gecko-dev/dom/bluetooth/bluez/BluetoothUnixSocketConnecto...

477 строки
13 KiB
C++

/* -*- Mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; tab-width: 40 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/*
* Copyright 2009, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* NOTE: Due to being based on the D-Bus compatibility layer for
* Android's Bluetooth implementation, this file is licensed under the
* Apache License instead of MPL.
*/
#include "BluetoothUnixSocketConnector.h"
#include <bluetooth/l2cap.h>
#include <bluetooth/rfcomm.h>
#include <bluetooth/sco.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <unistd.h>
#include "nsISupportsImpl.h" // for MOZ_COUNT_CTOR, MOZ_COUNT_DTOR
#include "nsThreadUtils.h" // For NS_IsMainThread.
using namespace mozilla::ipc;
BEGIN_BLUETOOTH_NAMESPACE
static const int RFCOMM_SO_SNDBUF = 70 * 1024; // 70 KB send buffer
static const int L2CAP_SO_SNDBUF = 400 * 1024; // 400 KB send buffer
static const int L2CAP_SO_RCVBUF = 400 * 1024; // 400 KB receive buffer
static const int L2CAP_MAX_MTU = 65000;
BluetoothUnixSocketConnector::BluetoothUnixSocketConnector(
const BluetoothAddress& aAddress,
BluetoothSocketType aType,
int aChannel,
bool aAuth,
bool aEncrypt)
: mAddress(aAddress)
, mType(aType)
, mChannel(aChannel)
, mAuth(aAuth)
, mEncrypt(aEncrypt)
{
MOZ_COUNT_CTOR_INHERITED(BluetoothUnixSocketConnector, UnixSocketConnector);
}
BluetoothUnixSocketConnector::~BluetoothUnixSocketConnector()
{
MOZ_COUNT_DTOR_INHERITED(BluetoothUnixSocketConnector, UnixSocketConnector);
}
nsresult
BluetoothUnixSocketConnector::CreateSocket(int& aFd) const
{
static const int sType[] = {
[0] = 0,
[BluetoothSocketType::RFCOMM] = SOCK_STREAM,
[BluetoothSocketType::SCO] = SOCK_SEQPACKET,
[BluetoothSocketType::L2CAP] = SOCK_SEQPACKET,
[BluetoothSocketType::EL2CAP] = SOCK_STREAM
};
static const int sProtocol[] = {
[0] = 0,
[BluetoothSocketType::RFCOMM] = BTPROTO_RFCOMM,
[BluetoothSocketType::SCO] = BTPROTO_SCO,
[BluetoothSocketType::L2CAP] = BTPROTO_L2CAP,
[BluetoothSocketType::EL2CAP] = BTPROTO_L2CAP
};
MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sType));
MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sProtocol));
BT_LOGR("mType=%d, sType=%d sProtocol=%d",
static_cast<int>(mType), sType[mType], sProtocol[mType]);
aFd = socket(AF_BLUETOOTH, sType[mType], sProtocol[mType]);
if (aFd < 0) {
BT_LOGR("Could not open Bluetooth socket: %d(%s)",
errno, strerror(errno));
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::SetSocketFlags(int aFd) const
{
static const int sReuseAddress = 1;
// Set close-on-exec bit.
int flags = TEMP_FAILURE_RETRY(fcntl(aFd, F_GETFD));
if (flags < 0) {
return NS_ERROR_FAILURE;
}
flags |= FD_CLOEXEC;
int res = TEMP_FAILURE_RETRY(fcntl(aFd, F_SETFD, flags));
if (res < 0) {
return NS_ERROR_FAILURE;
}
// Set non-blocking status flag.
flags = TEMP_FAILURE_RETRY(fcntl(aFd, F_GETFL));
if (flags < 0) {
return NS_ERROR_FAILURE;
}
flags |= O_NONBLOCK;
res = TEMP_FAILURE_RETRY(fcntl(aFd, F_SETFL, flags));
if (res < 0) {
return NS_ERROR_FAILURE;
}
// Set socket addr to be reused even if kernel is still waiting to close.
