gecko-dev/security/nss/lib/ssl/sslcon.c

3697 строки
107 KiB
C

/*
* SSL v2 handshake functions, and functions common to SSL2 and SSL3.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nssrenam.h"
#include "cert.h"
#include "secitem.h"
#include "sechash.h"
#include "cryptohi.h" /* for SGN_ funcs */
#include "keyhi.h" /* for SECKEY_ high level functions. */
#include "ssl.h"
#include "sslimpl.h"
#include "sslproto.h"
#include "ssl3prot.h"
#include "sslerr.h"
#include "pk11func.h"
#include "prinit.h"
#include "prtime.h" /* for PR_Now() */
static PRBool policyWasSet;
/* This ordered list is indexed by (SSL_CK_xx * 3) */
/* Second and third bytes are MSB and LSB of master key length. */
static const PRUint8 allCipherSuites[] = {
0, 0, 0,
SSL_CK_RC4_128_WITH_MD5, 0x00, 0x80,
SSL_CK_RC4_128_EXPORT40_WITH_MD5, 0x00, 0x80,
SSL_CK_RC2_128_CBC_WITH_MD5, 0x00, 0x80,
SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5, 0x00, 0x80,
SSL_CK_IDEA_128_CBC_WITH_MD5, 0x00, 0x80,
SSL_CK_DES_64_CBC_WITH_MD5, 0x00, 0x40,
SSL_CK_DES_192_EDE3_CBC_WITH_MD5, 0x00, 0xC0,
0, 0, 0
};
#define ssl2_NUM_SUITES_IMPLEMENTED 6
/* This list is sent back to the client when the client-hello message
* contains no overlapping ciphers, so the client can report what ciphers
* are supported by the server. Unlike allCipherSuites (above), this list
* is sorted by descending preference, not by cipherSuite number.
*/
static const PRUint8 implementedCipherSuites[ssl2_NUM_SUITES_IMPLEMENTED * 3] = {
SSL_CK_RC4_128_WITH_MD5, 0x00, 0x80,
SSL_CK_RC2_128_CBC_WITH_MD5, 0x00, 0x80,
SSL_CK_DES_192_EDE3_CBC_WITH_MD5, 0x00, 0xC0,
SSL_CK_DES_64_CBC_WITH_MD5, 0x00, 0x40,
SSL_CK_RC4_128_EXPORT40_WITH_MD5, 0x00, 0x80,
SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5, 0x00, 0x80
};
typedef struct ssl2SpecsStr {
PRUint8 nkm; /* do this many hashes to generate key material. */
PRUint8 nkd; /* size of readKey and writeKey in bytes. */
PRUint8 blockSize;
PRUint8 blockShift;
CK_MECHANISM_TYPE mechanism;
PRUint8 keyLen; /* cipher symkey size in bytes. */
PRUint8 pubLen; /* publicly reveal this many bytes of key. */
PRUint8 ivLen; /* length of IV data at *ca. */
} ssl2Specs;
static const ssl2Specs ssl_Specs[] = {
/* NONE */
{ 0, 0, 0, 0, },
/* SSL_CK_RC4_128_WITH_MD5 */
{ 2, 16, 1, 0, CKM_RC4, 16, 0, 0, },
/* SSL_CK_RC4_128_EXPORT40_WITH_MD5 */
{ 2, 16, 1, 0, CKM_RC4, 16, 11, 0, },
/* SSL_CK_RC2_128_CBC_WITH_MD5 */
{ 2, 16, 8, 3, CKM_RC2_CBC, 16, 0, 8, },
/* SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5 */
{ 2, 16, 8, 3, CKM_RC2_CBC, 16, 11, 8, },
/* SSL_CK_IDEA_128_CBC_WITH_MD5 */
{ 0, 0, 0, 0, },
/* SSL_CK_DES_64_CBC_WITH_MD5 */
{ 1, 8, 8, 3, CKM_DES_CBC, 8, 0, 8, },
/* SSL_CK_DES_192_EDE3_CBC_WITH_MD5 */
{ 3, 24, 8, 3, CKM_DES3_CBC, 24, 0, 8, },
};
#define SET_ERROR_CODE /* reminder */
#define TEST_FOR_FAILURE /* reminder */
/*
** Put a string tag in the library so that we can examine an executable
** and see what kind of security it supports.
*/
const char *ssl_version = "SECURITY_VERSION:"
" +us"
" +export"
#ifdef TRACE
" +trace"
#endif
#ifdef DEBUG
" +debug"
#endif
;
const char * const ssl_cipherName[] = {
"unknown",
"RC4",
"RC4-Export",
"RC2-CBC",
"RC2-CBC-Export",
"IDEA-CBC",
"DES-CBC",
"DES-EDE3-CBC",
"unknown",
"unknown", /* was fortezza, NO LONGER USED */
};
/* bit-masks, showing which SSLv2 suites are allowed.
* lsb corresponds to first cipher suite in allCipherSuites[].
*/
static PRUint16 allowedByPolicy; /* all off by default */
static PRUint16 maybeAllowedByPolicy; /* all off by default */
static PRUint16 chosenPreference = 0xff; /* all on by default */
/* bit values for the above two bit masks */
#define SSL_CB_RC4_128_WITH_MD5 (1 << SSL_CK_RC4_128_WITH_MD5)
#define SSL_CB_RC4_128_EXPORT40_WITH_MD5 (1 << SSL_CK_RC4_128_EXPORT40_WITH_MD5)
#define SSL_CB_RC2_128_CBC_WITH_MD5 (1 << SSL_CK_RC2_128_CBC_WITH_MD5)
#define SSL_CB_RC2_128_CBC_EXPORT40_WITH_MD5 (1 << SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5)
#define SSL_CB_IDEA_128_CBC_WITH_MD5 (1 << SSL_CK_IDEA_128_CBC_WITH_MD5)
#define SSL_CB_DES_64_CBC_WITH_MD5 (1 << SSL_CK_DES_64_CBC_WITH_MD5)
#define SSL_CB_DES_192_EDE3_CBC_WITH_MD5 (1 << SSL_CK_DES_192_EDE3_CBC_WITH_MD5)
#define SSL_CB_IMPLEMENTED \
(SSL_CB_RC4_128_WITH_MD5 | \
SSL_CB_RC4_128_EXPORT40_WITH_MD5 | \
SSL_CB_RC2_128_CBC_WITH_MD5 | \
SSL_CB_RC2_128_CBC_EXPORT40_WITH_MD5 | \
SSL_CB_DES_64_CBC_WITH_MD5 | \
SSL_CB_DES_192_EDE3_CBC_WITH_MD5)
/* Construct a socket's list of cipher specs from the global default values.
*/
static SECStatus
ssl2_ConstructCipherSpecs(sslSocket *ss)
{
PRUint8 * cs = NULL;
unsigned int allowed;
unsigned int count;
int ssl3_count = 0;
int final_count;
int i;
SECStatus rv;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
count = 0;
PORT_Assert(ss != 0);
allowed = !ss->opt.enableSSL2 ? 0 :
(ss->allowedByPolicy & ss->chosenPreference & SSL_CB_IMPLEMENTED);
while (allowed) {
if (allowed & 1)
++count;
allowed >>= 1;
}
/* Call ssl3_config_match_init() once here,
* instead of inside ssl3_ConstructV2CipherSpecsHack(),
* because the latter gets called twice below,
* and then again in ssl2_BeginClientHandshake().
*/
ssl3_config_match_init(ss);
/* ask SSL3 how many cipher suites it has. */
rv = ssl3_ConstructV2CipherSpecsHack(ss, NULL, &ssl3_count);
if (rv < 0)
return rv;
count += ssl3_count;
/* Allocate memory to hold cipher specs */
if (count > 0)
cs = (PRUint8*) PORT_Alloc(count * 3);
else
PORT_SetError(SSL_ERROR_SSL_DISABLED);
if (cs == NULL)
return SECFailure;
if (ss->cipherSpecs != NULL) {
PORT_Free(ss->cipherSpecs);
}
ss->cipherSpecs = cs;
ss->sizeCipherSpecs = count * 3;
/* fill in cipher specs for SSL2 cipher suites */
allowed = !ss->opt.enableSSL2 ? 0 :
(ss->allowedByPolicy & ss->chosenPreference & SSL_CB_IMPLEMENTED);
for (i = 0; i < ssl2_NUM_SUITES_IMPLEMENTED * 3; i += 3) {
const PRUint8 * hs = implementedCipherSuites + i;
int ok = allowed & (1U << hs[0]);
if (ok) {
cs[0] = hs[0];
cs[1] = hs[1];
cs[2] = hs[2];
cs += 3;
}
}
/* now have SSL3 add its suites onto the end */
rv = ssl3_ConstructV2CipherSpecsHack(ss, cs, &final_count);
/* adjust for any difference between first pass and second pass */
ss->sizeCipherSpecs -= (ssl3_count - final_count) * 3;
return rv;
}
/* This function is called immediately after ssl2_ConstructCipherSpecs()
** at the beginning of a handshake. It detects cases where a protocol
** (e.g. SSL2 or SSL3) is logically enabled, but all its cipher suites
** for that protocol have been disabled. If such cases, it clears the
** enable bit for the protocol. If no protocols remain enabled, or
** if no cipher suites are found, it sets the error code and returns
** SECFailure, otherwise it returns SECSuccess.
*/
static SECStatus
ssl2_CheckConfigSanity(sslSocket *ss)
{
unsigned int allowed;
int ssl3CipherCount = 0;
SECStatus rv;
/* count the SSL2 and SSL3 enabled ciphers.
* if either is zero, clear the socket's enable for that protocol.
*/
if (!ss->cipherSpecs)
goto disabled;
allowed = ss->allowedByPolicy & ss->chosenPreference;
if (! allowed)
ss->opt.enableSSL2 = PR_FALSE; /* not really enabled if no ciphers */
/* ssl3_config_match_init was called in ssl2_ConstructCipherSpecs(). */
/* Ask how many ssl3 CipherSuites were enabled. */
rv = ssl3_ConstructV2CipherSpecsHack(ss, NULL, &ssl3CipherCount);
if (rv != SECSuccess || ssl3CipherCount <= 0) {
/* SSL3/TLS not really enabled if no ciphers */
ss->vrange.min = SSL_LIBRARY_VERSION_NONE;
ss->vrange.max = SSL_LIBRARY_VERSION_NONE;
}
if (!ss->opt.enableSSL2 && SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
SSL_DBG(("%d: SSL[%d]: Can't handshake! all versions disabled.",
SSL_GETPID(), ss->fd));
disabled:
PORT_SetError(SSL_ERROR_SSL_DISABLED);
return SECFailure;
}
return SECSuccess;
}
/*
* Since this is a global (not per-socket) setting, we cannot use the
* HandshakeLock to protect this. Probably want a global lock.
