gecko-dev/gfx/2d/2D.h

1937 строки
70 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef _MOZILLA_GFX_2D_H
#define _MOZILLA_GFX_2D_H
#include "Types.h"
#include "Point.h"
#include "Rect.h"
#include "Matrix.h"
#include "Quaternion.h"
#include "UserData.h"
#include "FontVariation.h"
#include <vector>
// GenericRefCountedBase allows us to hold on to refcounted objects of any type
// (contrary to RefCounted<T> which requires knowing the type T) and, in
// particular, without having a dependency on that type. This is used for
// DrawTargetSkia to be able to hold on to a GLContext.
#include "mozilla/GenericRefCounted.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Path.h"
// This RefPtr class isn't ideal for usage in Azure, as it doesn't allow T**
// outparams using the &-operator. But it will have to do as there's no easy
// solution.
#include "mozilla/RefPtr.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/ThreadSafeWeakPtr.h"
#include "mozilla/Atomics.h"
#include "mozilla/DebugOnly.h"
#include "nsRegionFwd.h"
#if defined(MOZ_WIDGET_ANDROID) || defined(MOZ_WIDGET_GTK)
# ifndef MOZ_ENABLE_FREETYPE
# define MOZ_ENABLE_FREETYPE
# endif
#endif
struct _cairo_surface;
typedef _cairo_surface cairo_surface_t;
struct _cairo_scaled_font;
typedef _cairo_scaled_font cairo_scaled_font_t;
struct FT_LibraryRec_;
typedef FT_LibraryRec_* FT_Library;
struct FT_FaceRec_;
typedef FT_FaceRec_* FT_Face;
typedef int FT_Error;
struct _FcPattern;
typedef _FcPattern FcPattern;
struct ID3D11Texture2D;
struct ID3D11Device;
struct ID2D1Device;
struct ID2D1DeviceContext;
struct ID2D1Multithread;
struct IDWriteFactory;
struct IDWriteRenderingParams;
struct IDWriteFontFace;
struct IDWriteFontCollection;
class SkCanvas;
struct gfxFontStyle;
struct CGContext;
typedef struct CGContext* CGContextRef;
struct CGFont;
typedef CGFont* CGFontRef;
namespace mozilla {
class Mutex;
namespace wr {
struct FontInstanceOptions;
struct FontInstancePlatformOptions;
} // namespace wr
namespace gfx {
class UnscaledFont;
class ScaledFont;
} // namespace gfx
namespace gfx {
class AlphaBoxBlur;
class ScaledFont;
class SourceSurface;
class DataSourceSurface;
class DrawTarget;
class DrawEventRecorder;
class FilterNode;
class LogForwarder;
struct NativeSurface {
NativeSurfaceType mType;
SurfaceFormat mFormat;
gfx::IntSize mSize;
void* mSurface;
};
/**
* This structure is used to send draw options that are universal to all drawing
* operations.
*/
struct DrawOptions {
/// For constructor parameter description, see member data documentation.
explicit DrawOptions(Float aAlpha = 1.0f,
CompositionOp aCompositionOp = CompositionOp::OP_OVER,
AntialiasMode aAntialiasMode = AntialiasMode::DEFAULT)
: mAlpha(aAlpha),
mCompositionOp(aCompositionOp),
mAntialiasMode(aAntialiasMode) {}
Float mAlpha; /**< Alpha value by which the mask generated by this
operation is multiplied. */
CompositionOp mCompositionOp; /**< The operator that indicates how the source
and destination patterns are blended. */
AntialiasMode mAntialiasMode; /**< The AntiAlias mode used for this drawing
operation. */
};
/**
* This structure is used to send stroke options that are used in stroking
* operations.
*/
struct StrokeOptions {
/// For constructor parameter description, see member data documentation.
explicit StrokeOptions(Float aLineWidth = 1.0f,
JoinStyle aLineJoin = JoinStyle::MITER_OR_BEVEL,
CapStyle aLineCap = CapStyle::BUTT,
Float aMiterLimit = 10.0f, size_t aDashLength = 0,
const Float* aDashPattern = 0, Float aDashOffset = 0.f)
: mLineWidth(aLineWidth),
mMiterLimit(aMiterLimit),
mDashPattern(aDashLength > 0 ? aDashPattern : 0),
mDashLength(aDashLength),
mDashOffset(aDashOffset),
mLineJoin(aLineJoin),
mLineCap(aLineCap) {
MOZ_ASSERT(aDashLength == 0 || aDashPattern);
}
Float mLineWidth; //!< Width of the stroke in userspace.
Float mMiterLimit; //!< Miter limit in units of linewidth
const Float* mDashPattern; /**< Series of on/off userspace lengths defining
dash. Owned by the caller; must live at least as
long as this StrokeOptions.
mDashPattern != null <=> mDashLength > 0. */
size_t mDashLength; //!< Number of on/off lengths in mDashPattern.
Float mDashOffset; /**< Userspace offset within mDashPattern at which
stroking begins. */
JoinStyle mLineJoin; //!< Join style used for joining lines.
CapStyle mLineCap; //!< Cap style used for capping lines.
};
/**
* This structure supplies additional options for calls to DrawSurface.
*/
struct DrawSurfaceOptions {
/// For constructor parameter description, see member data documentation.
explicit DrawSurfaceOptions(
SamplingFilter aSamplingFilter = SamplingFilter::LINEAR,
SamplingBounds aSamplingBounds = SamplingBounds::UNBOUNDED)
: mSamplingFilter(aSamplingFilter), mSamplingBounds(aSamplingBounds) {}
SamplingFilter
mSamplingFilter; /**< SamplingFilter used when resampling source surface
region to the destination region. */
SamplingBounds mSamplingBounds; /**< This indicates whether the implementation
is allowed to sample pixels outside the
source rectangle as specified in
DrawSurface on the surface. */
};
/**
* This class is used to store gradient stops, it can only be used with a
* matching DrawTarget. Not adhering to this condition will make a draw call
* fail.
*/
class GradientStops : public external::AtomicRefCounted<GradientStops> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(GradientStops)
virtual ~GradientStops() = default;
virtual BackendType GetBackendType() const = 0;
virtual bool IsValid() const { return true; }
protected:
GradientStops() {}
};
/**
* This is the base class for 'patterns'. Patterns describe the pixels used as
* the source for a masked composition operation that is done by the different
* drawing commands. These objects are not backend specific, however for
* example the gradient stops on a gradient pattern can be backend specific.
*/
class Pattern {
public:
virtual ~Pattern() = default;
virtual PatternType GetType() const = 0;
protected:
Pattern() = default;
};
class ColorPattern : public Pattern {
public:
// Explicit because consumers should generally use ToDeviceColor when
// creating a ColorPattern.
explicit ColorPattern(const Color& aColor) : mColor(aColor) {}
PatternType GetType() const override { return PatternType::COLOR; }
Color mColor;
};
/**
* This class is used for Linear Gradient Patterns, the gradient stops are
* stored in a separate object and are backend dependent. This class itself
* may be used on the stack.
*/
class LinearGradientPattern : public Pattern {
public:
/// For constructor parameter description, see member data documentation.
LinearGradientPattern(const Point& aBegin, const Point& aEnd,
GradientStops* aStops, const Matrix& aMatrix = Matrix())
: mBegin(aBegin), mEnd(aEnd), mStops(aStops), mMatrix(aMatrix) {}
PatternType GetType() const override { return PatternType::LINEAR_GRADIENT; }
Point mBegin; //!< Start of the linear gradient
Point mEnd; /**< End of the linear gradient - NOTE: In the case
of a zero length gradient it will act as the
color of the last stop. */
RefPtr<GradientStops>
mStops; /**< GradientStops object for this gradient, this
should match the backend type of the draw
target this pattern will be used with. */
Matrix mMatrix; /**< A matrix that transforms the pattern into
user space */
};
/**
* This class is used for Radial Gradient Patterns, the gradient stops are
* stored in a separate object and are backend dependent. This class itself
* may be used on the stack.
*/
class RadialGradientPattern : public Pattern {
public:
/// For constructor parameter description, see member data documentation.