res = setsockopt(aFd, SOL_SOCKET, SO_REUSEADDR, &sReuseAddress,
sizeof(sReuseAddress));
if (res < 0) {
return NS_ERROR_FAILURE;
}
int lm;
switch (mType) {
case BluetoothSocketType::RFCOMM:
lm |= mAuth ? RFCOMM_LM_AUTH : 0;
lm |= mEncrypt ? RFCOMM_LM_ENCRYPT : 0;
break;
case BluetoothSocketType::L2CAP:
case BluetoothSocketType::EL2CAP:
lm |= mAuth ? L2CAP_LM_AUTH : 0;
lm |= mEncrypt ? L2CAP_LM_ENCRYPT : 0;
break;
default:
// kernel does not yet support LM for SCO
lm = 0;
break;
}
if (lm) {
static const int sLevel[] = {
[0] = 0,
[BluetoothSocketType::RFCOMM] = SOL_RFCOMM,
[BluetoothSocketType::SCO] = 0,
[BluetoothSocketType::L2CAP] = SOL_L2CAP,
[BluetoothSocketType::EL2CAP] = SOL_L2CAP
};
static const int sOptname[] = {
[0] = 0,
[BluetoothSocketType::RFCOMM] = RFCOMM_LM,
[BluetoothSocketType::SCO] = 0,
[BluetoothSocketType::L2CAP] = L2CAP_LM,
[BluetoothSocketType::EL2CAP] = L2CAP_LM
};
MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sLevel));
MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sOptname));
if (setsockopt(aFd, sLevel[mType], sOptname[mType], &lm, sizeof(lm)) < 0) {
BT_LOGR("setsockopt(RFCOMM_LM) failed, throwing");
return NS_ERROR_FAILURE;
}
}
if (mType == BluetoothSocketType::RFCOMM) {
/* Setting RFCOMM socket options */
int sndbuf = RFCOMM_SO_SNDBUF;
if (setsockopt(aFd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf))) {
BT_WARNING("setsockopt(SO_SNDBUF) failed, throwing");
return NS_ERROR_FAILURE;
}
}
if (mType == BluetoothSocketType::L2CAP ||
mType == BluetoothSocketType::EL2CAP) {
/* Setting L2CAP/EL2CAP socket options */
struct l2cap_options opts;
socklen_t optlen = sizeof(opts);
int res = getsockopt(aFd, SOL_L2CAP, L2CAP_OPTIONS, &opts, &optlen);
if (!res) {
/* setting MTU for [E]L2CAP */
opts.omtu = opts.imtu = L2CAP_MAX_MTU;
/* Enable ERTM for [E]L2CAP */
if (mType == BluetoothSocketType::EL2CAP) {
opts.flush_to = 0xffff; /* infinite */
opts.mode = L2CAP_MODE_ERTM;
opts.fcs = 1;
opts.txwin_size = 64;
opts.max_tx = 10;
}
setsockopt(aFd, SOL_L2CAP, L2CAP_OPTIONS, &opts, optlen);
}
if (mType == BluetoothSocketType::EL2CAP) {
/* Set larger SNDBUF and RCVBUF for EL2CAP connections */
int sndbuf = L2CAP_SO_SNDBUF;
if (setsockopt(aFd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf)) < 0) {
BT_LOGR("setsockopt(SO_SNDBUF) failed, throwing");
return NS_ERROR_FAILURE;
}
int rcvbuf = L2CAP_SO_RCVBUF;
if (setsockopt(aFd, SOL_SOCKET, SO_RCVBUF, &rcvbuf, sizeof(rcvbuf)) < 0) {
BT_LOGR("setsockopt(SO_RCVBUF) failed, throwing");
return NS_ERROR_FAILURE;
}
}
}
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::CreateAddress(struct sockaddr& aAddress,
socklen_t& aAddressLength) const
{
switch (mType) {
case BluetoothSocketType::RFCOMM: {
struct sockaddr_rc* rc =
reinterpret_cast<struct sockaddr_rc*>(&aAddress);
rc->rc_family = AF_BLUETOOTH;
nsresult rv = ConvertAddress(mAddress, rc->rc_bdaddr);
if (NS_FAILED(rv)) {
return rv;
}
rc->rc_channel = mChannel;
aAddressLength = sizeof(*rc);
}
break;
case BluetoothSocketType::L2CAP:
case BluetoothSocketType::EL2CAP: {
struct sockaddr_l2* l2 =
reinterpret_cast<struct sockaddr_l2*>(&aAddress);
l2->l2_family = AF_BLUETOOTH;
l2->l2_psm = mChannel;
nsresult rv = ConvertAddress(mAddress, l2->l2_bdaddr);
if (NS_FAILED(rv)) {
return rv;
}
l2->l2_cid = 0;
aAddressLength = sizeof(*l2);
}
break;
case BluetoothSocketType::SCO: {
struct sockaddr_sco* sco =
reinterpret_cast<struct sockaddr_sco*>(&aAddress);
sco->sco_family = AF_BLUETOOTH;
nsresult rv = ConvertAddress(mAddress, sco->sco_bdaddr);
if (NS_FAILED(rv)) {
return rv;
}
sco->sco_pkt_type = 0;
aAddressLength = sizeof(*sco);
}
break;
default:
MOZ_CRASH("Socket type unknown!");
return NS_ERROR_ABORT;
}
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::ConvertAddress(const BluetoothAddress& aAddress,
bdaddr_t& aBdAddr)
{
MOZ_ASSERT(MOZ_ARRAY_LENGTH(aBdAddr.b) == MOZ_ARRAY_LENGTH(aAddress.mAddr));
/* read source address from end backwards */