*/
SECStatus
ssl2_SetPolicy(PRInt32 which, PRInt32 policy)
{
PRUint32 bitMask;
SECStatus rv = SECSuccess;
which &= 0x000f;
bitMask = 1 << which;
if (!(bitMask & SSL_CB_IMPLEMENTED)) {
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
return SECFailure;
}
if (policy == SSL_ALLOWED) {
allowedByPolicy |= bitMask;
maybeAllowedByPolicy |= bitMask;
} else if (policy == SSL_RESTRICTED) {
allowedByPolicy &= ~bitMask;
maybeAllowedByPolicy |= bitMask;
} else {
allowedByPolicy &= ~bitMask;
maybeAllowedByPolicy &= ~bitMask;
}
allowedByPolicy &= SSL_CB_IMPLEMENTED;
maybeAllowedByPolicy &= SSL_CB_IMPLEMENTED;
policyWasSet = PR_TRUE;
return rv;
}
SECStatus
ssl2_GetPolicy(PRInt32 which, PRInt32 *oPolicy)
{
PRUint32 bitMask;
PRInt32 policy;
which &= 0x000f;
bitMask = 1 << which;
/* Caller assures oPolicy is not null. */
if (!(bitMask & SSL_CB_IMPLEMENTED)) {
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
*oPolicy = SSL_NOT_ALLOWED;
return SECFailure;
}
if (maybeAllowedByPolicy & bitMask) {
policy = (allowedByPolicy & bitMask) ? SSL_ALLOWED : SSL_RESTRICTED;
} else {
policy = SSL_NOT_ALLOWED;
}
*oPolicy = policy;
return SECSuccess;
}
/*
* Since this is a global (not per-socket) setting, we cannot use the
* HandshakeLock to protect this. Probably want a global lock.
* Called from SSL_CipherPrefSetDefault in sslsock.c
* These changes have no effect on any sslSockets already created.
*/
SECStatus
ssl2_CipherPrefSetDefault(PRInt32 which, PRBool enabled)
{
PRUint32 bitMask;
which &= 0x000f;
bitMask = 1 << which;
if (!(bitMask & SSL_CB_IMPLEMENTED)) {
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
return SECFailure;
}
if (enabled)
chosenPreference |= bitMask;
else
chosenPreference &= ~bitMask;
chosenPreference &= SSL_CB_IMPLEMENTED;
return SECSuccess;
}
SECStatus
ssl2_CipherPrefGetDefault(PRInt32 which, PRBool *enabled)
{
PRBool rv = PR_FALSE;
PRUint32 bitMask;
which &= 0x000f;
bitMask = 1 << which;
if (!(bitMask & SSL_CB_IMPLEMENTED)) {
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
*enabled = PR_FALSE;
return SECFailure;
}
rv = (PRBool)((chosenPreference & bitMask) != 0);
*enabled = rv;
return SECSuccess;
}
SECStatus
ssl2_CipherPrefSet(sslSocket *ss, PRInt32 which, PRBool enabled)
{
PRUint32 bitMask;
which &= 0x000f;
bitMask = 1 << which;
if (!(bitMask & SSL_CB_IMPLEMENTED)) {
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
return SECFailure;
}
if (enabled)
ss->chosenPreference |= bitMask;
else
ss->chosenPreference &= ~bitMask;
ss->chosenPreference &= SSL_CB_IMPLEMENTED;
return SECSuccess;
}
SECStatus
ssl2_CipherPrefGet(sslSocket *ss, PRInt32 which, PRBool *enabled)
{
PRBool rv = PR_FALSE;
PRUint32 bitMask;
which &= 0x000f;
bitMask = 1 << which;
if (!(bitMask & SSL_CB_IMPLEMENTED)) {
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
*enabled = PR_FALSE;
return SECFailure;
}
rv = (PRBool)((ss->chosenPreference & bitMask) != 0);
*enabled = rv;
return SECSuccess;
}
/* copy global default policy into socket. */
void
ssl2_InitSocketPolicy(sslSocket *ss)
{
ss->allowedByPolicy = allowedByPolicy;
ss->maybeAllowedByPolicy = maybeAllowedByPolicy;
ss->chosenPreference = chosenPreference;
}
/************************************************************************/
/* Called from ssl2_CreateSessionCypher(), which already holds handshake lock.
*/
static SECStatus
ssl2_CreateMAC(sslSecurityInfo *sec, SECItem *readKey, SECItem *writeKey,
int cipherChoice)
{
switch (cipherChoice) {
case SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5:
case SSL_CK_RC2_128_CBC_WITH_MD5:
case SSL_CK_RC4_128_EXPORT40_WITH_MD5:
case SSL_CK_RC4_128_WITH_MD5:
case SSL_CK_DES_64_CBC_WITH_MD5:
case SSL_CK_DES_192_EDE3_CBC_WITH_MD5:
sec->hash = HASH_GetHashObject(HASH_AlgMD5);
SECITEM_CopyItem(0, &sec->sendSecret, writeKey);
SECITEM_CopyItem(0, &sec->rcvSecret, readKey);
break;
default:
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
sec->hashcx = (*sec->hash->create)();
if (sec->hashcx == NULL)
return SECFailure;
return SECSuccess;
}
/************************************************************************
* All the Send functions below must acquire and release the socket's
* xmitBufLock.
*/
/* Called from all the Send* functions below. */
static SECStatus
ssl2_GetSendBuffer(sslSocket *ss, unsigned int len)
{
SECStatus rv = SECSuccess;
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
if (len < 128) {
len = 128;
}
if (len > ss->sec.ci.sendBuf.space) {
rv = sslBuffer_Grow(&ss->sec.ci.sendBuf, len);
if (rv != SECSuccess) {
SSL_DBG(("%d: SSL[%d]: ssl2_GetSendBuffer failed, tried to get %d bytes",
SSL_GETPID(), ss->fd, len));
rv = SECFailure;
}
}
return rv;
}
/* Called from:
* ssl2_ClientSetupSessionCypher() <- ssl2_HandleServerHelloMessage()
* ssl2_HandleRequestCertificate() <- ssl2_HandleMessage() <-
ssl_Do1stHandshake()
* ssl2_HandleMessage() <- ssl_Do1stHandshake()
* ssl2_HandleServerHelloMessage() <- ssl_Do1stHandshake()
after ssl2_BeginClientHandshake()
* ssl2_HandleClientHelloMessage() <- ssl_Do1stHandshake()
after ssl2_BeginServerHandshake()
*
* Acquires and releases the socket's xmitBufLock.
*/
int
ssl2_SendErrorMessage(sslSocket *ss, int error)
{
int rv;
PRUint8 msg[SSL_HL_ERROR_HBYTES];
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
msg[0] = SSL_MT_ERROR;
msg[1] = MSB(error);
msg[2] = LSB(error);
ssl_GetXmitBufLock(ss); /***************************************/
SSL_TRC(3, ("%d: SSL[%d]: sending error %d", SSL_GETPID(), ss->fd, error));
ss->handshakeBegun = 1;
rv = (*ss->sec.send)(ss, msg, sizeof(msg), 0);
if (rv >= 0) {
rv = SECSuccess;
}
ssl_ReleaseXmitBufLock(ss); /***************************************/
return rv;
}
/* Called from ssl2_TryToFinish().
* Acquires and releases the socket's xmitBufLock.
*/
static SECStatus
ssl2_SendClientFinishedMessage(sslSocket *ss)
{
SECStatus rv = SECSuccess;
int sent;
PRUint8 msg[1 + SSL_CONNECTIONID_BYTES];
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetXmitBufLock(ss); /***************************************/
if (ss->sec.ci.sentFinished == 0) {
ss->sec.ci.sentFinished = 1;
SSL_TRC(3, ("%d: SSL[%d]: sending client-finished",
SSL_GETPID(), ss->fd));
msg[0] = SSL_MT_CLIENT_FINISHED;
PORT_Memcpy(msg+1, ss->sec.ci.connectionID,
sizeof(ss->sec.ci.connectionID));
DUMP_MSG(29, (ss, msg, 1 + sizeof(ss->sec.ci.connectionID)));
sent = (*ss->sec.send)(ss, msg, 1 + sizeof(ss->sec.ci.connectionID), 0);
rv = (sent >= 0) ? SECSuccess : (SECStatus)sent;
}
ssl_ReleaseXmitBufLock(ss); /***************************************/
return rv;
}
/* Called from
* ssl2_HandleClientSessionKeyMessage() <- ssl2_HandleClientHelloMessage()
* ssl2_HandleClientHelloMessage() <- ssl_Do1stHandshake()
after ssl2_BeginServerHandshake()
* Acquires and releases the socket's xmitBufLock.
*/
static SECStatus
ssl2_SendServerVerifyMessage(sslSocket *ss)
{
PRUint8 * msg;
int sendLen;
int sent;
SECStatus rv;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetXmitBufLock(ss); /***************************************/
sendLen = 1 + SSL_CHALLENGE_BYTES;
rv = ssl2_GetSendBuffer(ss, sendLen);
if (rv != SECSuccess) {
goto done;
}
msg = ss->sec.ci.sendBuf.buf;
msg[0] = SSL_MT_SERVER_VERIFY;
PORT_Memcpy(msg+1, ss->sec.ci.clientChallenge, SSL_CHALLENGE_BYTES);
DUMP_MSG(29, (ss, msg, sendLen));
sent = (*ss->sec.send)(ss, msg, sendLen, 0);
rv = (sent >= 0) ? SECSuccess : (SECStatus)sent;
done:
ssl_ReleaseXmitBufLock(ss); /***************************************/
return rv;
}
/* Called from ssl2_TryToFinish().
* Acquires and releases the socket's xmitBufLock.
*/
static SECStatus
ssl2_SendServerFinishedMessage(sslSocket *ss)
{
sslSessionID * sid;
PRUint8 * msg;
int sendLen, sent;
SECStatus rv = SECSuccess;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetXmitBufLock(ss); /***************************************/
if (ss->sec.ci.sentFinished == 0) {
ss->sec.ci.sentFinished = 1;
PORT_Assert(ss->sec.ci.sid != 0);
sid = ss->sec.ci.sid;
SSL_TRC(3, ("%d: SSL[%d]: sending server-finished",
SSL_GETPID(), ss->fd));
sendLen = 1 + sizeof(sid->u.ssl2.sessionID);
rv = ssl2_GetSendBuffer(ss, sendLen);
if (rv != SECSuccess) {
goto done;
}
msg = ss->sec.ci.sendBuf.buf;
msg[0] = SSL_MT_SERVER_FINISHED;
PORT_Memcpy(msg+1, sid->u.ssl2.sessionID,
sizeof(sid->u.ssl2.sessionID));
DUMP_MSG(29, (ss, msg, sendLen));
sent = (*ss->sec.send)(ss, msg, sendLen, 0);
if (sent < 0) {
/* If send failed, it is now a bogus session-id */
if (ss->sec.uncache)
(*ss->sec.uncache)(sid);
rv = (SECStatus)sent;
} else if (!ss->opt.noCache) {
if (sid->cached == never_cached) {
(*ss->sec.cache)(sid);
}
rv = SECSuccess;
}
ssl_FreeSID(sid);
ss->sec.ci.sid = 0;
}
done:
ssl_ReleaseXmitBufLock(ss); /***************************************/
return rv;
}
/* Called from ssl2_ClientSetupSessionCypher() <-
* ssl2_HandleServerHelloMessage()
* after ssl2_BeginClientHandshake()
* Acquires and releases the socket's xmitBufLock.