RadialGradientPattern(const Point& aCenter1, const Point& aCenter2,
Float aRadius1, Float aRadius2, GradientStops* aStops,
const Matrix& aMatrix = Matrix())
: mCenter1(aCenter1),
mCenter2(aCenter2),
mRadius1(aRadius1),
mRadius2(aRadius2),
mStops(aStops),
mMatrix(aMatrix) {}
PatternType GetType() const override { return PatternType::RADIAL_GRADIENT; }
Point mCenter1; //!< Center of the inner (focal) circle.
Point mCenter2; //!< Center of the outer circle.
Float mRadius1; //!< Radius of the inner (focal) circle.
Float mRadius2; //!< Radius of the outer circle.
RefPtr<GradientStops>
mStops; /**< GradientStops object for this gradient, this
should match the backend type of the draw target
this pattern will be used with. */
Matrix mMatrix; //!< A matrix that transforms the pattern into user space
};
/**
* This class is used for Surface Patterns, they wrap a surface and a
* repetition mode for the surface. This may be used on the stack.
*/
class SurfacePattern : public Pattern {
public:
/// For constructor parameter description, see member data documentation.
SurfacePattern(SourceSurface* aSourceSurface, ExtendMode aExtendMode,
const Matrix& aMatrix = Matrix(),
SamplingFilter aSamplingFilter = SamplingFilter::GOOD,
const IntRect& aSamplingRect = IntRect())
: mSurface(aSourceSurface),
mExtendMode(aExtendMode),
mSamplingFilter(aSamplingFilter),
mMatrix(aMatrix),
mSamplingRect(aSamplingRect) {}
PatternType GetType() const override { return PatternType::SURFACE; }
RefPtr<SourceSurface> mSurface; //!< Surface to use for drawing
ExtendMode mExtendMode; /**< This determines how the image is extended
outside the bounds of the image */
SamplingFilter
mSamplingFilter; //!< Resampling filter for resampling the image.
Matrix mMatrix; //!< Transforms the pattern into user space
IntRect mSamplingRect; /**< Rect that must not be sampled outside of,
or an empty rect if none has been
specified. */
};
class StoredPattern;
class DrawTargetCaptureImpl;
static const int32_t kReasonableSurfaceSize = 8192;
/**
* This is the base class for source surfaces. These objects are surfaces
* which may be used as a source in a SurfacePattern or a DrawSurface call.
* They cannot be drawn to directly.
*
* Although SourceSurface has thread-safe refcount, some SourceSurface cannot
* be used on random threads at the same time. Only DataSourceSurface can be
* used on random threads now. This will be fixed in the future. Eventually
* all SourceSurface should be thread-safe.
*/
class SourceSurface : public external::AtomicRefCounted<SourceSurface> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(SourceSurface)
virtual ~SourceSurface() = default;
virtual SurfaceType GetType() const = 0;
virtual IntSize GetSize() const = 0;
/* GetRect is useful for when the underlying surface doesn't actually
* have a backing store starting at 0, 0. e.g. SourceSurfaceOffset */
virtual IntRect GetRect() const { return IntRect(IntPoint(0, 0), GetSize()); }
virtual SurfaceFormat GetFormat() const = 0;
/** This returns false if some event has made this source surface invalid for
* usage with current DrawTargets. For example in the case of Direct2D this
* could return false if we have switched devices since this surface was
* created.
*/
virtual bool IsValid() const { return true; }
/**
* This returns true if it is the same underlying surface data, even if
* the objects are different (e.g. indirection due to
* DataSourceSurfaceWrapper).
*/
virtual bool Equals(SourceSurface* aOther, bool aSymmetric = true) {
return this == aOther ||
(aSymmetric && aOther && aOther->Equals(this, false));
}
/**
* This function will return true if the surface type matches that of a
* DataSourceSurface and if GetDataSurface will return the same object.
*/
bool IsDataSourceSurface() const {
SurfaceType type = GetType();
return type == SurfaceType::DATA || type == SurfaceType::DATA_SHARED ||
type == SurfaceType::DATA_RECYCLING_SHARED;
}
/**
* This function will get a DataSourceSurface for this surface, a
* DataSourceSurface's data can be accessed directly.
*/
virtual already_AddRefed<DataSourceSurface> GetDataSurface() = 0;
/** This function will return a SourceSurface without any offset. */
virtual already_AddRefed<SourceSurface> GetUnderlyingSurface() {
RefPtr<SourceSurface> surface = this;
return surface.forget();
}
/** Tries to get this SourceSurface's native surface. This will fail if aType
* is not the type of this SourceSurface's native surface.
*/
virtual void* GetNativeSurface(NativeSurfaceType aType) { return nullptr; }
void AddUserData(UserDataKey* key, void* userData, void (*destroy)(void*)) {
mUserData.Add(key, userData, destroy);
}
void* GetUserData(UserDataKey* key) const { return mUserData.Get(key); }
void RemoveUserData(UserDataKey* key) { mUserData.RemoveAndDestroy(key); }
protected:
friend class DrawTargetCaptureImpl;
friend class StoredPattern;
// This is for internal use, it ensures the SourceSurface's data remains
// valid during the lifetime of the SourceSurface.
// @todo XXX - We need something better here :(. But we may be able to get rid
// of CreateWrappingDataSourceSurface in the future.
virtual void GuaranteePersistance() {}
UserData mUserData;
};
class DataSourceSurface : public SourceSurface {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(DataSourceSurface, override)
DataSourceSurface() : mMapCount(0) {}
#ifdef DEBUG
virtual ~DataSourceSurface() { MOZ_ASSERT(mMapCount == 0); }
#endif
struct MappedSurface {
uint8_t* mData;
int32_t mStride;
};
enum MapType { READ, WRITE, READ_WRITE };
/**
* This is a scoped version of Map(). Map() is called in the constructor and
* Unmap() in the destructor. Use this for automatic unmapping of your data
* surfaces.
*
* Use IsMapped() to verify whether Map() succeeded or not.
*/
class ScopedMap final {
public:
ScopedMap(DataSourceSurface* aSurface, MapType aType)
: mSurface(aSurface), mIsMapped(aSurface->Map(aType, &mMap)) {}
ScopedMap(ScopedMap&& aOther)
: mSurface(std::move(aOther.mSurface)),
mMap(aOther.mMap),
mIsMapped(aOther.mIsMapped) {
aOther.mMap.mData = nullptr;
aOther.mIsMapped = false;
}
ScopedMap& operator=(ScopedMap&& aOther) {
if (mIsMapped) {
mSurface->Unmap();
}
mSurface = std::move(aOther.mSurface);
mMap = aOther.mMap;
mIsMapped = aOther.mIsMapped;
aOther.mMap.mData = nullptr;
aOther.mIsMapped = false;
return *this;
}
~ScopedMap() {
if (mIsMapped) {
mSurface->Unmap();
}
}
uint8_t* GetData() const {
MOZ_ASSERT(mIsMapped);
return mMap.mData;
}
int32_t GetStride() const {
MOZ_ASSERT(mIsMapped);
return mMap.mStride;
}
const MappedSurface* GetMappedSurface() const {
MOZ_ASSERT(mIsMapped);
return &mMap;
}
bool IsMapped() const { return mIsMapped; }
private:
ScopedMap(const ScopedMap& aOther) = delete;
ScopedMap& operator=(const ScopedMap& aOther) = delete;
RefPtr<DataSourceSurface> mSurface;
MappedSurface mMap;
bool mIsMapped;
};
SurfaceType GetType() const override { return SurfaceType::DATA; }
/** @deprecated
* Get the raw bitmap data of the surface.
* Can return null if there was OOM allocating surface data.
*
* Deprecated means you shouldn't be using this!! Use Map instead.
* Please deny any reviews which add calls to this!
*/
virtual uint8_t* GetData() = 0;
/** @deprecated
* Stride of the surface, distance in bytes between the start of the image
* data belonging to row y and row y+1. This may be negative.
* Can return 0 if there was OOM allocating surface data.
*/
virtual int32_t Stride() = 0;
/**
* The caller is responsible for ensuring aMappedSurface is not null.
// Althought Map (and Moz2D in general) isn't normally threadsafe,
// we want to allow it for SourceSurfaceRawData since it should
// always be fine (for reading at least).