auto src = aAddress.mAddr + MOZ_ARRAY_LENGTH(aAddress.mAddr) - 1;
for (size_t i = 0ul; i < MOZ_ARRAY_LENGTH(aBdAddr.b); ++i) {
aBdAddr.b[i] = *src--;
}
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::ConvertAddress(const bdaddr_t& aBdAddr,
BluetoothAddress& aAddress)
{
MOZ_ASSERT(MOZ_ARRAY_LENGTH(aBdAddr.b) == MOZ_ARRAY_LENGTH(aAddress.mAddr));
/* read source address from end backwards */
auto src = aBdAddr.b + MOZ_ARRAY_LENGTH(aBdAddr.b) - 1;
for (size_t i = 0ul; i < MOZ_ARRAY_LENGTH(aAddress.mAddr); ++i) {
aAddress.mAddr[i] = *src--;
}
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::ConvertAddress(
const struct sockaddr& aAddress, socklen_t aAddressLength,
BluetoothAddress& aAddressOut)
{
MOZ_ASSERT(aAddress.sa_family == AF_BLUETOOTH);
switch (mType) {
case BluetoothSocketType::RFCOMM: {
const struct sockaddr_rc* rc =
reinterpret_cast<const struct sockaddr_rc*>(&aAddress);
return ConvertAddress(rc->rc_bdaddr, aAddressOut);
}
break;
case BluetoothSocketType::SCO: {
const struct sockaddr_sco* sco =
reinterpret_cast<const struct sockaddr_sco*>(&aAddress);
return ConvertAddress(sco->sco_bdaddr, aAddressOut);
}
break;
case BluetoothSocketType::L2CAP:
case BluetoothSocketType::EL2CAP: {
const struct sockaddr_l2* l2 =
reinterpret_cast<const struct sockaddr_l2*>(&aAddress);
return ConvertAddress(l2->l2_bdaddr, aAddressOut);
}
break;
default:
BT_LOGR("Unknown socket type %d", static_cast<int>(mType));
return NS_ERROR_ILLEGAL_VALUE;
}
}
// |UnixSocketConnector|
nsresult
BluetoothUnixSocketConnector::ConvertAddressToString(
const struct sockaddr& aAddress, socklen_t aAddressLength,
nsACString& aAddressString)
{
MOZ_ASSERT(aAddress.sa_family == AF_BLUETOOTH);
const uint8_t* b;
switch (mType) {
case BluetoothSocketType::RFCOMM: {
const struct sockaddr_rc* rc =
reinterpret_cast<const struct sockaddr_rc*>(&aAddress);
b = rc->rc_bdaddr.b;
}
break;
case BluetoothSocketType::SCO: {
const struct sockaddr_sco* sco =
reinterpret_cast<const struct sockaddr_sco*>(&aAddress);
b = sco->sco_bdaddr.b;
}
break;
case BluetoothSocketType::L2CAP:
case BluetoothSocketType::EL2CAP: {
const struct sockaddr_l2* l2 =
reinterpret_cast<const struct sockaddr_l2*>(&aAddress);
b = l2->l2_bdaddr.b;
}
break;
default:
BT_LOGR("Unknown socket type %d", static_cast<int>(mType));
return NS_ERROR_ILLEGAL_VALUE;
}
char str[32];
snprintf(str, sizeof(str), "%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X",
b[5], b[4], b[3], b[2], b[1], b[0]);
aAddressString.Assign(str);
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::CreateListenSocket(struct sockaddr* aAddress,
socklen_t* aAddressLength,
int& aListenFd)
{
ScopedClose fd;
nsresult rv = CreateSocket(fd.rwget());
if (NS_FAILED(rv)) {
return rv;
}
rv = SetSocketFlags(fd);
if (NS_FAILED(rv)) {
return rv;
}
if (aAddress && aAddressLength) {
rv = CreateAddress(*aAddress, *aAddressLength);
if (NS_FAILED(rv)) {
return rv;
}
}
aListenFd = fd.forget();
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::AcceptStreamSocket(int aListenFd,
struct sockaddr* aAddress,
socklen_t* aAddressLength,
int& aStreamFd)
{
ScopedClose fd(
TEMP_FAILURE_RETRY(accept(aListenFd, aAddress, aAddressLength)));
if (fd < 0) {
NS_WARNING("Cannot accept file descriptor!");
return NS_ERROR_FAILURE;
}
nsresult rv = SetSocketFlags(fd);
if (NS_FAILED(rv)) {
return rv;
}
aStreamFd = fd.forget();
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::CreateStreamSocket(struct sockaddr* aAddress,
socklen_t* aAddressLength,
int& aStreamFd)
{
ScopedClose fd;
nsresult rv = CreateSocket(fd.rwget());
if (NS_FAILED(rv)) {
return rv;
}
rv = SetSocketFlags(fd);
if (NS_FAILED(rv)) {
return rv;
}
if (aAddress && aAddressLength) {
rv = CreateAddress(*aAddress, *aAddressLength);
if (NS_FAILED(rv)) {
return rv;
}
}
aStreamFd = fd.forget();
return NS_OK;
}
nsresult
BluetoothUnixSocketConnector::Duplicate(UnixSocketConnector*& aConnector)
{
aConnector = new BluetoothUnixSocketConnector(*this);
return NS_OK;
}
END_BLUETOOTH_NAMESPACE