*/
static SECStatus
ssl2_SendSessionKeyMessage(sslSocket *ss, int cipher, int keySize,
PRUint8 *ca, int caLen,
PRUint8 *ck, int ckLen,
PRUint8 *ek, int ekLen)
{
PRUint8 * msg;
int sendLen;
int sent;
SECStatus rv;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetXmitBufLock(ss); /***************************************/
sendLen = SSL_HL_CLIENT_MASTER_KEY_HBYTES + ckLen + ekLen + caLen;
rv = ssl2_GetSendBuffer(ss, sendLen);
if (rv != SECSuccess)
goto done;
SSL_TRC(3, ("%d: SSL[%d]: sending client-session-key",
SSL_GETPID(), ss->fd));
msg = ss->sec.ci.sendBuf.buf;
msg[0] = SSL_MT_CLIENT_MASTER_KEY;
msg[1] = cipher;
msg[2] = MSB(keySize);
msg[3] = LSB(keySize);
msg[4] = MSB(ckLen);
msg[5] = LSB(ckLen);
msg[6] = MSB(ekLen);
msg[7] = LSB(ekLen);
msg[8] = MSB(caLen);
msg[9] = LSB(caLen);
PORT_Memcpy(msg+SSL_HL_CLIENT_MASTER_KEY_HBYTES, ck, ckLen);
PORT_Memcpy(msg+SSL_HL_CLIENT_MASTER_KEY_HBYTES+ckLen, ek, ekLen);
PORT_Memcpy(msg+SSL_HL_CLIENT_MASTER_KEY_HBYTES+ckLen+ekLen, ca, caLen);
DUMP_MSG(29, (ss, msg, sendLen));
sent = (*ss->sec.send)(ss, msg, sendLen, 0);
rv = (sent >= 0) ? SECSuccess : (SECStatus)sent;
done:
ssl_ReleaseXmitBufLock(ss); /***************************************/
return rv;
}
/* Called from ssl2_TriggerNextMessage() <- ssl2_HandleMessage()
* Acquires and releases the socket's xmitBufLock.
*/
static SECStatus
ssl2_SendCertificateRequestMessage(sslSocket *ss)
{
PRUint8 * msg;
int sent;
int sendLen;
SECStatus rv;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetXmitBufLock(ss); /***************************************/
sendLen = SSL_HL_REQUEST_CERTIFICATE_HBYTES + SSL_CHALLENGE_BYTES;
rv = ssl2_GetSendBuffer(ss, sendLen);
if (rv != SECSuccess)
goto done;
SSL_TRC(3, ("%d: SSL[%d]: sending certificate request",
SSL_GETPID(), ss->fd));
/* Generate random challenge for client to encrypt */
PK11_GenerateRandom(ss->sec.ci.serverChallenge, SSL_CHALLENGE_BYTES);
msg = ss->sec.ci.sendBuf.buf;
msg[0] = SSL_MT_REQUEST_CERTIFICATE;
msg[1] = SSL_AT_MD5_WITH_RSA_ENCRYPTION;
PORT_Memcpy(msg + SSL_HL_REQUEST_CERTIFICATE_HBYTES,
ss->sec.ci.serverChallenge, SSL_CHALLENGE_BYTES);
DUMP_MSG(29, (ss, msg, sendLen));
sent = (*ss->sec.send)(ss, msg, sendLen, 0);
rv = (sent >= 0) ? SECSuccess : (SECStatus)sent;
done:
ssl_ReleaseXmitBufLock(ss); /***************************************/
return rv;
}
/* Called from ssl2_HandleRequestCertificate() <- ssl2_HandleMessage()
* Acquires and releases the socket's xmitBufLock.
*/
static int
ssl2_SendCertificateResponseMessage(sslSocket *ss, SECItem *cert,
SECItem *encCode)
{
PRUint8 *msg;
int rv, sendLen;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetXmitBufLock(ss); /***************************************/
sendLen = SSL_HL_CLIENT_CERTIFICATE_HBYTES + encCode->len + cert->len;
rv = ssl2_GetSendBuffer(ss, sendLen);
if (rv)
goto done;
SSL_TRC(3, ("%d: SSL[%d]: sending certificate response",
SSL_GETPID(), ss->fd));
msg = ss->sec.ci.sendBuf.buf;
msg[0] = SSL_MT_CLIENT_CERTIFICATE;
msg[1] = SSL_CT_X509_CERTIFICATE;
msg[2] = MSB(cert->len);
msg[3] = LSB(cert->len);
msg[4] = MSB(encCode->len);
msg[5] = LSB(encCode->len);
PORT_Memcpy(msg + SSL_HL_CLIENT_CERTIFICATE_HBYTES, cert->data, cert->len);
PORT_Memcpy(msg + SSL_HL_CLIENT_CERTIFICATE_HBYTES + cert->len,
encCode->data, encCode->len);
DUMP_MSG(29, (ss, msg, sendLen));
rv = (*ss->sec.send)(ss, msg, sendLen, 0);
if (rv >= 0) {
rv = SECSuccess;
}
done:
ssl_ReleaseXmitBufLock(ss); /***************************************/
return rv;
}
/********************************************************************
** Send functions above this line must aquire & release the socket's
** xmitBufLock.
** All the ssl2_Send functions below this line are called vis ss->sec.send
** and require that the caller hold the xmitBufLock.
*/
/*
** Called from ssl2_SendStream, ssl2_SendBlock, but not from ssl2_SendClear.
*/
static SECStatus
ssl2_CalcMAC(PRUint8 * result,
sslSecurityInfo * sec,
const PRUint8 * data,
unsigned int dataLen,
unsigned int paddingLen)
{
const PRUint8 * secret = sec->sendSecret.data;
unsigned int secretLen = sec->sendSecret.len;
unsigned long sequenceNumber = sec->sendSequence;
unsigned int nout;
PRUint8 seq[4];
PRUint8 padding[32];/* XXX max blocksize? */
if (!sec->hash || !sec->hash->length)
return SECSuccess;
if (!sec->hashcx)
return SECFailure;
/* Reset hash function */
(*sec->hash->begin)(sec->hashcx);
/* Feed hash the data */
(*sec->hash->update)(sec->hashcx, secret, secretLen);
(*sec->hash->update)(sec->hashcx, data, dataLen);
PORT_Memset(padding, paddingLen, paddingLen);
(*sec->hash->update)(sec->hashcx, padding, paddingLen);
seq[0] = (PRUint8) (sequenceNumber >> 24);
seq[1] = (PRUint8) (sequenceNumber >> 16);
seq[2] = (PRUint8) (sequenceNumber >> 8);
seq[3] = (PRUint8) (sequenceNumber);
PRINT_BUF(60, (0, "calc-mac secret:", secret, secretLen));
PRINT_BUF(60, (0, "calc-mac data:", data, dataLen));
PRINT_BUF(60, (0, "calc-mac padding:", padding, paddingLen));
PRINT_BUF(60, (0, "calc-mac seq:", seq, 4));
(*sec->hash->update)(sec->hashcx, seq, 4);
/* Get result */
(*sec->hash->end)(sec->hashcx, result, &nout, sec->hash->length);
return SECSuccess;
}
/*
** Maximum transmission amounts. These are tiny bit smaller than they
** need to be (they account for the MAC length plus some padding),
** assuming the MAC is 16 bytes long and the padding is a max of 7 bytes
** long. This gives an additional 9 bytes of slop to work within.
*/
#define MAX_STREAM_CYPHER_LEN 0x7fe0
#define MAX_BLOCK_CYPHER_LEN 0x3fe0
/*
** Send some data in the clear.
** Package up data with the length header and send it.
**
** Return count of bytes successfully written, or negative number (failure).
*/
static PRInt32
ssl2_SendClear(sslSocket *ss, const PRUint8 *in, PRInt32 len, PRInt32 flags)
{
PRUint8 * out;
int rv;
int amount;
int count = 0;
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
SSL_TRC(10, ("%d: SSL[%d]: sending %d bytes in the clear",
SSL_GETPID(), ss->fd, len));
PRINT_BUF(50, (ss, "clear data:", (PRUint8*) in, len));
while (len) {
amount = PR_MIN( len, MAX_STREAM_CYPHER_LEN );
if (amount + 2 > ss->sec.writeBuf.space) {
rv = sslBuffer_Grow(&ss->sec.writeBuf, amount + 2);
if (rv != SECSuccess) {
count = rv;
break;
}
}
out = ss->sec.writeBuf.buf;
/*
** Construct message.
*/
out[0] = 0x80 | MSB(amount);
out[1] = LSB(amount);
PORT_Memcpy(&out[2], in, amount);
/* Now send the data */
rv = ssl_DefSend(ss, out, amount + 2, flags & ~ssl_SEND_FLAG_MASK);
if (rv < 0) {
if (PORT_GetError() == PR_WOULD_BLOCK_ERROR) {
rv = 0;
} else {
/* Return short write if some data already went out... */
if (count == 0)
count = rv;
break;
}
}
if ((unsigned)rv < (amount + 2)) {
/* Short write. Save the data and return. */
if (ssl_SaveWriteData(ss, out + rv, amount + 2 - rv)
== SECFailure) {
count = SECFailure;
} else {
count += amount;
ss->sec.sendSequence++;
}
break;
}
ss->sec.sendSequence++;
in += amount;
count += amount;
len -= amount;
}
return count;
}
/*
** Send some data, when using a stream cipher. Stream ciphers have a
** block size of 1. Package up the data with the length header
** and send it.
*/
static PRInt32
ssl2_SendStream(sslSocket *ss, const PRUint8 *in, PRInt32 len, PRInt32 flags)
{
PRUint8 * out;
int rv;
int count = 0;
int amount;
PRUint8 macLen;
int nout;
int buflen;
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
SSL_TRC(10, ("%d: SSL[%d]: sending %d bytes using stream cipher",
SSL_GETPID(), ss->fd, len));
PRINT_BUF(50, (ss, "clear data:", (PRUint8*) in, len));
while (len) {
ssl_GetSpecReadLock(ss); /*************************************/
macLen = ss->sec.hash->length;
amount = PR_MIN( len, MAX_STREAM_CYPHER_LEN );
buflen = amount + 2 + macLen;
if (buflen > ss->sec.writeBuf.space) {
rv = sslBuffer_Grow(&ss->sec.writeBuf, buflen);
if (rv != SECSuccess) {
goto loser;
}
}
out = ss->sec.writeBuf.buf;
nout = amount + macLen;
out[0] = 0x80 | MSB(nout);
out[1] = LSB(nout);
/* Calculate MAC */
rv = ssl2_CalcMAC(out+2, /* put MAC here */
&ss->sec,
in, amount, /* input addr & length */
0); /* no padding */
if (rv != SECSuccess)
goto loser;
/* Encrypt MAC */
rv = (*ss->sec.enc)(ss->sec.writecx, out+2, &nout, macLen, out+2, macLen);
if (rv) goto loser;
/* Encrypt data from caller */
rv = (*ss->sec.enc)(ss->sec.writecx, out+2+macLen, &nout, amount, in, amount);
if (rv) goto loser;
ssl_ReleaseSpecReadLock(ss); /*************************************/
PRINT_BUF(50, (ss, "encrypted data:", out, buflen));
rv = ssl_DefSend(ss, out, buflen, flags & ~ssl_SEND_FLAG_MASK);
if (rv < 0) {
if (PORT_GetError() == PR_WOULD_BLOCK_ERROR) {
SSL_TRC(50, ("%d: SSL[%d]: send stream would block, "
"saving data", SSL_GETPID(), ss->fd));
rv = 0;
} else {
SSL_TRC(10, ("%d: SSL[%d]: send stream error %d",
SSL_GETPID(), ss->fd, PORT_GetError()));
/* Return short write if some data already went out... */
if (count == 0)
count = rv;
goto done;
}
}
if ((unsigned)rv < buflen) {
/* Short write. Save the data and return. */
if (ssl_SaveWriteData(ss, out + rv, buflen - rv) == SECFailure) {
count = SECFailure;
} else {
count += amount;
ss->sec.sendSequence++;
}
goto done;
}
ss->sec.sendSequence++;
in += amount;
count += amount;
len -= amount;
}
done:
return count;
loser:
ssl_ReleaseSpecReadLock(ss);
return SECFailure;