//
// This is the same as the base class implementation except using
// mMapCount instead of mIsMapped since that breaks for multithread.
//
// Once mfbt supports Monitors we should implement proper read/write
// locking to prevent write races.
*/
virtual bool Map(MapType, MappedSurface* aMappedSurface) {
aMappedSurface->mData = GetData();
aMappedSurface->mStride = Stride();
bool success = !!aMappedSurface->mData;
if (success) {
mMapCount++;
}
return success;
}
virtual void Unmap() {
mMapCount--;
MOZ_ASSERT(mMapCount >= 0);
}
/**
* Returns a DataSourceSurface with the same data as this one, but
* guaranteed to have surface->GetType() == SurfaceType::DATA.
*
* The returning surface might be null, because of OOM or gfx device reset.
* The caller needs to do null-check before using it.
*/
already_AddRefed<DataSourceSurface> GetDataSurface() override;
/**
* Add the size of the underlying data buffer to the aggregate.
*/
virtual void AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
size_t& aHeapSizeOut,
size_t& aNonHeapSizeOut,
size_t& aExtHandlesOut,
uint64_t& aExtIdOut) const {}
/**
* Returns whether or not the data was allocated on the heap. This should
* be used to determine if the memory needs to be cleared to 0.
*/
virtual bool OnHeap() const { return true; }
/**
* Yields a dirty rect of what has changed since it was last called.
*/
virtual Maybe<IntRect> TakeDirtyRect() { return Nothing(); }
/**
* Indicate a region which has changed in the surface.
*/
virtual void Invalidate(const IntRect& aDirtyRect) {}
protected:
Atomic<int32_t> mMapCount;
};
/** This is an abstract object that accepts path segments. */
class PathSink : public RefCounted<PathSink> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(PathSink)
virtual ~PathSink() = default;
/** Move the current point in the path, any figure currently being drawn will
* be considered closed during fill operations, however when stroking the
* closing line segment will not be drawn.
*/
virtual void MoveTo(const Point& aPoint) = 0;
/** Add a linesegment to the current figure */
virtual void LineTo(const Point& aPoint) = 0;
/** Add a cubic bezier curve to the current figure */
virtual void BezierTo(const Point& aCP1, const Point& aCP2,
const Point& aCP3) = 0;
/** Add a quadratic bezier curve to the current figure */
virtual void QuadraticBezierTo(const Point& aCP1, const Point& aCP2) = 0;
/** Close the current figure, this will essentially generate a line segment
* from the current point to the starting point for the current figure
*/
virtual void Close() = 0;
/** Add an arc to the current figure */
virtual void Arc(const Point& aOrigin, float aRadius, float aStartAngle,
float aEndAngle, bool aAntiClockwise = false) = 0;
virtual Point CurrentPoint() const { return mCurrentPoint; }
virtual Point BeginPoint() const { return mBeginPoint; }
virtual void SetCurrentPoint(const Point& aPoint) { mCurrentPoint = aPoint; }
virtual void SetBeginPoint(const Point& aPoint) { mBeginPoint = aPoint; }
protected:
/** Point the current subpath is at - or where the next subpath will start
* if there is no active subpath.
*/
Point mCurrentPoint;
/** Position of the previous MoveTo operation. */
Point mBeginPoint;
};
class PathBuilder;
class FlattenedPath;
/** The path class is used to create (sets of) figures of any shape that can be
* filled or stroked to a DrawTarget
*/
class Path : public external::AtomicRefCounted<Path> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(Path)
virtual ~Path();
virtual BackendType GetBackendType() const = 0;
/** This returns a PathBuilder object that contains a copy of the contents of
* this path and is still writable.
*/
inline already_AddRefed<PathBuilder> CopyToBuilder() const {
return CopyToBuilder(GetFillRule());
}
inline already_AddRefed<PathBuilder> TransformedCopyToBuilder(
const Matrix& aTransform) const {
return TransformedCopyToBuilder(aTransform, GetFillRule());
}
/** This returns a PathBuilder object that contains a copy of the contents of
* this path, converted to use the specified FillRule, and still writable.
*/
virtual already_AddRefed<PathBuilder> CopyToBuilder(
FillRule aFillRule) const = 0;
virtual already_AddRefed<PathBuilder> TransformedCopyToBuilder(
const Matrix& aTransform, FillRule aFillRule) const = 0;
/** This function checks if a point lies within a path. It allows passing a
* transform that will transform the path to the coordinate space in which
* aPoint is given.
*/
virtual bool ContainsPoint(const Point& aPoint,
const Matrix& aTransform) const = 0;
/** This function checks if a point lies within the stroke of a path using the
* specified strokeoptions. It allows passing a transform that will transform
* the path to the coordinate space in which aPoint is given.
*/
virtual bool StrokeContainsPoint(const StrokeOptions& aStrokeOptions,
const Point& aPoint,
const Matrix& aTransform) const = 0;
/** This functions gets the bounds of this path. These bounds are not
* guaranteed to be tight. A transform may be specified that gives the bounds
* after application of the transform.
*/
virtual Rect GetBounds(const Matrix& aTransform = Matrix()) const = 0;
/** This function gets the bounds of the stroke of this path using the
* specified strokeoptions. These bounds are not guaranteed to be tight.
* A transform may be specified that gives the bounds after application of
* the transform.
*/
virtual Rect GetStrokedBounds(const StrokeOptions& aStrokeOptions,
const Matrix& aTransform = Matrix()) const = 0;
/** Take the contents of this path and stream it to another sink, this works
* regardless of the backend that might be used for the destination sink.
*/
virtual void StreamToSink(PathSink* aSink) const = 0;
/** This gets the fillrule this path's builder was created with. This is not
* mutable.
*/
virtual FillRule GetFillRule() const = 0;
virtual Float ComputeLength();
virtual Point ComputePointAtLength(Float aLength, Point* aTangent = nullptr);
protected:
Path();
void EnsureFlattenedPath();
RefPtr<FlattenedPath> mFlattenedPath;
};
/** The PathBuilder class allows path creation. Once finish is called on the
* pathbuilder it may no longer be written to.
*/
class PathBuilder : public PathSink {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(PathBuilder, override)
/** Finish writing to the path and return a Path object that can be used for
* drawing. Future use of the builder results in a crash!
*/
virtual already_AddRefed<Path> Finish() = 0;
virtual BackendType GetBackendType() const = 0;
};
struct Glyph {
uint32_t mIndex;
Point mPosition;
};
static inline bool operator==(const Glyph& aOne, const Glyph& aOther) {
return aOne.mIndex == aOther.mIndex && aOne.mPosition == aOther.mPosition;
}
/** This class functions as a glyph buffer that can be drawn to a DrawTarget.
* @todo XXX - This should probably contain the guts of gfxTextRun in the future
* as roc suggested. But for now it's a simple container for a glyph vector.
*/
struct GlyphBuffer {
const Glyph*
mGlyphs; //!< A pointer to a buffer of glyphs. Managed by the caller.
uint32_t mNumGlyphs; //!< Number of glyphs mGlyphs points to.
};
#ifdef MOZ_ENABLE_FREETYPE
class SharedFTFace;
/** SharedFTFaceData abstracts data that may be used to back a SharedFTFace.
* Its main function is to manage the lifetime of the data and ensure that it
* lasts as long as the face.
*/
class SharedFTFaceData {
public:
/** Utility for creating a new face from this data. */
virtual already_AddRefed<SharedFTFace> CloneFace(int aFaceIndex = 0) {
return nullptr;
}
/** Binds the data's lifetime to the face. */
virtual void BindData() = 0;
/** Signals that the data is no longer needed by a face. */
virtual void ReleaseData() = 0;
};
/** Wrapper class for ref-counted SharedFTFaceData that handles calling the
* appropriate ref-counting methods
*/
template <class T>
class SharedFTFaceRefCountedData : public SharedFTFaceData {
public:
void BindData() { static_cast<T*>(this)->AddRef(); }
void ReleaseData() { static_cast<T*>(this)->Release(); }
};
/** SharedFTFace is a shared wrapper around an FT_Face. It is ref-counted,
* unlike FT_Face itself, so that it may be shared among many users with
* RefPtr. Users should take care to lock SharedFTFace before accessing any
* FT_Face fields that may change to ensure exclusive access to it. It also
* allows backing data's lifetime to be bound to it via SharedFTFaceData so
* that the data will not disappear before the face does.
