
construct(ptr);
}
template<typename T>
Node &operator=(T *ptr) {
construct(ptr);
return *this;
}
// We can construct and assign from rooted forms of pointers.
template<typename T>
Node(const Rooted<T *> &root) {
construct(root.get());
}
template<typename T>
Node &operator=(const Rooted<T *> &root) {
construct(root.get());
return *this;
}
// Constructors accepting SpiderMonkey's other generic-pointer-ish types.
Node(JS::Value value);
Node(JSGCTraceKind kind, void *ptr);
// copy construction and copy assignment just use memcpy, since we know
// instances contain nothing but a vtable pointer and a data pointer.
//
// To be completely correct, concrete classes could provide a virtual
// 'construct' member function, which we could invoke on rhs to construct an
// instance in our storage. But this is good enough; there's no need to jump
// through vtables for copying and assignment that are just going to move
// two words around. The compiler knows how to optimize memcpy.
Node(const Node &rhs) {
memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
}
Node &operator=(const Node &rhs) {
memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
return *this;
}
bool operator==(const Node &rhs) const { return *base() == *rhs.base(); }
bool operator!=(const Node &rhs) const { return *base() != *rhs.base(); }
operator ConvertibleToBool() const {
return base()->ptr ? &Node::nonNull : 0;
}
template<typename T>
bool is() const {
return base()->typeName() == Concrete<T>::concreteTypeName;
}
template<typename T>
T *as() const {
MOZ_ASSERT(is<T>());
return static_cast<T *>(base()->ptr);
}
template<typename T>
T *asOrNull() const {
return is<T>() ? static_cast<T *>(base()->ptr) : nullptr;
}
// If this node refers to something that can be represented as a
// JavaScript value that is safe to expose to JavaScript code, return that
// value. Otherwise return UndefinedValue(). JSStrings and some (but not
// all!) JSObjects can be exposed.
JS::Value exposeToJS() const;
const jschar *typeName() const { return base()->typeName(); }
size_t size() const { return base()->size(); }
EdgeRange *edges(JSContext *cx) const { return base()->edges(cx); }
// A hash policy for ubi::Nodes.
// This simply uses the stock PointerHasher on the ubi::Node's pointer.
// We specialize DefaultHasher below to make this the default.
class HashPolicy {
typedef js::PointerHasher<void *, mozilla::tl::FloorLog2<sizeof(void *)>::value> PtrHash;
public:
typedef Node Lookup;
static js::HashNumber hash(const Lookup &l) { return PtrHash::hash(l.base()->ptr); }
static bool match(const Node &k, const Lookup &l) { return k == l; }
static void rekey(Node &k, const Node &newKey) { k = newKey; }
};
};
// Edge is the abstract base class representing an outgoing edge of a node.
// Edges are owned by EdgeRanges, and need not have assignment operators or copy
// constructors.
//
// Each Edge class should inherit from this base class, overriding as
// appropriate.
class Edge {
protected:
Edge() : name(nullptr), referent() { }
virtual ~Edge() { }
public:
// This edge's name.
//
// The storage is owned by this Edge, and will be freed when this Edge is
// destructed.
//
// (In real life we'll want a better representation for names, to avoid
// creating tons of strings when the names follow a pattern; and we'll need
// to think about lifetimes carefully to ensure traversal stays cheap.)
const jschar *name;
// This edge's referent.
Node referent;
private:
Edge(const Edge &) MOZ_DELETE;
Edge &operator=(const Edge &) MOZ_DELETE;
};
// EdgeRange is an abstract base class for iterating over a node's outgoing
// edges. (This is modeled after js::HashTable<K,V>::Range.)
//
// Concrete instances of this class need not be as lightweight as Node itself,
// since they're usually only instantiated while iterating over a particular
// object's edges. For example, a dumb implementation for JS Cells might use
// JS_TraceChildren to to get the outgoing edges, and then store them in an
// array internal to the EdgeRange.
class EdgeRange {
protected:
// The current front edge of this range, or nullptr if this range is empty.
Edge *front_;
EdgeRange() : front_(nullptr) { }
public:
virtual ~EdgeRange() { };
// True if there are no more edges in this range.
bool empty() const { return !front_; }
// The front edge of this range. This is owned by the EdgeRange, and is
// only guaranteed to live until the next call to popFront, or until
// the EdgeRange is destructed.
const Edge &front() { return *front_; }
// Remove the front edge from this range. This should only be called if
// !empty().
virtual void popFront() = 0;
private:
EdgeRange(const EdgeRange &) MOZ_DELETE;
EdgeRange &operator=(const EdgeRange &) MOZ_DELETE;
};
// Concrete classes for ubi::Node referent types.
// A reusable ubi::Concrete specialization base class for types supported by
// JS_TraceChildren.
template<typename Referent>
class TracerConcrete : public Base {
const jschar *typeName() const MOZ_OVERRIDE { return concreteTypeName; }
size_t size() const MOZ_OVERRIDE { return 0; } // not implemented yet; bug 1011300
EdgeRange *edges(JSContext *) const MOZ_OVERRIDE;
TracerConcrete(Referent *ptr) : Base(ptr) { }
public:
static const jschar concreteTypeName[];
static void construct(void *storage, Referent *ptr) { new (storage) TracerConcrete(ptr); };
};
template<> struct Concrete<JSObject> : TracerConcrete<JSObject> { };
template<> struct Concrete<JSString> : TracerConcrete<JSString> { };
template<> struct Concrete<JSScript> : TracerConcrete<JSScript> { };
template<> struct Concrete<js::LazyScript> : TracerConcrete<js::LazyScript> { };
template<> struct Concrete<js::jit::JitCode> : TracerConcrete<js::jit::JitCode> { };
template<> struct Concrete<js::Shape> : TracerConcrete<js::Shape> { };
template<> struct Concrete<js::BaseShape> : TracerConcrete<js::BaseShape> { };
template<> struct Concrete<js::types::TypeObject> : TracerConcrete<js::types::TypeObject> { };
// The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts.
template<>
class Concrete<void> : public Base {
const jschar *typeName() const MOZ_OVERRIDE;
size_t size() const MOZ_OVERRIDE;
EdgeRange *edges(JSContext *cx) const MOZ_OVERRIDE;
Concrete(void *ptr) : Base(ptr) { }
public:
static void construct(void *storage, void *ptr) { new (storage) Concrete(ptr); }
static const jschar concreteTypeName[];
};
} // namespace ubi
} // namespace JS
namespace js {
// Make ubi::Node::HashPolicy the default hash policy for ubi::Node.
template<> struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy { };
} // namespace js
#endif // js_UbiNode_h