}
/*
** Send some data, when using a block cipher. Package up the data with
** the length header and send it.
*/
/* XXX assumes blocksize is > 7 */
static PRInt32
ssl2_SendBlock(sslSocket *ss, const PRUint8 *in, PRInt32 len, PRInt32 flags)
{
PRUint8 * out; /* begining of output buffer. */
PRUint8 * op; /* next output byte goes here. */
int rv; /* value from funcs we called. */
int count = 0; /* this function's return value. */
unsigned int hlen; /* output record hdr len, 2 or 3 */
unsigned int macLen; /* MAC is this many bytes long. */
int amount; /* of plaintext to go in record. */
unsigned int padding; /* add this many padding byte. */
int nout; /* ciphertext size after header. */
int buflen; /* size of generated record. */
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
SSL_TRC(10, ("%d: SSL[%d]: sending %d bytes using block cipher",
SSL_GETPID(), ss->fd, len));
PRINT_BUF(50, (ss, "clear data:", in, len));
while (len) {
ssl_GetSpecReadLock(ss); /*************************************/
macLen = ss->sec.hash->length;
/* Figure out how much to send, including mac and padding */
amount = PR_MIN( len, MAX_BLOCK_CYPHER_LEN );
nout = amount + macLen;
padding = nout & (ss->sec.blockSize - 1);
if (padding) {
hlen = 3;
padding = ss->sec.blockSize - padding;
nout += padding;
} else {
hlen = 2;
}
buflen = hlen + nout;
if (buflen > ss->sec.writeBuf.space) {
rv = sslBuffer_Grow(&ss->sec.writeBuf, buflen);
if (rv != SECSuccess) {
goto loser;
}
}
out = ss->sec.writeBuf.buf;
/* Construct header */
op = out;
if (padding) {
*op++ = MSB(nout);
*op++ = LSB(nout);
*op++ = padding;
} else {
*op++ = 0x80 | MSB(nout);
*op++ = LSB(nout);
}
/* Calculate MAC */
rv = ssl2_CalcMAC(op, /* MAC goes here. */
&ss->sec,
in, amount, /* intput addr, len */
padding);
if (rv != SECSuccess)
goto loser;
op += macLen;
/* Copy in the input data */
/* XXX could eliminate the copy by folding it into the encryption */
PORT_Memcpy(op, in, amount);
op += amount;
if (padding) {
PORT_Memset(op, padding, padding);
op += padding;
}
/* Encrypt result */
rv = (*ss->sec.enc)(ss->sec.writecx, out+hlen, &nout, buflen-hlen,
out+hlen, op - (out + hlen));
if (rv)
goto loser;
ssl_ReleaseSpecReadLock(ss); /*************************************/
PRINT_BUF(50, (ss, "final xmit data:", out, op - out));
rv = ssl_DefSend(ss, out, op - out, flags & ~ssl_SEND_FLAG_MASK);
if (rv < 0) {
if (PORT_GetError() == PR_WOULD_BLOCK_ERROR) {
rv = 0;
} else {
SSL_TRC(10, ("%d: SSL[%d]: send block error %d",
SSL_GETPID(), ss->fd, PORT_GetError()));
/* Return short write if some data already went out... */
if (count == 0)
count = rv;
goto done;
}
}
if (rv < (op - out)) {
/* Short write. Save the data and return. */
if (ssl_SaveWriteData(ss, out + rv, op - out - rv) == SECFailure) {
count = SECFailure;
} else {
count += amount;
ss->sec.sendSequence++;
}
goto done;
}
ss->sec.sendSequence++;
in += amount;
count += amount;
len -= amount;
}
done:
return count;
loser:
ssl_ReleaseSpecReadLock(ss);
return SECFailure;
}
/*
** Called from: ssl2_HandleServerHelloMessage,
** ssl2_HandleClientSessionKeyMessage,
** ssl2_HandleClientHelloMessage,
**
*/
static void
ssl2_UseEncryptedSendFunc(sslSocket *ss)
{
ssl_GetXmitBufLock(ss);
PORT_Assert(ss->sec.hashcx != 0);
ss->gs.encrypted = 1;
ss->sec.send = (ss->sec.blockSize > 1) ? ssl2_SendBlock : ssl2_SendStream;
ssl_ReleaseXmitBufLock(ss);
}
/* Called while initializing socket in ssl_CreateSecurityInfo().
** This function allows us to keep the name of ssl2_SendClear static.
*/
void
ssl2_UseClearSendFunc(sslSocket *ss)
{
ss->sec.send = ssl2_SendClear;
}
/************************************************************************
** END of Send functions. *
*************************************************************************/
/***********************************************************************
* For SSL3, this gathers in and handles records/messages until either
* the handshake is complete or application data is available.
*
* For SSL2, this gathers in only the next SSLV2 record.
*
* Called from ssl_Do1stHandshake() via function pointer ss->handshake.
* Caller must hold handshake lock.
* This function acquires and releases the RecvBufLock.
*
* returns SECSuccess for success.
* returns SECWouldBlock when that value is returned by ssl2_GatherRecord() or
* ssl3_GatherCompleteHandshake().
* returns SECFailure on all other errors.
*
* The gather functions called by ssl_GatherRecord1stHandshake are expected
* to return values interpreted as follows:
* 1 : the function completed without error.
* 0 : the function read EOF.
* -1 : read error, or PR_WOULD_BLOCK_ERROR, or handleRecord error.
* -2 : the function wants ssl_GatherRecord1stHandshake to be called again
* immediately, by ssl_Do1stHandshake.
*
* This code is similar to, and easily confused with, DoRecv() in sslsecur.c
*
* This function is called from ssl_Do1stHandshake().
* The following functions put ssl_GatherRecord1stHandshake into ss->handshake:
* ssl2_HandleMessage
* ssl2_HandleVerifyMessage
* ssl2_HandleServerHelloMessage
* ssl2_BeginClientHandshake
* ssl2_HandleClientSessionKeyMessage
* ssl3_RestartHandshakeAfterCertReq
* ssl3_RestartHandshakeAfterServerCert
* ssl2_HandleClientHelloMessage
* ssl2_BeginServerHandshake
*/
SECStatus
ssl_GatherRecord1stHandshake(sslSocket *ss)
{
int rv;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetRecvBufLock(ss);
/* The special case DTLS logic is needed here because the SSL/TLS
* version wants to auto-detect SSL2 vs. SSL3 on the initial handshake
* (ss->version == 0) but with DTLS it gets confused, so we force the
* SSL3 version.
*/
if ((ss->version >= SSL_LIBRARY_VERSION_3_0) || IS_DTLS(ss)) {
/* Wait for handshake to complete, or application data to arrive. */
rv = ssl3_GatherCompleteHandshake(ss, 0);
} else {
/* See if we have a complete record */
rv = ssl2_GatherRecord(ss, 0);
}
SSL_TRC(10, ("%d: SSL[%d]: handshake gathering, rv=%d",
SSL_GETPID(), ss->fd, rv));
ssl_ReleaseRecvBufLock(ss);
if (rv <= 0) {
if (rv == SECWouldBlock) {
/* Progress is blocked waiting for callback completion. */
SSL_TRC(10, ("%d: SSL[%d]: handshake blocked (need %d)",
SSL_GETPID(), ss->fd, ss->gs.remainder));
return SECWouldBlock;
}
if (rv == 0) {
/* EOF. Loser */
PORT_SetError(PR_END_OF_FILE_ERROR);
}
return SECFailure; /* rv is < 0 here. */
}
SSL_TRC(10, ("%d: SSL[%d]: got handshake record of %d bytes",
SSL_GETPID(), ss->fd, ss->gs.recordLen));
ss->handshake = 0; /* makes ssl_Do1stHandshake call ss->nextHandshake.*/
return SECSuccess;
}
/************************************************************************/
/* Called from ssl2_ServerSetupSessionCypher()
* ssl2_ClientSetupSessionCypher()
*/
static SECStatus
ssl2_FillInSID(sslSessionID * sid,
int cipher,
PRUint8 *keyData,
int keyLen,
PRUint8 *ca,
int caLen,
int keyBits,
int secretKeyBits,
SSLSignType authAlgorithm,
PRUint32 authKeyBits,
SSLKEAType keaType,
PRUint32 keaKeyBits)
{
PORT_Assert(sid->references == 1);
PORT_Assert(sid->cached == never_cached);
PORT_Assert(sid->u.ssl2.masterKey.data == 0);
PORT_Assert(sid->u.ssl2.cipherArg.data == 0);
sid->version = SSL_LIBRARY_VERSION_2;
sid->u.ssl2.cipherType = cipher;
sid->u.ssl2.masterKey.data = (PRUint8*) PORT_Alloc(keyLen);
if (!sid->u.ssl2.masterKey.data) {
return SECFailure;
}
PORT_Memcpy(sid->u.ssl2.masterKey.data, keyData, keyLen);
sid->u.ssl2.masterKey.len = keyLen;
sid->u.ssl2.keyBits = keyBits;
sid->u.ssl2.secretKeyBits = secretKeyBits;
sid->authAlgorithm = authAlgorithm;
sid->authKeyBits = authKeyBits;
sid->keaType = keaType;
sid->keaKeyBits = keaKeyBits;
sid->lastAccessTime = sid->creationTime = ssl_Time();
sid->expirationTime = sid->creationTime + ssl_sid_timeout;
if (caLen) {
sid->u.ssl2.cipherArg.data = (PRUint8*) PORT_Alloc(caLen);
if (!sid->u.ssl2.cipherArg.data) {
return SECFailure;
}
sid->u.ssl2.cipherArg.len = caLen;
PORT_Memcpy(sid->u.ssl2.cipherArg.data, ca, caLen);
}
return SECSuccess;
}
/*
** Construct session keys given the masterKey (tied to the session-id),
** the client's challenge and the server's nonce.
**
** Called from ssl2_CreateSessionCypher() <-
*/
static SECStatus
ssl2_ProduceKeys(sslSocket * ss,
SECItem * readKey,
SECItem * writeKey,
SECItem * masterKey,
PRUint8 * challenge,
PRUint8 * nonce,
int cipherType)
{
PK11Context * cx = 0;
unsigned nkm = 0; /* number of hashes to generate key mat. */
unsigned nkd = 0; /* size of readKey and writeKey. */
unsigned part;
unsigned i;
unsigned off;
SECStatus rv;
PRUint8 countChar;
PRUint8 km[3*16]; /* buffer for key material. */
readKey->data = 0;
writeKey->data = 0;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
rv = SECSuccess;
cx = PK11_CreateDigestContext(SEC_OID_MD5);
if (cx == NULL) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
return SECFailure;
}
nkm = ssl_Specs[cipherType].nkm;
nkd = ssl_Specs[cipherType].nkd;
readKey->data = (PRUint8*) PORT_Alloc(nkd);
if (!readKey->data)
goto loser;
readKey->len = nkd;
writeKey->data = (PRUint8*) PORT_Alloc(nkd);
if (!writeKey->data)
goto loser;
writeKey->len = nkd;
/* Produce key material */
countChar = '0';
for (i = 0, off = 0; i < nkm; i++, off += 16) {
rv = PK11_DigestBegin(cx);
rv |= PK11_DigestOp(cx, masterKey->data, masterKey->len);
rv |= PK11_DigestOp(cx, &countChar, 1);
rv |= PK11_DigestOp(cx, challenge, SSL_CHALLENGE_BYTES);
rv |= PK11_DigestOp(cx, nonce, SSL_CONNECTIONID_BYTES);
rv |= PK11_DigestFinal(cx, km+off, &part, MD5_LENGTH);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
rv = SECFailure;
goto loser;
}
countChar++;
}
/* Produce keys */
PORT_Memcpy(readKey->data, km, nkd);
PORT_Memcpy(writeKey->data, km + nkd, nkd);
loser:
PK11_DestroyContext(cx, PR_TRUE);
return rv;
}
/* Called from ssl2_ServerSetupSessionCypher()
** <- ssl2_HandleClientSessionKeyMessage()
** <- ssl2_HandleClientHelloMessage()
** and from ssl2_ClientSetupSessionCypher()
** <- ssl2_HandleServerHelloMessage()
*/
static SECStatus
ssl2_CreateSessionCypher(sslSocket *ss, sslSessionID *sid, PRBool isClient)
{
SECItem * rk = NULL;
SECItem * wk = NULL;
SECItem * param;
SECStatus rv;
int cipherType = sid->u.ssl2.cipherType;
PK11SlotInfo * slot = NULL;
CK_MECHANISM_TYPE mechanism;
SECItem readKey;
SECItem writeKey;
void *readcx = 0;
void *writecx = 0;
readKey.data = 0;
writeKey.data = 0;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
if (ss->sec.ci.sid == 0)
goto sec_loser; /* don't crash if asserts are off */
/* Trying to cut down on all these switch statements that should be tables.