*/
class SharedFTFace : public external::AtomicRefCounted<SharedFTFace> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(SharedFTFace)
explicit SharedFTFace(FT_Face aFace, SharedFTFaceData* aData = nullptr);
virtual ~SharedFTFace();
FT_Face GetFace() const { return mFace; }
SharedFTFaceData* GetData() const { return mData; }
/** Locks the face for exclusive access by a given owner. Returns false if
* the given owner is acquiring the lock for the first time, and true if
* the owner was the prior owner of the lock. Thus the return value can be
* used to do owner-specific initialization of the FT face such as setting
* a size or transform that may have been invalidated by a previous owner.
* If no owner is given, then the user should avoid modifying any state on
* the face so as not to invalidate the prior owner's modification.
*/
bool Lock(void* aOwner = nullptr) {
mLock.Lock();
return !aOwner || mLastLockOwner.exchange(aOwner) == aOwner;
}
void Unlock() { mLock.Unlock(); }
/** Should be called when a lock owner is destroyed so that we don't have
* a dangling pointer to a destroyed owner.
*/
void ForgetLockOwner(void* aOwner) {
if (aOwner) {
mLastLockOwner.compareExchange(aOwner, nullptr);
}
}
private:
FT_Face mFace;
SharedFTFaceData* mData;
Mutex mLock;
// Remember the last owner of the lock, even after unlocking, to allow users
// to avoid reinitializing state on the FT face if the last owner hasn't
// changed by the next time it is locked with the same owner.
Atomic<void*> mLastLockOwner;
};
#endif
class UnscaledFont : public SupportsThreadSafeWeakPtr<UnscaledFont> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(UnscaledFont)
MOZ_DECLARE_THREADSAFEWEAKREFERENCE_TYPENAME(UnscaledFont)
virtual ~UnscaledFont();
virtual FontType GetType() const = 0;
static uint32_t DeletionCounter() { return sDeletionCounter; }
typedef void (*FontFileDataOutput)(const uint8_t* aData, uint32_t aLength,
uint32_t aIndex, void* aBaton);
typedef void (*WRFontDescriptorOutput)(const uint8_t* aData, uint32_t aLength,
uint32_t aIndex, void* aBaton);
typedef void (*FontInstanceDataOutput)(const uint8_t* aData, uint32_t aLength,
void* aBaton);
typedef void (*FontDescriptorOutput)(const uint8_t* aData, uint32_t aLength,
uint32_t aIndex, void* aBaton);
virtual bool GetFontFileData(FontFileDataOutput, void*) { return false; }
virtual bool GetWRFontDescriptor(WRFontDescriptorOutput, void*) {
return false;
}
virtual bool GetFontInstanceData(FontInstanceDataOutput, void*) {
return false;
}
virtual bool GetFontDescriptor(FontDescriptorOutput, void*) { return false; }
virtual already_AddRefed<ScaledFont> CreateScaledFont(
Float aGlyphSize, const uint8_t* aInstanceData,
uint32_t aInstanceDataLength, const FontVariation* aVariations,
uint32_t aNumVariations) {
return nullptr;
}
virtual already_AddRefed<ScaledFont> CreateScaledFontFromWRFont(
Float aGlyphSize, const wr::FontInstanceOptions* aOptions,
const wr::FontInstancePlatformOptions* aPlatformOptions,
const FontVariation* aVariations, uint32_t aNumVariations) {
return CreateScaledFont(aGlyphSize, nullptr, 0, aVariations,
aNumVariations);
}
protected:
UnscaledFont() {}
private:
static Atomic<uint32_t> sDeletionCounter;
};
/** This class is an abstraction of a backend/platform specific font object
* at a particular size. It is passed into text drawing calls to describe
* the font used for the drawing call.
*/
class ScaledFont : public SupportsThreadSafeWeakPtr<ScaledFont> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(ScaledFont)
MOZ_DECLARE_THREADSAFEWEAKREFERENCE_TYPENAME(ScaledFont)
virtual ~ScaledFont();
virtual FontType GetType() const = 0;
virtual Float GetSize() const = 0;
virtual AntialiasMode GetDefaultAAMode() { return AntialiasMode::DEFAULT; }
static uint32_t DeletionCounter() { return sDeletionCounter; }
/** This allows getting a path that describes the outline of a set of glyphs.
* A target is passed in so that the guarantee is made the returned path
* can be used with any DrawTarget that has the same backend as the one
* passed in.
*/
virtual already_AddRefed<Path> GetPathForGlyphs(
const GlyphBuffer& aBuffer, const DrawTarget* aTarget) = 0;
/** This copies the path describing the glyphs into a PathBuilder. We use this
* API rather than a generic API to append paths because it allows easier
* implementation in some backends, and more efficient implementation in
* others.
*/
virtual void CopyGlyphsToBuilder(const GlyphBuffer& aBuffer,
PathBuilder* aBuilder,
const Matrix* aTransformHint = nullptr) = 0;
typedef void (*FontInstanceDataOutput)(const uint8_t* aData, uint32_t aLength,
const FontVariation* aVariations,
uint32_t aNumVariations, void* aBaton);
virtual bool GetFontInstanceData(FontInstanceDataOutput, void*) {
return false;
}
virtual bool GetWRFontInstanceOptions(
Maybe<wr::FontInstanceOptions>* aOutOptions,
Maybe<wr::FontInstancePlatformOptions>* aOutPlatformOptions,
std::vector<FontVariation>* aOutVariations) {
return false;
}
virtual bool CanSerialize() { return false; }
virtual bool HasVariationSettings() { return false; }
void AddUserData(UserDataKey* key, void* userData, void (*destroy)(void*)) {
mUserData.Add(key, userData, destroy);
}
void* GetUserData(UserDataKey* key) { return mUserData.Get(key); }
void RemoveUserData(UserDataKey* key) { mUserData.RemoveAndDestroy(key); }
const RefPtr<UnscaledFont>& GetUnscaledFont() const { return mUnscaledFont; }
virtual cairo_scaled_font_t* GetCairoScaledFont() { return nullptr; }
Float GetSyntheticObliqueAngle() const { return mSyntheticObliqueAngle; }
void SetSyntheticObliqueAngle(Float aAngle) {
mSyntheticObliqueAngle = aAngle;
}
protected:
explicit ScaledFont(const RefPtr<UnscaledFont>& aUnscaledFont)
: mUnscaledFont(aUnscaledFont), mSyntheticObliqueAngle(0.0f) {}
UserData mUserData;
RefPtr<UnscaledFont> mUnscaledFont;
Float mSyntheticObliqueAngle;
private:
static Atomic<uint32_t> sDeletionCounter;
};
/**
* Derived classes hold a native font resource from which to create
* ScaledFonts.
*/
class NativeFontResource
: public external::AtomicRefCounted<NativeFontResource> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(NativeFontResource)
/**
* Creates a UnscaledFont using the font corresponding to the index.
*
* @param aIndex index for the font within the resource.
* @param aInstanceData pointer to read-only buffer of any available instance
* data.
* @param aInstanceDataLength the size of the instance data.
* @return an already_addrefed UnscaledFont, containing nullptr if failed.
*/
virtual already_AddRefed<UnscaledFont> CreateUnscaledFont(
uint32_t aIndex, const uint8_t* aInstanceData,
uint32_t aInstanceDataLength) = 0;
virtual ~NativeFontResource() = default;
};
class DrawTargetCapture;
/** This is the main class used for all the drawing. It is created through the
* factory and accepts drawing commands. The results of drawing to a target
* may be used either through a Snapshot or by flushing the target and directly
* accessing the backing store a DrawTarget was created with.
*/
class DrawTarget : public external::AtomicRefCounted<DrawTarget> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(DrawTarget)
DrawTarget()
: mTransformDirty(false),
mPermitSubpixelAA(false),
mFormat(SurfaceFormat::UNKNOWN) {}
virtual ~DrawTarget() = default;
virtual bool IsValid() const { return true; };
virtual DrawTargetType GetType() const = 0;
virtual BackendType GetBackendType() const = 0;
virtual bool IsRecording() const { return false; }
virtual bool IsCaptureDT() const { return false; }
/**
* Returns a SourceSurface which is a snapshot of the current contents of the
* DrawTarget. Multiple calls to Snapshot() without any drawing operations in
* between will normally return the same SourceSurface object.
*/
virtual already_AddRefed<SourceSurface> Snapshot() = 0;
// Snapshots the contents and returns an alpha mask
// based on the RGB values.
virtual already_AddRefed<SourceSurface> IntoLuminanceSource(
LuminanceType aLuminanceType, float aOpacity);
virtual IntSize GetSize() const = 0;
virtual IntRect GetRect() const { return IntRect(IntPoint(0, 0), GetSize()); }
/**
* If possible returns the bits to this DrawTarget for direct manipulation.
* While the bits is locked any modifications to this DrawTarget is forbidden.
* Release takes the original data pointer for safety.
*/
virtual bool LockBits(uint8_t** aData, IntSize* aSize, int32_t* aStride,
SurfaceFormat* aFormat, IntPoint* aOrigin = nullptr) {
return false;
}
virtual void ReleaseBits(uint8_t* aData) {}
/** Ensure that the DrawTarget backend has flushed all drawing operations to
* this draw target. This must be called before using the backing surface of
* this draw target outside of GFX 2D code.
*/
virtual void Flush() = 0;
/**
* Realize a DrawTargetCapture onto the draw target.
*
* @param aSource Capture DrawTarget to draw
* @param aTransform Transform to apply when replaying commands
*/
virtual void DrawCapturedDT(DrawTargetCapture* aCaptureDT,
const Matrix& aTransform);
/**
* Draw a surface to the draw target. Possibly doing partial drawing or
* applying scaling. No sampling happens outside the source.
*
* @param aSurface Source surface to draw
* @param aDest Destination rectangle that this drawing operation should draw
* to
* @param aSource Source rectangle in aSurface coordinates, this area of
* aSurface
* will be stretched to the size of aDest.
* @param aOptions General draw options that are applied to the operation
* @param aSurfOptions DrawSurface options that are applied
*/
virtual void DrawSurface(
SourceSurface* aSurface, const Rect& aDest, const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions = DrawSurfaceOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
virtual void DrawDependentSurface(
uint64_t aId, const Rect& aDest,
const DrawSurfaceOptions& aSurfOptions = DrawSurfaceOptions(),
const DrawOptions& aOptions = DrawOptions()) {
MOZ_CRASH("GFX: DrawDependentSurface");
}
/**
* Draw the output of a FilterNode to the DrawTarget.
*
* @param aNode FilterNode to draw
* @param aSourceRect Source rectangle in FilterNode space to draw
* @param aDestPoint Destination point on the DrawTarget to draw the
* SourceRectangle of the filter output to
*/
virtual void DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Blend a surface to the draw target with a shadow. The shadow is drawn as a
* gaussian blur using a specified sigma. The shadow is clipped to the size
* of the input surface, so the input surface should contain a transparent
* border the size of the approximate coverage of the blur (3 * aSigma).
* NOTE: This function works in device space!
*
* @param aSurface Source surface to draw.
* @param aDest Destination point that this drawing operation should draw to.
* @param aColor Color of the drawn shadow
* @param aOffset Offset of the shadow
* @param aSigma Sigma used for the guassian filter kernel
* @param aOperator Composition operator used
*/
virtual void DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest, const Color& aColor,
const Point& aOffset, Float aSigma,
CompositionOp aOperator) = 0;
/**
* Clear a rectangle on the draw target to transparent black. This will
* respect the clipping region and transform.
*
* @param aRect Rectangle to clear
*/
virtual void ClearRect(const Rect& aRect) = 0;
/**
* This is essentially a 'memcpy' between two surfaces. It moves a pixel
* aligned area from the source surface unscaled directly onto the
* drawtarget. This ignores both transform and clip.
*
* @param aSurface Surface to copy from
* @param aSourceRect Source rectangle to be copied
* @param aDest Destination point to copy the surface to
*/
virtual void CopySurface(SourceSurface* aSurface, const IntRect& aSourceRect,
const IntPoint& aDestination) = 0;
/** @see CopySurface
* Same as CopySurface, except uses itself as the source.
*
* Some backends may be able to optimize this better
* than just taking a snapshot and using CopySurface.
*/
virtual void CopyRect(const IntRect& aSourceRect,
const IntPoint& aDestination) {
RefPtr<SourceSurface> source = Snapshot();
CopySurface(source, aSourceRect, aDestination);
}
/**
* Fill a rectangle on the DrawTarget with a certain source pattern.
*
* @param aRect Rectangle that forms the mask of this filling operation
* @param aPattern Pattern that forms the source of this filling operation
* @param aOptions Options that are applied to this operation
*/
virtual void FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Fill a rounded rectangle on the DrawTarget with a certain source pattern.
*
* @param aRect Rounded rectangle that forms the mask of this filling
* operation
* @param aPattern Pattern that forms the source of this filling operation
* @param aOptions Options that are applied to this operation
*/
virtual void FillRoundedRect(const RoundedRect& aRect,
const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions());
/**
* Stroke a rectangle on the DrawTarget with a certain source pattern.
*
* @param aRect Rectangle that forms the mask of this stroking operation
* @param aPattern Pattern that forms the source of this stroking operation
* @param aOptions Options that are applied to this operation
*/
virtual void StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Stroke a line on the DrawTarget with a certain source pattern.
*
* @param aStart Starting point of the line
* @param aEnd End point of the line
* @param aPattern Pattern that forms the source of this stroking operation
* @param aOptions Options that are applied to this operation
*/
virtual void StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Stroke a path on the draw target with a certain source pattern.
*
* @param aPath Path that is to be stroked
* @param aPattern Pattern that should be used for the stroke
* @param aStrokeOptions Stroke options used for this operation
* @param aOptions Draw options used for this operation
*/
virtual void Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Fill a path on the draw target with a certain source pattern.
*
* @param aPath Path that is to be filled
* @param aPattern Pattern that should be used for the fill
* @param aOptions Draw options used for this operation
*/
virtual void Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Fill a series of glyphs on the draw target with a certain source pattern.
*/
virtual void FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Stroke a series of glyphs on the draw target with a certain source pattern.
*/
virtual void StrokeGlyphs(
ScaledFont* aFont, const GlyphBuffer& aBuffer, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions());
/**
* This takes a source pattern and a mask, and composites the source pattern
* onto the destination surface using the alpha channel of the mask pattern
* as a mask for the operation.
*
* @param aSource Source pattern
* @param aMask Mask pattern
* @param aOptions Drawing options
*/
virtual void Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* This takes a source pattern and a mask, and composites the source pattern
* onto the destination surface using the alpha channel of the mask source.
* The operation is bound by the extents of the mask.
*
* @param aSource Source pattern
* @param aMask Mask surface
* @param aOffset a transformed offset that the surface is masked at
* @param aOptions Drawing options
*/
virtual void MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Draw aSurface using the 3D transform aMatrix. The DrawTarget's transform
* and clip are applied after the 3D transform.
*
* If the transform fails (i.e. because aMatrix is singular), false is
* returned and nothing is drawn.
*/
virtual bool Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix);
/**
* Push a clip to the DrawTarget.
*
* @param aPath The path to clip to
*/
virtual void PushClip(const Path* aPath) = 0;
/**
* Push an axis-aligned rectangular clip to the DrawTarget. This rectangle
* is specified in user space.
*
* @param aRect The rect to clip to
*/
virtual void PushClipRect(const Rect& aRect) = 0;
/**
* Push a clip region specifed by the union of axis-aligned rectangular
* clips to the DrawTarget. These rectangles are specified in device space.
* This must be balanced by a corresponding call to PopClip within a layer.
*
* @param aRects The rects to clip to
* @param aCount The number of rectangles
*/
virtual void PushDeviceSpaceClipRects(const IntRect* aRects, uint32_t aCount);
/** Pop a clip from the DrawTarget. A pop without a corresponding push will
* be ignored.