* So, test cipherType once, here, and then use tables below.
*/
switch (cipherType) {
case SSL_CK_RC4_128_EXPORT40_WITH_MD5:
case SSL_CK_RC4_128_WITH_MD5:
case SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5:
case SSL_CK_RC2_128_CBC_WITH_MD5:
case SSL_CK_DES_64_CBC_WITH_MD5:
case SSL_CK_DES_192_EDE3_CBC_WITH_MD5:
break;
default:
SSL_DBG(("%d: SSL[%d]: ssl2_CreateSessionCypher: unknown cipher=%d",
SSL_GETPID(), ss->fd, cipherType));
PORT_SetError(isClient ? SSL_ERROR_BAD_SERVER : SSL_ERROR_BAD_CLIENT);
goto sec_loser;
}
rk = isClient ? &readKey : &writeKey;
wk = isClient ? &writeKey : &readKey;
/* Produce the keys for this session */
rv = ssl2_ProduceKeys(ss, &readKey, &writeKey, &sid->u.ssl2.masterKey,
ss->sec.ci.clientChallenge, ss->sec.ci.connectionID,
cipherType);
if (rv != SECSuccess)
goto loser;
PRINT_BUF(7, (ss, "Session read-key: ", rk->data, rk->len));
PRINT_BUF(7, (ss, "Session write-key: ", wk->data, wk->len));
PORT_Memcpy(ss->sec.ci.readKey, readKey.data, readKey.len);
PORT_Memcpy(ss->sec.ci.writeKey, writeKey.data, writeKey.len);
ss->sec.ci.keySize = readKey.len;
/* Setup the MAC */
rv = ssl2_CreateMAC(&ss->sec, rk, wk, cipherType);
if (rv != SECSuccess)
goto loser;
/* First create the session key object */
SSL_TRC(3, ("%d: SSL[%d]: using %s", SSL_GETPID(), ss->fd,
ssl_cipherName[cipherType]));
mechanism = ssl_Specs[cipherType].mechanism;
/* set destructer before we call loser... */
ss->sec.destroy = (void (*)(void*, PRBool)) PK11_DestroyContext;
slot = PK11_GetBestSlot(mechanism, ss->pkcs11PinArg);
if (slot == NULL)
goto loser;
param = PK11_ParamFromIV(mechanism, &sid->u.ssl2.cipherArg);
if (param == NULL)
goto loser;
readcx = PK11_CreateContextByRawKey(slot, mechanism, PK11_OriginUnwrap,
CKA_DECRYPT, rk, param,
ss->pkcs11PinArg);
SECITEM_FreeItem(param, PR_TRUE);
if (readcx == NULL)
goto loser;
/* build the client context */
param = PK11_ParamFromIV(mechanism, &sid->u.ssl2.cipherArg);
if (param == NULL)
goto loser;
writecx = PK11_CreateContextByRawKey(slot, mechanism, PK11_OriginUnwrap,
CKA_ENCRYPT, wk, param,
ss->pkcs11PinArg);
SECITEM_FreeItem(param,PR_TRUE);
if (writecx == NULL)
goto loser;
PK11_FreeSlot(slot);
rv = SECSuccess;
ss->sec.enc = (SSLCipher) PK11_CipherOp;
ss->sec.dec = (SSLCipher) PK11_CipherOp;
ss->sec.readcx = (void *) readcx;
ss->sec.writecx = (void *) writecx;
ss->sec.blockSize = ssl_Specs[cipherType].blockSize;
ss->sec.blockShift = ssl_Specs[cipherType].blockShift;
ss->sec.cipherType = sid->u.ssl2.cipherType;
ss->sec.keyBits = sid->u.ssl2.keyBits;
ss->sec.secretKeyBits = sid->u.ssl2.secretKeyBits;
goto done;
loser:
if (ss->sec.destroy) {
if (readcx) (*ss->sec.destroy)(readcx, PR_TRUE);
if (writecx) (*ss->sec.destroy)(writecx, PR_TRUE);
}
ss->sec.destroy = NULL;
if (slot) PK11_FreeSlot(slot);
sec_loser:
rv = SECFailure;
done:
if (rk) {
SECITEM_ZfreeItem(rk, PR_FALSE);
}
if (wk) {
SECITEM_ZfreeItem(wk, PR_FALSE);
}
return rv;
}
/*
** Setup the server ciphers given information from a CLIENT-MASTER-KEY
** message.
** "ss" pointer to the ssl-socket object
** "cipher" the cipher type to use
** "keyBits" the size of the final cipher key
** "ck" the clear-key data
** "ckLen" the number of bytes of clear-key data
** "ek" the encrypted-key data
** "ekLen" the number of bytes of encrypted-key data
** "ca" the cipher-arg data
** "caLen" the number of bytes of cipher-arg data
**
** The MASTER-KEY is constructed by first decrypting the encrypted-key
** data. This produces the SECRET-KEY-DATA. The MASTER-KEY is composed by
** concatenating the clear-key data with the SECRET-KEY-DATA. This code
** checks to make sure that the client didn't send us an improper amount
** of SECRET-KEY-DATA (it restricts the length of that data to match the
** spec).
**
** Called from ssl2_HandleClientSessionKeyMessage().
*/
static SECStatus
ssl2_ServerSetupSessionCypher(sslSocket *ss, int cipher, unsigned int keyBits,
PRUint8 *ck, unsigned int ckLen,
PRUint8 *ek, unsigned int ekLen,
PRUint8 *ca, unsigned int caLen)
{
PRUint8 * dk = NULL; /* decrypted master key */
sslSessionID * sid;
sslServerCerts * sc = ss->serverCerts + kt_rsa;
PRUint8 * kbuf = 0; /* buffer for RSA decrypted data. */
unsigned int ddLen; /* length of RSA decrypted data in kbuf */
unsigned int keySize;
unsigned int dkLen; /* decrypted key length in bytes */
int modulusLen;
SECStatus rv;
PRUint16 allowed; /* cipher kinds enabled and allowed by policy */
PRUint8 mkbuf[SSL_MAX_MASTER_KEY_BYTES];
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
PORT_Assert((sc->SERVERKEY != 0));
PORT_Assert((ss->sec.ci.sid != 0));
sid = ss->sec.ci.sid;
/* Trying to cut down on all these switch statements that should be tables.
* So, test cipherType once, here, and then use tables below.
*/
switch (cipher) {
case SSL_CK_RC4_128_EXPORT40_WITH_MD5:
case SSL_CK_RC4_128_WITH_MD5:
case SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5:
case SSL_CK_RC2_128_CBC_WITH_MD5:
case SSL_CK_DES_64_CBC_WITH_MD5:
case SSL_CK_DES_192_EDE3_CBC_WITH_MD5:
break;
default:
SSL_DBG(("%d: SSL[%d]: ssl2_ServerSetupSessionCypher: unknown cipher=%d",
SSL_GETPID(), ss->fd, cipher));
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto loser;
}
allowed = ss->allowedByPolicy & ss->chosenPreference & SSL_CB_IMPLEMENTED;
if (!(allowed & (1 << cipher))) {
/* client chose a kind we don't allow! */
SSL_DBG(("%d: SSL[%d]: disallowed cipher=%d",
SSL_GETPID(), ss->fd, cipher));
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto loser;
}
keySize = ssl_Specs[cipher].keyLen;
if (keyBits != keySize * BPB) {
SSL_DBG(("%d: SSL[%d]: invalid master secret key length=%d (bits)!",
SSL_GETPID(), ss->fd, keyBits));
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto loser;
}
if (ckLen != ssl_Specs[cipher].pubLen) {
SSL_DBG(("%d: SSL[%d]: invalid clear key length, ckLen=%d (bytes)!",
SSL_GETPID(), ss->fd, ckLen));
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto loser;
}
if (caLen != ssl_Specs[cipher].ivLen) {
SSL_DBG(("%d: SSL[%d]: invalid key args length, caLen=%d (bytes)!",
SSL_GETPID(), ss->fd, caLen));
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto loser;
}
modulusLen = PK11_GetPrivateModulusLen(sc->SERVERKEY);
if (modulusLen == -1) {
/* XXX If the key is bad, then PK11_PubDecryptRaw will fail below. */
modulusLen = ekLen;
}
if (ekLen > modulusLen || ekLen + ckLen < keySize) {
SSL_DBG(("%d: SSL[%d]: invalid encrypted key length, ekLen=%d (bytes)!",
SSL_GETPID(), ss->fd, ekLen));
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto loser;
}
/* allocate the buffer to hold the decrypted portion of the key. */
kbuf = (PRUint8*)PORT_Alloc(modulusLen);
if (!kbuf) {
goto loser;
}
dkLen = keySize - ckLen;
dk = kbuf + modulusLen - dkLen;
/* Decrypt encrypted half of the key.
** NOTE: PK11_PubDecryptRaw will barf on a non-RSA key. This is
** desired behavior here.
*/
rv = PK11_PubDecryptRaw(sc->SERVERKEY, kbuf, &ddLen, modulusLen, ek, ekLen);
if (rv != SECSuccess)
goto hide_loser;
/* Is the length of the decrypted data (ddLen) the expected value? */
if (modulusLen != ddLen)
goto hide_loser;
/* Cheaply verify that PKCS#1 was used to format the encryption block */
if ((kbuf[0] != 0x00) || (kbuf[1] != 0x02) || (dk[-1] != 0x00)) {
SSL_DBG(("%d: SSL[%d]: strange encryption block",
SSL_GETPID(), ss->fd));
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto hide_loser;
}
/* Make sure we're not subject to a version rollback attack. */
if (!SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
static const PRUint8 threes[8] = { 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03 };
if (PORT_Memcmp(dk - 8 - 1, threes, 8) == 0) {
PORT_SetError(SSL_ERROR_BAD_CLIENT);
goto hide_loser;
}
}
if (0) {
hide_loser:
/* Defense against the Bleichenbacher attack.
* Provide the client with NO CLUES that the decrypted master key
* was erroneous. Don't send any error messages.
* Instead, Generate a completely bogus master key .
*/
PK11_GenerateRandom(dk, dkLen);
}
/*
** Construct master key out of the pieces.
*/
if (ckLen) {
PORT_Memcpy(mkbuf, ck, ckLen);
}
PORT_Memcpy(mkbuf + ckLen, dk, dkLen);
/* Fill in session-id */
rv = ssl2_FillInSID(sid, cipher, mkbuf, keySize, ca, caLen,
keyBits, keyBits - (ckLen<<3),
ss->sec.authAlgorithm, ss->sec.authKeyBits,
ss->sec.keaType, ss->sec.keaKeyBits);
if (rv != SECSuccess) {
goto loser;
}
/* Create session ciphers */
rv = ssl2_CreateSessionCypher(ss, sid, PR_FALSE);
if (rv != SECSuccess) {
goto loser;
}
SSL_TRC(1, ("%d: SSL[%d]: server, using %s cipher, clear=%d total=%d",
SSL_GETPID(), ss->fd, ssl_cipherName[cipher],
ckLen<<3, keySize<<3));
rv = SECSuccess;
goto done;
loser:
rv = SECFailure;
done:
PORT_Free(kbuf);
return rv;
}
/************************************************************************/
/*
** Rewrite the incoming cipher specs, comparing to list of specs we support,
** (ss->cipherSpecs) and eliminating anything we don't support
**
* Note: Our list may contain SSL v3 ciphers.