*/
virtual void PopClip() = 0;
/**
* Push a 'layer' to the DrawTarget, a layer is a temporary surface that all
* drawing will be redirected to, this is used for example to support group
* opacity or the masking of groups. Clips must be balanced within a layer,
* i.e. between a matching PushLayer/PopLayer pair there must be as many
* PushClip(Rect) calls as there are PopClip calls.
*
* @param aOpaque Whether the layer will be opaque
* @param aOpacity Opacity of the layer
* @param aMask Mask applied to the layer
* @param aMaskTransform Transform applied to the layer mask
* @param aBounds Optional bounds in device space to which the layer is
* limited in size.
* @param aCopyBackground Whether to copy the background into the layer, this
* is only supported when aOpaque is true.
*/
virtual void PushLayer(bool aOpaque, Float aOpacity, SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds = IntRect(),
bool aCopyBackground = false) {
MOZ_CRASH("GFX: PushLayer");
}
/**
* Push a 'layer' to the DrawTarget, a layer is a temporary surface that all
* drawing will be redirected to, this is used for example to support group
* opacity or the masking of groups. Clips must be balanced within a layer,
* i.e. between a matching PushLayer/PopLayer pair there must be as many
* PushClip(Rect) calls as there are PopClip calls.
*
* @param aOpaque Whether the layer will be opaque
* @param aOpacity Opacity of the layer
* @param aMask Mask applied to the layer
* @param aMaskTransform Transform applied to the layer mask
* @param aBounds Optional bounds in device space to which the layer is
* limited in size.
* @param aCopyBackground Whether to copy the background into the layer, this
* is only supported when aOpaque is true.
*/
virtual void PushLayerWithBlend(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds = IntRect(),
bool aCopyBackground = false,
CompositionOp = CompositionOp::OP_OVER) {
MOZ_CRASH("GFX: PushLayerWithBlend");
}
/**
* This balances a call to PushLayer and proceeds to blend the layer back
* onto the background. This blend will blend the temporary surface back
* onto the target in device space using POINT sampling and operator over.
*/
virtual void PopLayer() { MOZ_CRASH("GFX: PopLayer"); }
/**
* Perform an in-place blur operation. This is only supported on data draw
* targets.
*/
virtual void Blur(const AlphaBoxBlur& aBlur);
/**
* Performs an in-place edge padding operation.
* aRegion is specified in device space.
*/
virtual void PadEdges(const IntRegion& aRegion);
/**
* Performs an in-place buffer unrotation operation.
*/
virtual bool Unrotate(IntPoint aRotation);
/**
* Create a SourceSurface optimized for use with this DrawTarget from
* existing bitmap data in memory.
*
* The SourceSurface does not take ownership of aData, and may be freed at any
* time.
*/
virtual already_AddRefed<SourceSurface> CreateSourceSurfaceFromData(
unsigned char* aData, const IntSize& aSize, int32_t aStride,
SurfaceFormat aFormat) const = 0;
/**
* Create a SourceSurface optimized for use with this DrawTarget from an
* arbitrary SourceSurface type supported by this backend. This may return
* aSourceSurface or some other existing surface.
*/
virtual already_AddRefed<SourceSurface> OptimizeSourceSurface(
SourceSurface* aSurface) const = 0;
virtual already_AddRefed<SourceSurface> OptimizeSourceSurfaceForUnknownAlpha(
SourceSurface* aSurface) const {
return OptimizeSourceSurface(aSurface);
}
/**
* Create a SourceSurface for a type of NativeSurface. This may fail if the
* draw target does not know how to deal with the type of NativeSurface passed
* in. If this succeeds, the SourceSurface takes the ownersip of the
* NativeSurface.
*/
virtual already_AddRefed<SourceSurface> CreateSourceSurfaceFromNativeSurface(
const NativeSurface& aSurface) const = 0;
/**
* Create a DrawTarget whose snapshot is optimized for use with this
* DrawTarget.
*/
virtual already_AddRefed<DrawTarget> CreateSimilarDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat) const = 0;
/**
* Create a DrawTarget whose snapshot is optimized for use with this
* DrawTarget and aFilter.
* @param aSource is the FilterNode that that will be attached to this
* surface.
* @param aSourceRect is the source rect that will be passed to DrawFilter
* @param aDestPoint is the dest point that will be passed to DrawFilter.
*/
virtual already_AddRefed<DrawTarget> CreateSimilarDrawTargetForFilter(
const IntSize& aSize, SurfaceFormat aFormat, FilterNode* aFilter,
FilterNode* aSource, const Rect& aSourceRect, const Point& aDestPoint) {
return CreateSimilarDrawTarget(aSize, aFormat);
}
/**
* Returns false if CreateSimilarDrawTarget would return null with the same
* parameters. May return true even in cases where CreateSimilarDrawTarget
* return null (i.e. this function returning false has meaning, but returning
* true doesn't guarantee anything).
*/
virtual bool CanCreateSimilarDrawTarget(const IntSize& aSize,
SurfaceFormat aFormat) const {
return true;
}
/**
* Create a draw target optimized for drawing a shadow.
*
* Note that aSigma is the blur radius that must be used when we draw the
* shadow. Also note that this doesn't affect the size of the allocated
* surface, the caller is still responsible for including the shadow area in
* its size.
*/
virtual already_AddRefed<DrawTarget> CreateShadowDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat, float aSigma) const {
return CreateSimilarDrawTarget(aSize, aFormat);
}
/**
* Create a similar DrawTarget in the same space as this DrawTarget whose
* device size may be clipped based on the active clips intersected with
* aBounds (if it is not empty).
*/
virtual RefPtr<DrawTarget> CreateClippedDrawTarget(const Rect& aBounds,
SurfaceFormat aFormat) = 0;
/**
* Create a similar draw target, but if the draw target is not backed by a
* raster backend (for example, it is capturing or recording), force it to
* create a raster target instead. This is intended for code that wants to
* cache pixels, and would have no effect if it were caching a recording.
*/
virtual RefPtr<DrawTarget> CreateSimilarRasterTarget(
const IntSize& aSize, SurfaceFormat aFormat) const {
return CreateSimilarDrawTarget(aSize, aFormat);
}
/**
* Create a path builder with the specified fillmode.
*
* We need the fill mode up front because of Direct2D.
* ID2D1SimplifiedGeometrySink requires the fill mode
* to be set before calling BeginFigure().
*/
virtual already_AddRefed<PathBuilder> CreatePathBuilder(
FillRule aFillRule = FillRule::FILL_WINDING) const = 0;
/**
* Create a GradientStops object that holds information about a set of
* gradient stops, this object is required for linear or radial gradient
* patterns to represent the color stops in the gradient.
*
* @param aStops An array of gradient stops
* @param aNumStops Number of stops in the array aStops
* @param aExtendNone This describes how to extend the stop color outside of
* the gradient area.
*/
virtual already_AddRefed<GradientStops> CreateGradientStops(
GradientStop* aStops, uint32_t aNumStops,
ExtendMode aExtendMode = ExtendMode::CLAMP) const = 0;
/**
* Create a FilterNode object that can be used to apply a filter to various
* inputs.
*
* @param aType Type of filter node to be created.
*/
virtual already_AddRefed<FilterNode> CreateFilter(FilterType aType) = 0;
Matrix GetTransform() const { return mTransform; }
/**
* Set a transform on the surface, this transform is applied at drawing time
* to both the mask and source of the operation.
*
* Performance note: For some backends it is expensive to change the current
* transform (because transforms affect a lot of the parts of the pipeline,
* so new transform change can result in a pipeline flush). To get around
* this, DrawTarget implementations buffer transform changes and try to only
* set the current transform on the backend when required. That tracking has
* its own performance impact though, and ideally callers would be smart
* enough not to require it. At a future date this method may stop this
* doing transform buffering so, if you're a consumer, please try to be smart
* about calling this method as little as possible. For example, instead of
* concatenating a translation onto the current transform then calling
* FillRect, try to integrate the translation into FillRect's aRect
* argument's x/y offset.
*/
virtual void SetTransform(const Matrix& aTransform) {
mTransform = aTransform;
mTransformDirty = true;
}
inline void ConcatTransform(const Matrix& aTransform) {
SetTransform(aTransform * Matrix(GetTransform()));
}
SurfaceFormat GetFormat() const { return mFormat; }
/** Tries to get a native surface for a DrawTarget, this may fail if the
* draw target cannot convert to this surface type.