* We MUST NOT match on any of those.
* Fortunately, this is easy to detect because SSLv3 ciphers have zero
* in the first byte, and none of the SSLv2 ciphers do.
*
* Called from ssl2_HandleClientHelloMessage().
* Returns the number of bytes of "qualified cipher specs",
* which is typically a multiple of 3, but will be zero if there are none.
*/
static int
ssl2_QualifyCypherSpecs(sslSocket *ss,
PRUint8 * cs, /* cipher specs in client hello msg. */
int csLen)
{
PRUint8 * ms;
PRUint8 * hs;
PRUint8 * qs;
int mc;
int hc;
PRUint8 qualifiedSpecs[ssl2_NUM_SUITES_IMPLEMENTED * 3];
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
if (!ss->cipherSpecs) {
SECStatus rv = ssl2_ConstructCipherSpecs(ss);
if (rv != SECSuccess || !ss->cipherSpecs)
return 0;
}
PRINT_BUF(10, (ss, "specs from client:", cs, csLen));
qs = qualifiedSpecs;
ms = ss->cipherSpecs;
for (mc = ss->sizeCipherSpecs; mc > 0; mc -= 3, ms += 3) {
if (ms[0] == 0)
continue;
for (hs = cs, hc = csLen; hc > 0; hs += 3, hc -= 3) {
if ((hs[0] == ms[0]) &&
(hs[1] == ms[1]) &&
(hs[2] == ms[2])) {
/* Copy this cipher spec into the "keep" section */
qs[0] = hs[0];
qs[1] = hs[1];
qs[2] = hs[2];
qs += 3;
break;
}
}
}
hc = qs - qualifiedSpecs;
PRINT_BUF(10, (ss, "qualified specs from client:", qualifiedSpecs, hc));
PORT_Memcpy(cs, qualifiedSpecs, hc);
return hc;
}
/*
** Pick the best cipher we can find, given the array of server cipher
** specs. Returns cipher number (e.g. SSL_CK_*), or -1 for no overlap.
** If successful, stores the master key size (bytes) in *pKeyLen.
**
** This is correct only for the client side, but presently
** this function is only called from
** ssl2_ClientSetupSessionCypher() <- ssl2_HandleServerHelloMessage()
**
** Note that most servers only return a single cipher suite in their
** ServerHello messages. So, the code below for finding the "best" cipher
** suite usually has only one choice. The client and server should send
** their cipher suite lists sorted in descending order by preference.
*/
static int
ssl2_ChooseSessionCypher(sslSocket *ss,
int hc, /* number of cs's in hs. */
PRUint8 * hs, /* server hello's cipher suites. */
int * pKeyLen) /* out: sym key size in bytes. */
{
PRUint8 * ms;
unsigned int i;
int bestKeySize;
int bestRealKeySize;
int bestCypher;
int keySize;
int realKeySize;
PRUint8 * ohs = hs;
const PRUint8 * preferred;
static const PRUint8 noneSuch[3] = { 0, 0, 0 };
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
if (!ss->cipherSpecs) {
SECStatus rv = ssl2_ConstructCipherSpecs(ss);
if (rv != SECSuccess || !ss->cipherSpecs)
goto loser;
}
if (!ss->preferredCipher) {
unsigned int allowed = ss->allowedByPolicy & ss->chosenPreference &
SSL_CB_IMPLEMENTED;
if (allowed) {
preferred = implementedCipherSuites;
for (i = ssl2_NUM_SUITES_IMPLEMENTED; i > 0; --i) {
if (0 != (allowed & (1U << preferred[0]))) {
ss->preferredCipher = preferred;
break;
}
preferred += 3;
}
}
}
preferred = ss->preferredCipher ? ss->preferredCipher : noneSuch;
/*
** Scan list of ciphers received from peer and look for a match in
** our list.
* Note: Our list may contain SSL v3 ciphers.
* We MUST NOT match on any of those.
* Fortunately, this is easy to detect because SSLv3 ciphers have zero
* in the first byte, and none of the SSLv2 ciphers do.
*/
bestKeySize = bestRealKeySize = 0;
bestCypher = -1;
while (--hc >= 0) {
for (i = 0, ms = ss->cipherSpecs; i < ss->sizeCipherSpecs; i += 3, ms += 3) {
if ((hs[0] == preferred[0]) &&
(hs[1] == preferred[1]) &&
(hs[2] == preferred[2]) &&
hs[0] != 0) {
/* Pick this cipher immediately! */
*pKeyLen = (((hs[1] << 8) | hs[2]) + 7) >> 3;
return hs[0];
}
if ((hs[0] == ms[0]) && (hs[1] == ms[1]) && (hs[2] == ms[2]) &&
hs[0] != 0) {
/* Found a match */
/* Use secret keySize to determine which cipher is best */
realKeySize = (hs[1] << 8) | hs[2];
switch (hs[0]) {
case SSL_CK_RC4_128_EXPORT40_WITH_MD5:
case SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5:
keySize = 40;
break;
default:
keySize = realKeySize;
break;
}
if (keySize > bestKeySize) {
bestCypher = hs[0];
bestKeySize = keySize;
bestRealKeySize = realKeySize;
}
}
}
hs += 3;
}
if (bestCypher < 0) {
/*
** No overlap between server and client. Re-examine server list
** to see what kind of ciphers it does support so that we can set
** the error code appropriately.
*/
if ((ohs[0] == SSL_CK_RC4_128_WITH_MD5) ||
(ohs[0] == SSL_CK_RC2_128_CBC_WITH_MD5)) {
PORT_SetError(SSL_ERROR_US_ONLY_SERVER);
} else if ((ohs[0] == SSL_CK_RC4_128_EXPORT40_WITH_MD5) ||
(ohs[0] == SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5)) {
PORT_SetError(SSL_ERROR_EXPORT_ONLY_SERVER);
} else {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
}
SSL_DBG(("%d: SSL[%d]: no cipher overlap", SSL_GETPID(), ss->fd));
goto loser;
}
*pKeyLen = (bestRealKeySize + 7) >> 3;
return bestCypher;
loser:
return -1;
}
static SECStatus
ssl2_ClientHandleServerCert(sslSocket *ss, PRUint8 *certData, int certLen)
{
CERTCertificate *cert = NULL;
SECItem certItem;
certItem.data = certData;
certItem.len = certLen;
/* decode the certificate */
cert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL,
PR_FALSE, PR_TRUE);
if (cert == NULL) {
SSL_DBG(("%d: SSL[%d]: decode of server certificate fails",
SSL_GETPID(), ss->fd));
PORT_SetError(SSL_ERROR_BAD_CERTIFICATE);
return SECFailure;
}
#ifdef TRACE
{
if (ssl_trace >= 1) {
char *issuer;
char *subject;
issuer = CERT_NameToAscii(&cert->issuer);
subject = CERT_NameToAscii(&cert->subject);
SSL_TRC(1,("%d: server certificate issuer: '%s'",
SSL_GETPID(), issuer ? issuer : "OOPS"));
SSL_TRC(1,("%d: server name: '%s'",
SSL_GETPID(), subject ? subject : "OOPS"));
PORT_Free(issuer);
PORT_Free(subject);
}
}
#endif
ss->sec.peerCert = cert;
return SECSuccess;
}
/*
* Format one block of data for public/private key encryption using
* the rules defined in PKCS #1. SSL2 does this itself to handle the
* rollback detection.
*/
#define RSA_BLOCK_MIN_PAD_LEN 8
#define RSA_BLOCK_FIRST_OCTET 0x00
#define RSA_BLOCK_AFTER_PAD_OCTET 0x00
#define RSA_BLOCK_PUBLIC_OCTET 0x02
unsigned char *
ssl_FormatSSL2Block(unsigned modulusLen, SECItem *data)
{
unsigned char *block;
unsigned char *bp;
int padLen;
SECStatus rv;
int i;
if (modulusLen < data->len + (3 + RSA_BLOCK_MIN_PAD_LEN)) {
PORT_SetError(SEC_ERROR_BAD_KEY);
return NULL;
}
block = (unsigned char *) PORT_Alloc(modulusLen);
if (block == NULL)
return NULL;
bp = block;
/*
* All RSA blocks start with two octets:
* 0x00 || BlockType
*/
*bp++ = RSA_BLOCK_FIRST_OCTET;
*bp++ = RSA_BLOCK_PUBLIC_OCTET;
/*
* 0x00 || BT || Pad || 0x00 || ActualData
* 1 1 padLen 1 data->len
* Pad is all non-zero random bytes.
*/
padLen = modulusLen - data->len - 3;
PORT_Assert (padLen >= RSA_BLOCK_MIN_PAD_LEN);
rv = PK11_GenerateRandom(bp, padLen);
if (rv == SECFailure) goto loser;
/* replace all the 'zero' bytes */
for (i = 0; i < padLen; i++) {
while (bp[i] == RSA_BLOCK_AFTER_PAD_OCTET) {
rv = PK11_GenerateRandom(bp+i, 1);
if (rv == SECFailure) goto loser;
}
}
bp += padLen;
*bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
PORT_Memcpy (bp, data->data, data->len);
return block;
loser:
if (block) PORT_Free(block);
return NULL;
}
/*
** Given the server's public key and cipher specs, generate a session key
** that is ready to use for encrypting/decrypting the byte stream. At
** the same time, generate the SSL_MT_CLIENT_MASTER_KEY message and
** send it to the server.
**
** Called from ssl2_HandleServerHelloMessage()
*/
static SECStatus
ssl2_ClientSetupSessionCypher(sslSocket *ss, PRUint8 *cs, int csLen)
{
sslSessionID * sid;
PRUint8 * ca; /* points to iv data, or NULL if none. */
PRUint8 * ekbuf = 0;
CERTCertificate * cert = 0;
SECKEYPublicKey * serverKey = 0;
unsigned modulusLen = 0;
SECStatus rv;
int cipher;
int keyLen; /* cipher symkey size in bytes. */
int ckLen; /* publicly reveal this many bytes of key. */
int caLen; /* length of IV data at *ca. */
int nc;
unsigned char *eblock; /* holds unencrypted PKCS#1 formatted key. */
SECItem rek; /* holds portion of symkey to be encrypted. */
PRUint8 keyData[SSL_MAX_MASTER_KEY_BYTES];
PRUint8 iv [8];
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
eblock = NULL;
sid = ss->sec.ci.sid;
PORT_Assert(sid != 0);
cert = ss->sec.peerCert;
serverKey = CERT_ExtractPublicKey(cert);
if (!serverKey) {
SSL_DBG(("%d: SSL[%d]: extract public key failed: error=%d",
SSL_GETPID(), ss->fd, PORT_GetError()));
PORT_SetError(SSL_ERROR_BAD_CERTIFICATE);
rv = SECFailure;
goto loser2;
}
ss->sec.authAlgorithm = ssl_sign_rsa;
ss->sec.keaType = ssl_kea_rsa;
ss->sec.keaKeyBits = \
ss->sec.authKeyBits = SECKEY_PublicKeyStrengthInBits(serverKey);
/* Choose a compatible cipher with the server */
nc = csLen / 3;
cipher = ssl2_ChooseSessionCypher(ss, nc, cs, &keyLen);
if (cipher < 0) {
/* ssl2_ChooseSessionCypher has set error code. */
ssl2_SendErrorMessage(ss, SSL_PE_NO_CYPHERS);
goto loser;
}
/* Generate the random keys */
PK11_GenerateRandom(keyData, sizeof(keyData));
/*
** Next, carve up the keys into clear and encrypted portions. The
** clear data is taken from the start of keyData and the encrypted
** portion from the remainder. Note that each of these portions is
** carved in half, one half for the read-key and one for the
** write-key.
*/
ca = 0;
/* We know that cipher is a legit value here, because
* ssl2_ChooseSessionCypher doesn't return bogus values.