*/
virtual void* GetNativeSurface(NativeSurfaceType aType) { return nullptr; }
virtual bool IsDualDrawTarget() const { return false; }
virtual bool IsTiledDrawTarget() const { return false; }
virtual bool SupportsRegionClipping() const { return true; }
void AddUserData(UserDataKey* key, void* userData, void (*destroy)(void*)) {
mUserData.Add(key, userData, destroy);
}
void* GetUserData(UserDataKey* key) const { return mUserData.Get(key); }
void* RemoveUserData(UserDataKey* key) { return mUserData.Remove(key); }
/** Within this rectangle all pixels will be opaque by the time the result of
* this DrawTarget is first used for drawing. Either by the underlying surface
* being used as an input to external drawing, or Snapshot() being called.
* This rectangle is specified in device space.
*/
void SetOpaqueRect(const IntRect& aRect) { mOpaqueRect = aRect; }
const IntRect& GetOpaqueRect() const { return mOpaqueRect; }
virtual bool IsCurrentGroupOpaque() {
return GetFormat() == SurfaceFormat::B8G8R8X8;
}
virtual void SetPermitSubpixelAA(bool aPermitSubpixelAA) {
mPermitSubpixelAA = aPermitSubpixelAA;
}
bool GetPermitSubpixelAA() { return mPermitSubpixelAA; }
/**
* Mark the end of an Item in a DrawTargetRecording. These markers
* are used for merging recordings together.
*
* This should only be called on the 'root' DrawTargetRecording.
* Calling it on a child DrawTargetRecordings will cause confusion.
*
* Note: this is a bit of a hack. It might be better to just recreate
* the DrawTargetRecording.
*/
virtual void FlushItem(const IntRect& aBounds) {}
/**
* Ensures that no snapshot is still pointing to this DrawTarget's surface
* data.
*
* This can be useful if the DrawTarget is wrapped around data that it does
* not own, and for some reason the owner of the data has to make it
* temporarily unavailable without the DrawTarget knowing about it. This can
* cause costly surface copies, so it should not be used without a a good
* reason.
*/
virtual void DetachAllSnapshots() = 0;
protected:
UserData mUserData;
Matrix mTransform;
IntRect mOpaqueRect;
bool mTransformDirty : 1;
bool mPermitSubpixelAA : 1;
SurfaceFormat mFormat;
};
class DrawTargetCapture : public DrawTarget {
public:
bool IsCaptureDT() const override { return true; }
virtual bool IsEmpty() const = 0;
virtual void Dump() = 0;
};
class DrawEventRecorder : public RefCounted<DrawEventRecorder> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(DrawEventRecorder)
// returns true if there were any items in the recording
virtual bool Finish() = 0;
virtual ~DrawEventRecorder() = default;
};
struct Tile {
RefPtr<DrawTarget> mDrawTarget;
IntPoint mTileOrigin;
};
struct TileSet {
Tile* mTiles;
size_t mTileCount;
};
struct Config {
LogForwarder* mLogForwarder;
int32_t mMaxTextureSize;
int32_t mMaxAllocSize;
Config()
: mLogForwarder(nullptr),
mMaxTextureSize(kReasonableSurfaceSize),
mMaxAllocSize(52000000) {}
};
class GFX2D_API Factory {
using char_type = filesystem::Path::value_type;
public:
static void Init(const Config& aConfig);
static void ShutDown();
static bool HasSSE2();
static bool HasSSE4();
/**
* Returns false if any of the following are true:
*
* - the width/height of |sz| are less than or equal to zero
* - the width/height of |sz| are greater than |limit|
* - the number of bytes that need to be allocated for the surface is too
* big to fit in an int32_t, or bigger than |allocLimit|, if specifed
*
* To calculate the number of bytes that need to be allocated for the surface
* this function makes the conservative assumption that there need to be
* 4 bytes-per-pixel, and the stride alignment is 16 bytes.
*
* The reason for using int32_t rather than uint32_t is again to be
* conservative; some code has in the past and may in the future use signed
* integers to store buffer lengths etc.
*/
static bool CheckSurfaceSize(const IntSize& sz, int32_t limit = 0,
int32_t allocLimit = 0);
/**
* Make sure that the given buffer size doesn't exceed the allocation limit.
*/
static bool CheckBufferSize(int32_t bufSize);
/** Make sure the given dimension satisfies the CheckSurfaceSize and is
* within 8k limit. The 8k value is chosen a bit randomly.
*/
static bool ReasonableSurfaceSize(const IntSize& aSize);
static bool AllowedSurfaceSize(const IntSize& aSize);
static already_AddRefed<DrawTarget> CreateDrawTargetForCairoSurface(
cairo_surface_t* aSurface, const IntSize& aSize,
SurfaceFormat* aFormat = nullptr);
static already_AddRefed<SourceSurface> CreateSourceSurfaceForCairoSurface(
cairo_surface_t* aSurface, const IntSize& aSize, SurfaceFormat aFormat);
static already_AddRefed<DrawTarget> CreateDrawTarget(BackendType aBackend,
const IntSize& aSize,
SurfaceFormat aFormat);
/**
* Create a simple PathBuilder, which uses SKIA backend. If USE_SKIA is not
* defined, this returns nullptr;
*/
static already_AddRefed<PathBuilder> CreateSimplePathBuilder();
/**
* Create a DrawTarget that captures the drawing commands to eventually be
* replayed onto the DrawTarget provided. An optional byte size can be
* provided as a limit for the CaptureCommandList. When the limit is reached,
* the CaptureCommandList will be replayed to the target and then cleared.
*
* @param aSize Size of the area this DT will capture.
* @param aFlushBytes The byte limit at which to flush the CaptureCommandList
*/
static already_AddRefed<DrawTargetCapture> CreateCaptureDrawTargetForTarget(
gfx::DrawTarget* aTarget, size_t aFlushBytes = 0);
/**
* Create a DrawTarget that captures the drawing commands and can be replayed
* onto a compatible DrawTarget afterwards.
*
* @param aSize Size of the area this DT will capture.
*/
static already_AddRefed<DrawTargetCapture> CreateCaptureDrawTarget(
BackendType aBackend, const IntSize& aSize, SurfaceFormat aFormat);
static already_AddRefed<DrawTargetCapture> CreateCaptureDrawTargetForData(
BackendType aBackend, const IntSize& aSize, SurfaceFormat aFormat,
int32_t aStride, size_t aSurfaceAllocationSize);
static already_AddRefed<DrawTarget> CreateWrapAndRecordDrawTarget(
DrawEventRecorder* aRecorder, DrawTarget* aDT);
static already_AddRefed<DrawTarget> CreateRecordingDrawTarget(
DrawEventRecorder* aRecorder, DrawTarget* aDT, IntRect aRect);
static already_AddRefed<DrawTarget> CreateDrawTargetForData(
BackendType aBackend, unsigned char* aData, const IntSize& aSize,
int32_t aStride, SurfaceFormat aFormat, bool aUninitialized = false);
#ifdef XP_DARWIN
static already_AddRefed<ScaledFont> CreateScaledFontForMacFont(
CGFontRef aCGFont, const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
const Color& aFontSmoothingBackgroundColor, bool aUseFontSmoothing = true,
bool aApplySyntheticBold = false);
#endif
#ifdef MOZ_WIDGET_GTK
static already_AddRefed<ScaledFont> CreateScaledFontForFontconfigFont(
const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
RefPtr<SharedFTFace> aFace, FcPattern* aPattern);
#endif
#ifdef MOZ_WIDGET_ANDROID
static already_AddRefed<ScaledFont> CreateScaledFontForFreeTypeFont(
const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
RefPtr<SharedFTFace> aFace, bool aApplySyntheticBold = false);
#endif
/**
* This creates a NativeFontResource from TrueType data.
*
* @param aData Pointer to the data
* @param aSize Size of the TrueType data
* @param aFontType Type of NativeFontResource that should be created.
* @param aFontContext Optional native font context to be used to create the
* NativeFontResource.
* @return a NativeFontResource of nullptr if failed.
*/
static already_AddRefed<NativeFontResource> CreateNativeFontResource(
uint8_t* aData, uint32_t aSize, FontType aFontType,
void* aFontContext = nullptr);
/**
* This creates an unscaled font of the given type based on font descriptor
* data retrieved from ScaledFont::GetFontDescriptor.
*/
static already_AddRefed<UnscaledFont> CreateUnscaledFontFromFontDescriptor(
FontType aType, const uint8_t* aData, uint32_t aDataLength,
uint32_t aIndex);
/**
* This creates a simple data source surface for a certain size. It allocates
* new memory for the surface. This memory is freed when the surface is
* destroyed. The caller is responsible for handing the case where nullptr
* is returned. The surface is not zeroed unless requested.
*/
static already_AddRefed<DataSourceSurface> CreateDataSourceSurface(
const IntSize& aSize, SurfaceFormat aFormat, bool aZero = false);
/**
* This creates a simple data source surface for a certain size with a
* specific stride, which must be large enough to fit all pixels.
* It allocates new memory for the surface. This memory is freed when
* the surface is destroyed. The caller is responsible for handling the case
* where nullptr is returned. The surface is not zeroed unless requested.
*/
static already_AddRefed<DataSourceSurface> CreateDataSourceSurfaceWithStride(
const IntSize& aSize, SurfaceFormat aFormat, int32_t aStride,
bool aZero = false);
typedef void (*SourceSurfaceDeallocator)(void* aClosure);
/**
* This creates a simple data source surface for some existing data. It will
* wrap this data and the data for this source surface.
*
* We can provide a custom destroying function for |aData|. This will be
* called in the surface dtor using |aDeallocator| and the |aClosure|. If
* there are errors during construction(return a nullptr surface), the caller
* is responsible for the deallocation.
*
* If there is no destroying function, the caller is responsible for
* deallocating the aData memory only after destruction of this
* DataSourceSurface.
*/
static already_AddRefed<DataSourceSurface> CreateWrappingDataSourceSurface(
uint8_t* aData, int32_t aStride, const IntSize& aSize,
SurfaceFormat aFormat, SourceSurfaceDeallocator aDeallocator = nullptr,
void* aClosure = nullptr);
static void CopyDataSourceSurface(DataSourceSurface* aSource,
DataSourceSurface* aDest);
static already_AddRefed<DrawEventRecorder> CreateEventRecorderForFile(
const char_type* aFilename);
static void SetGlobalEventRecorder(DrawEventRecorder* aRecorder);
static uint32_t GetMaxSurfaceSize(BackendType aType);
static LogForwarder* GetLogForwarder() {
return sConfig ? sConfig->mLogForwarder : nullptr;
}
private:
static Config* sConfig;
public:
static void PurgeAllCaches();
static already_AddRefed<DrawTarget> CreateDualDrawTarget(DrawTarget* targetA,
DrawTarget* targetB);
static already_AddRefed<SourceSurface> CreateDualSourceSurface(
SourceSurface* sourceA, SourceSurface* sourceB);
/*
* This creates a new tiled DrawTarget. When a tiled drawtarget is used the
* drawing is distributed over number of tiles which may each hold an
* individual offset. The tiles in the set must each have the same backend
* and format.
*/
static already_AddRefed<DrawTarget> CreateTiledDrawTarget(
const TileSet& aTileSet);
static already_AddRefed<DrawTarget> CreateOffsetDrawTarget(
DrawTarget* aDrawTarget, IntPoint aTileOrigin);
static bool DoesBackendSupportDataDrawtarget(BackendType aType);
static void SetBGRSubpixelOrder(bool aBGR);
static bool GetBGRSubpixelOrder();
private:
static bool mBGRSubpixelOrder;
public:
#ifdef USE_SKIA
static already_AddRefed<DrawTarget> CreateDrawTargetWithSkCanvas(
SkCanvas* aCanvas);
#endif
#ifdef MOZ_ENABLE_FREETYPE
static void SetFTLibrary(FT_Library aFTLibrary);
static FT_Library GetFTLibrary();
static FT_Library NewFTLibrary();
static void ReleaseFTLibrary(FT_Library aFTLibrary);
static void LockFTLibrary(FT_Library aFTLibrary);
static void UnlockFTLibrary(FT_Library aFTLibrary);
static FT_Face NewFTFace(FT_Library aFTLibrary, const char* aFileName,
int aFaceIndex);
static already_AddRefed<SharedFTFace> NewSharedFTFace(FT_Library aFTLibrary,
const char* aFilename,
int aFaceIndex);
static FT_Face NewFTFaceFromData(FT_Library aFTLibrary, const uint8_t* aData,
size_t aDataSize, int aFaceIndex);
static already_AddRefed<SharedFTFace> NewSharedFTFaceFromData(
FT_Library aFTLibrary, const uint8_t* aData, size_t aDataSize,
int aFaceIndex, SharedFTFaceData* aSharedData = nullptr);
static void ReleaseFTFace(FT_Face aFace);
static FT_Error LoadFTGlyph(FT_Face aFace, uint32_t aGlyphIndex,
int32_t aFlags);
private:
static FT_Library mFTLibrary;
static StaticMutex mFTLock;
public:
#endif
#ifdef WIN32
static already_AddRefed<DrawTarget> CreateDrawTargetForD3D11Texture(
ID3D11Texture2D* aTexture, SurfaceFormat aFormat);
/*
* Attempts to create and install a D2D1 device from the supplied Direct3D11
* device. Returns true on success, or false on failure and leaves the
* D2D1/Direct3D11 devices unset.
*/
static bool SetDirect3D11Device(ID3D11Device* aDevice);
static RefPtr<ID3D11Device> GetDirect3D11Device();
static RefPtr<ID2D1Device> GetD2D1Device(uint32_t* aOutSeqNo = nullptr);
static bool HasD2D1Device();
static RefPtr<IDWriteFactory> GetDWriteFactory();
static RefPtr<IDWriteFactory> EnsureDWriteFactory();
static bool SupportsD2D1();
static RefPtr<IDWriteFontCollection> GetDWriteSystemFonts(
bool aUpdate = false);
static RefPtr<ID2D1DeviceContext> GetD2DDeviceContext();
static uint64_t GetD2DVRAMUsageDrawTarget();
static uint64_t GetD2DVRAMUsageSourceSurface();
static void D2DCleanup();
static already_AddRefed<ScaledFont> CreateScaledFontForDWriteFont(
IDWriteFontFace* aFontFace, const gfxFontStyle* aStyle,
const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
bool aUseEmbeddedBitmap, int aRenderingMode,
IDWriteRenderingParams* aParams, Float aGamma, Float aContrast,
Float aClearTypeLevel);
static already_AddRefed<ScaledFont> CreateScaledFontForGDIFont(
const void* aLogFont, const RefPtr<UnscaledFont>& aUnscaledFont,
Float aSize);
static void SetSystemTextQuality(uint8_t aQuality);
private:
static StaticRefPtr<ID2D1Device> mD2D1Device;
static StaticRefPtr<ID3D11Device> mD3D11Device;
static StaticRefPtr<IDWriteFactory> mDWriteFactory;
static bool mDWriteFactoryInitialized;
static StaticRefPtr<IDWriteFontCollection> mDWriteSystemFonts;
static StaticRefPtr<ID2D1DeviceContext> mMTDC;
static StaticRefPtr<ID2D1DeviceContext> mOffMTDC;
protected:
// This guards access to the singleton devices above, as well as the
// singleton devices in DrawTargetD2D1.
static StaticMutex mDeviceLock;
// This synchronizes access between different D2D drawtargets and their
// implied dependency graph.
static StaticMutex mDTDependencyLock;
friend class DrawTargetD2D1;
#endif
private:
static DrawEventRecorder* mRecorder;
};
class MOZ_RAII AutoSerializeWithMoz2D final {
public:
explicit AutoSerializeWithMoz2D(BackendType aBackendType);
~AutoSerializeWithMoz2D();
private:
#if defined(WIN32)
RefPtr<ID2D1Multithread> mMT;
#endif
};
} // namespace gfx
} // namespace mozilla
#endif // _MOZILLA_GFX_2D_H