*/
ckLen = ssl_Specs[cipher].pubLen; /* cleartext key length. */
caLen = ssl_Specs[cipher].ivLen; /* IV length. */
if (caLen) {
PORT_Assert(sizeof iv >= caLen);
PK11_GenerateRandom(iv, caLen);
ca = iv;
}
/* Fill in session-id */
rv = ssl2_FillInSID(sid, cipher, keyData, keyLen,
ca, caLen, keyLen << 3, (keyLen - ckLen) << 3,
ss->sec.authAlgorithm, ss->sec.authKeyBits,
ss->sec.keaType, ss->sec.keaKeyBits);
if (rv != SECSuccess) {
goto loser;
}
SSL_TRC(1, ("%d: SSL[%d]: client, using %s cipher, clear=%d total=%d",
SSL_GETPID(), ss->fd, ssl_cipherName[cipher],
ckLen<<3, keyLen<<3));
/* Now setup read and write ciphers */
rv = ssl2_CreateSessionCypher(ss, sid, PR_TRUE);
if (rv != SECSuccess) {
goto loser;
}
/*
** Fill in the encryption buffer with some random bytes. Then
** copy in the portion of the session key we are encrypting.
*/
modulusLen = SECKEY_PublicKeyStrength(serverKey);
rek.data = keyData + ckLen;
rek.len = keyLen - ckLen;
eblock = ssl_FormatSSL2Block(modulusLen, &rek);
if (eblock == NULL)
goto loser;
/* Set up the padding for version 2 rollback detection. */
/* XXX We should really use defines here */
if (!SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
PORT_Assert((modulusLen - rek.len) > 12);
PORT_Memset(eblock + modulusLen - rek.len - 8 - 1, 0x03, 8);
}
ekbuf = (PRUint8*) PORT_Alloc(modulusLen);
if (!ekbuf)
goto loser;
PRINT_BUF(10, (ss, "master key encryption block:",
eblock, modulusLen));
/* Encrypt ekitem */
rv = PK11_PubEncryptRaw(serverKey, ekbuf, eblock, modulusLen,
ss->pkcs11PinArg);
if (rv)
goto loser;
/* Now we have everything ready to send */
rv = ssl2_SendSessionKeyMessage(ss, cipher, keyLen << 3, ca, caLen,
keyData, ckLen, ekbuf, modulusLen);
if (rv != SECSuccess) {
goto loser;
}
rv = SECSuccess;
goto done;
loser:
rv = SECFailure;
loser2:
done:
PORT_Memset(keyData, 0, sizeof(keyData));
PORT_ZFree(ekbuf, modulusLen);
PORT_ZFree(eblock, modulusLen);
SECKEY_DestroyPublicKey(serverKey);
return rv;
}
/************************************************************************/
/*
* Called from ssl2_HandleMessage in response to SSL_MT_SERVER_FINISHED message.
* Caller holds recvBufLock and handshakeLock
*/
static void
ssl2_ClientRegSessionID(sslSocket *ss, PRUint8 *s)
{
sslSessionID *sid = ss->sec.ci.sid;
/* Record entry in nonce cache */
if (sid->peerCert == NULL) {
PORT_Memcpy(sid->u.ssl2.sessionID, s, sizeof(sid->u.ssl2.sessionID));
sid->peerCert = CERT_DupCertificate(ss->sec.peerCert);
}
if (!ss->opt.noCache && sid->cached == never_cached)
(*ss->sec.cache)(sid);
}
/* Called from ssl2_HandleMessage() */
static SECStatus
ssl2_TriggerNextMessage(sslSocket *ss)
{
SECStatus rv;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
if ((ss->sec.ci.requiredElements & CIS_HAVE_CERTIFICATE) &&
!(ss->sec.ci.sentElements & CIS_HAVE_CERTIFICATE)) {
ss->sec.ci.sentElements |= CIS_HAVE_CERTIFICATE;
rv = ssl2_SendCertificateRequestMessage(ss);
return rv;
}
return SECSuccess;
}
/* See if it's time to send our finished message, or if the handshakes are
** complete. Send finished message if appropriate.
** Returns SECSuccess unless anything goes wrong.
**
** Called from ssl2_HandleMessage,
** ssl2_HandleVerifyMessage
** ssl2_HandleServerHelloMessage
** ssl2_HandleClientSessionKeyMessage
*/
static SECStatus
ssl2_TryToFinish(sslSocket *ss)
{
SECStatus rv;
char e, ef;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
e = ss->sec.ci.elements;
ef = e | CIS_HAVE_FINISHED;
if ((ef & ss->sec.ci.requiredElements) == ss->sec.ci.requiredElements) {
if (ss->sec.isServer) {
/* Send server finished message if we already didn't */
rv = ssl2_SendServerFinishedMessage(ss);
} else {
/* Send client finished message if we already didn't */
rv = ssl2_SendClientFinishedMessage(ss);
}
if (rv != SECSuccess) {
return rv;
}
if ((e & ss->sec.ci.requiredElements) == ss->sec.ci.requiredElements) {
/* Totally finished */
ss->handshake = 0;
return SECSuccess;
}
}
return SECSuccess;
}
/*
** Called from ssl2_HandleRequestCertificate
*/
static SECStatus
ssl2_SignResponse(sslSocket *ss,
SECKEYPrivateKey *key,
SECItem *response)
{
SGNContext * sgn = NULL;
PRUint8 * challenge;
unsigned int len;
SECStatus rv = SECFailure;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
challenge = ss->sec.ci.serverChallenge;
len = ss->sec.ci.serverChallengeLen;
/* Sign the expected data... */
sgn = SGN_NewContext(SEC_OID_PKCS1_MD5_WITH_RSA_ENCRYPTION,key);
if (!sgn)
goto done;
rv = SGN_Begin(sgn);
if (rv != SECSuccess)
goto done;
rv = SGN_Update(sgn, ss->sec.ci.readKey, ss->sec.ci.keySize);
if (rv != SECSuccess)
goto done;
rv = SGN_Update(sgn, ss->sec.ci.writeKey, ss->sec.ci.keySize);
if (rv != SECSuccess)
goto done;
rv = SGN_Update(sgn, challenge, len);
if (rv != SECSuccess)
goto done;
rv = SGN_Update(sgn, ss->sec.peerCert->derCert.data,
ss->sec.peerCert->derCert.len);
if (rv != SECSuccess)
goto done;
rv = SGN_End(sgn, response);
if (rv != SECSuccess)
goto done;
done:
SGN_DestroyContext(sgn, PR_TRUE);
return rv == SECSuccess ? SECSuccess : SECFailure;
}
/*
** Try to handle a request-certificate message. Get client's certificate
** and private key and sign a message for the server to see.
** Caller must hold handshakeLock
**
** Called from ssl2_HandleMessage().
*/
static int
ssl2_HandleRequestCertificate(sslSocket *ss)
{
CERTCertificate * cert = NULL; /* app-selected client cert. */
SECKEYPrivateKey *key = NULL; /* priv key for cert. */
SECStatus rv;
SECItem response;
int ret = 0;
PRUint8 authType;
/*
* These things all need to be initialized before we can "goto loser".
*/
response.data = NULL;
/* get challenge info from connectionInfo */
authType = ss->sec.ci.authType;
if (authType != SSL_AT_MD5_WITH_RSA_ENCRYPTION) {
SSL_TRC(7, ("%d: SSL[%d]: unsupported auth type 0x%x", SSL_GETPID(),
ss->fd, authType));
goto no_cert_error;
}
/* Get certificate and private-key from client */
if (!ss->getClientAuthData) {
SSL_TRC(7, ("%d: SSL[%d]: client doesn't support client-auth",
SSL_GETPID(), ss->fd));
goto no_cert_error;
}
ret = (*ss->getClientAuthData)(ss->getClientAuthDataArg, ss->fd,
NULL, &cert, &key);
if ( ret == SECWouldBlock ) {
PORT_SetError(SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SSL2);
ret = -1;
goto loser;
}
if (ret) {
goto no_cert_error;
}
/* check what the callback function returned */
if ((!cert) || (!key)) {
/* we are missing either the key or cert */
if (cert) {
/* got a cert, but no key - free it */
CERT_DestroyCertificate(cert);
cert = NULL;
}
if (key) {
/* got a key, but no cert - free it */
SECKEY_DestroyPrivateKey(key);
key = NULL;
}
goto no_cert_error;
}
rv = ssl2_SignResponse(ss, key, &response);
if ( rv != SECSuccess ) {
ret = -1;
goto loser;
}
/* Send response message */
ret = ssl2_SendCertificateResponseMessage(ss, &cert->derCert, &response);
/* Now, remember the cert we sent. But first, forget any previous one. */
if (ss->sec.localCert) {
CERT_DestroyCertificate(ss->sec.localCert);
}
ss->sec.localCert = CERT_DupCertificate(cert);
PORT_Assert(!ss->sec.ci.sid->localCert);
if (ss->sec.ci.sid->localCert) {
CERT_DestroyCertificate(ss->sec.ci.sid->localCert);
}
ss->sec.ci.sid->localCert = cert;
cert = NULL;
goto done;
no_cert_error:
SSL_TRC(7, ("%d: SSL[%d]: no certificate (ret=%d)", SSL_GETPID(),
ss->fd, ret));
ret = ssl2_SendErrorMessage(ss, SSL_PE_NO_CERTIFICATE);
loser:
done:
if ( cert ) {
CERT_DestroyCertificate(cert);
}
if ( key ) {
SECKEY_DestroyPrivateKey(key);
}
if ( response.data ) {
PORT_Free(response.data);
}
return ret;
}
/*
** Called from ssl2_HandleMessage for SSL_MT_CLIENT_CERTIFICATE message.
** Caller must hold HandshakeLock and RecvBufLock, since cd and response
** are contained in the gathered input data.
*/
static SECStatus
ssl2_HandleClientCertificate(sslSocket * ss,
PRUint8 certType, /* XXX unused */
PRUint8 * cd,
unsigned int cdLen,
PRUint8 * response,
unsigned int responseLen)
{
CERTCertificate *cert = NULL;
SECKEYPublicKey *pubKey = NULL;
VFYContext * vfy = NULL;
SECItem * derCert;
SECStatus rv = SECFailure;
SECItem certItem;
SECItem rep;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
/* Extract the certificate */
certItem.data = cd;
certItem.len = cdLen;
cert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL,
PR_FALSE, PR_TRUE);
if (cert == NULL) {
goto loser;
}
/* save the certificate, since the auth routine will need it */
ss->sec.peerCert = cert;
/* Extract the public key */
pubKey = CERT_ExtractPublicKey(cert);
if (!pubKey)
goto loser;
/* Verify the response data... */
rep.data = response;
rep.len = responseLen;
/* SSL 2.0 only supports RSA certs, so we don't have to worry about
* DSA here. */
vfy = VFY_CreateContext(pubKey, &rep, SEC_OID_PKCS1_RSA_ENCRYPTION,
ss->pkcs11PinArg);
if (!vfy)
goto loser;
rv = VFY_Begin(vfy);
if (rv)
goto loser;
rv = VFY_Update(vfy, ss->sec.ci.readKey, ss->sec.ci.keySize);
if (rv)
goto loser;
rv = VFY_Update(vfy, ss->sec.ci.writeKey, ss->sec.ci.keySize);
if (rv)
goto loser;
rv = VFY_Update(vfy, ss->sec.ci.serverChallenge, SSL_CHALLENGE_BYTES);
if (rv)
goto loser;
derCert = &ss->serverCerts[kt_rsa].serverCert->derCert;
rv = VFY_Update(vfy, derCert->data, derCert->len);
if (rv)
goto loser;
rv = VFY_End(vfy);
if (rv)
goto loser;
/* Now ask the server application if it likes the certificate... */
rv = (SECStatus) (*ss->authCertificate)(ss->authCertificateArg,
ss->fd, PR_TRUE, PR_TRUE);
/* Hey, it liked it. */
if (SECSuccess == rv)
goto done;
loser:
ss->sec.peerCert = NULL;
CERT_DestroyCertificate(cert);
done:
VFY_DestroyContext(vfy, PR_TRUE);
SECKEY_DestroyPublicKey(pubKey);
return rv;
}
/*
** Handle remaining messages between client/server. Process finished
** messages from either side and any authentication requests.
** This should only be called for SSLv2 handshake messages,
** not for application data records.
** Caller must hold handshake lock.
**
** Called from ssl_Do1stHandshake().
**
*/
static SECStatus
ssl2_HandleMessage(sslSocket *ss)
{
PRUint8 * data;
PRUint8 * cid;
unsigned len, certType, certLen, responseLen;
int rv;
int rv2;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetRecvBufLock(ss);
data = ss->gs.buf.buf + ss->gs.recordOffset;
if (ss->gs.recordLen < 1) {
goto bad_peer;
}
SSL_TRC(3, ("%d: SSL[%d]: received %d message",
SSL_GETPID(), ss->fd, data[0]));
DUMP_MSG(29, (ss, data, ss->gs.recordLen));
switch (data[0]) {
case SSL_MT_CLIENT_FINISHED:
if (ss->sec.ci.elements & CIS_HAVE_FINISHED) {
SSL_DBG(("%d: SSL[%d]: dup client-finished message",
SSL_GETPID(), ss->fd));
goto bad_peer;
}
/* See if nonce matches */
len = ss->gs.recordLen - 1;
cid = data + 1;
if ((len != sizeof(ss->sec.ci.connectionID)) ||
(PORT_Memcmp(ss->sec.ci.connectionID, cid, len) != 0)) {
SSL_DBG(("%d: SSL[%d]: bad connection-id", SSL_GETPID(), ss->fd));
PRINT_BUF(5, (ss, "sent connection-id",
ss->sec.ci.connectionID,
sizeof(ss->sec.ci.connectionID)));
PRINT_BUF(5, (ss, "rcvd connection-id", cid, len));
goto bad_peer;
}
SSL_TRC(5, ("%d: SSL[%d]: got client finished, waiting for 0x%d",
SSL_GETPID(), ss->fd,
ss->sec.ci.requiredElements ^ ss->sec.ci.elements));
ss->sec.ci.elements |= CIS_HAVE_FINISHED;
break;
case SSL_MT_SERVER_FINISHED:
if (ss->sec.ci.elements & CIS_HAVE_FINISHED) {
SSL_DBG(("%d: SSL[%d]: dup server-finished message",
SSL_GETPID(), ss->fd));
goto bad_peer;
}
if (ss->gs.recordLen - 1 != SSL2_SESSIONID_BYTES) {
SSL_DBG(("%d: SSL[%d]: bad server-finished message, len=%d",
SSL_GETPID(), ss->fd, ss->gs.recordLen));
goto bad_peer;
}
ssl2_ClientRegSessionID(ss, data+1);
SSL_TRC(5, ("%d: SSL[%d]: got server finished, waiting for 0x%d",
SSL_GETPID(), ss->fd,
ss->sec.ci.requiredElements ^ ss->sec.ci.elements));
ss->sec.ci.elements |= CIS_HAVE_FINISHED;
break;
case SSL_MT_REQUEST_CERTIFICATE:
len = ss->gs.recordLen - 2;
if ((len < SSL_MIN_CHALLENGE_BYTES) ||
(len > SSL_MAX_CHALLENGE_BYTES)) {
/* Bad challenge */
SSL_DBG(("%d: SSL[%d]: bad cert request message: code len=%d",
SSL_GETPID(), ss->fd, len));
goto bad_peer;
}
/* save auth request info */
ss->sec.ci.authType = data[1];
ss->sec.ci.serverChallengeLen = len;
PORT_Memcpy(ss->sec.ci.serverChallenge, data + 2, len);
rv = ssl2_HandleRequestCertificate(ss);
if (rv == SECWouldBlock) {
SSL_TRC(3, ("%d: SSL[%d]: async cert request",
SSL_GETPID(), ss->fd));
/* someone is handling this asynchronously */
ssl_ReleaseRecvBufLock(ss);
return SECWouldBlock;
}
if (rv) {
SET_ERROR_CODE
goto loser;
}
break;
case SSL_MT_CLIENT_CERTIFICATE:
if (!ss->authCertificate) {
/* Server asked for authentication and can't handle it */
PORT_SetError(SSL_ERROR_BAD_SERVER);
goto loser;
}
if (ss->gs.recordLen < SSL_HL_CLIENT_CERTIFICATE_HBYTES) {
SET_ERROR_CODE
goto loser;
}
certType = data[1];
certLen = (data[2] << 8) | data[3];
responseLen = (data[4] << 8) | data[5];
if (certType != SSL_CT_X509_CERTIFICATE) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
goto loser;
}
if (certLen + responseLen + SSL_HL_CLIENT_CERTIFICATE_HBYTES
> ss->gs.recordLen) {
/* prevent overflow crash. */
rv = SECFailure;
} else
rv = ssl2_HandleClientCertificate(ss, data[1],
data + SSL_HL_CLIENT_CERTIFICATE_HBYTES,
certLen,
data + SSL_HL_CLIENT_CERTIFICATE_HBYTES + certLen,
responseLen);
if (rv) {
rv2 = ssl2_SendErrorMessage(ss, SSL_PE_BAD_CERTIFICATE);
SET_ERROR_CODE
goto loser;
}
ss->sec.ci.elements |= CIS_HAVE_CERTIFICATE;
break;
case SSL_MT_ERROR:
rv = (data[1] << 8) | data[2];
SSL_TRC(2, ("%d: SSL[%d]: got error message, error=0x%x",
SSL_GETPID(), ss->fd, rv));
/* Convert protocol error number into API error number */
switch (rv) {
case SSL_PE_NO_CYPHERS:
rv = SSL_ERROR_NO_CYPHER_OVERLAP;
break;
case SSL_PE_NO_CERTIFICATE:
rv = SSL_ERROR_NO_CERTIFICATE;
break;
case SSL_PE_BAD_CERTIFICATE:
rv = SSL_ERROR_BAD_CERTIFICATE;
break;
case SSL_PE_UNSUPPORTED_CERTIFICATE_TYPE:
rv = SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE;
break;
default:
goto bad_peer;
}
/* XXX make certificate-request optionally fail... */
PORT_SetError(rv);
goto loser;
default:
SSL_DBG(("%d: SSL[%d]: unknown message %d",
SSL_GETPID(), ss->fd, data[0]));
goto loser;
}
SSL_TRC(3, ("%d: SSL[%d]: handled %d message, required=0x%x got=0x%x",
SSL_GETPID(), ss->fd, data[0],
ss->sec.ci.requiredElements, ss->sec.ci.elements));
rv = ssl2_TryToFinish(ss);
if (rv != SECSuccess)
goto loser;
ss->gs.recordLen = 0;
ssl_ReleaseRecvBufLock(ss);
if (ss->handshake == 0) {
return SECSuccess;
}
ss->handshake = ssl_GatherRecord1stHandshake;
ss->nextHandshake = ssl2_HandleMessage;
return ssl2_TriggerNextMessage(ss);
bad_peer:
PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT : SSL_ERROR_BAD_SERVER);
/* FALL THROUGH */
loser:
ssl_ReleaseRecvBufLock(ss);
return SECFailure;
}
/************************************************************************/
/* Called from ssl_Do1stHandshake, after ssl2_HandleServerHelloMessage.
*/
static SECStatus
ssl2_HandleVerifyMessage(sslSocket *ss)
{
PRUint8 * data;
SECStatus rv;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ssl_GetRecvBufLock(ss);
data = ss->gs.buf.buf + ss->gs.recordOffset;
DUMP_MSG(29, (ss, data, ss->gs.recordLen));
if ((ss->gs.recordLen != 1 + SSL_CHALLENGE_BYTES) ||
(data[0] != SSL_MT_SERVER_VERIFY) ||
NSS_SecureMemcmp(data+1, ss->sec.ci.clientChallenge,
SSL_CHALLENGE_BYTES)) {
/* Bad server */
PORT_SetError(SSL_ERROR_BAD_SERVER);
goto loser;
}
ss->sec.ci.elements |= CIS_HAVE_VERIFY;
SSL_TRC(5, ("%d: SSL[%d]: got server-verify, required=0x%d got=0x%x",
SSL_GETPID(), ss->fd, ss->sec.ci.requiredElements,
ss->sec.ci.elements));
rv = ssl2_TryToFinish(ss);
if (rv)
goto loser;
ss->gs.recordLen = 0;
ssl_ReleaseRecvBufLock(ss);
if (ss->handshake == 0) {
return SECSuccess;
}
ss->handshake = ssl_GatherRecord1stHandshake;
ss->nextHandshake = ssl2_HandleMessage;
return SECSuccess;
loser:
ssl_ReleaseRecvBufLock(ss);
return SECFailure;
}
/* Not static because ssl2_GatherData() tests ss->nextHandshake for this value.
* ICK!
* Called from ssl_Do1stHandshake after ssl2_BeginClientHandshake()
*/
SECStatus
ssl2_HandleServerHelloMessage(sslSocket *ss)
{
sslSessionID * sid;
PRUint8 * cert;
PRUint8 * cs;
PRUint8 * data;
SECStatus rv;
int needed, sidHit, certLen, csLen, cidLen, certType, err;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
if (!ss->opt.enableSSL2) {
PORT_SetError(SSL_ERROR_SSL2_DISABLED);
return SECFailure;
}
ssl_GetRecvBufLock(ss);
PORT_Assert(ss->sec.ci.sid != 0);
sid = ss->sec.ci.sid;
data = ss->gs.buf.buf + ss->gs.recordOffset;
DUMP_MSG(29, (ss, data, ss->gs.recordLen));
/* Make sure first message has some data and is the server hello message */
if ((ss->gs.recordLen < SSL_HL_SERVER_HELLO_HBYTES)
|| (data[0] != SSL_MT_SERVER_HELLO)) {
if ((data[0] == SSL_MT_ERROR) && (ss->gs.recordLen == 3)) {
err = (data[1] << 8) | data[2];
if (err == SSL_PE_NO_CYPHERS) {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
goto loser;
}
}
goto bad_server;
}
sidHit = data[1];
certType = data[2];
ss->version = (data[3] << 8) | data[4];
certLen = (data[5] << 8) | data[6];
csLen = (data[7] << 8) | data[8];
cidLen = (data[9] << 8) | data[10];
cert = data + SSL_HL_SERVER_HELLO_HBYTES;
cs = cert + certLen;
SSL_TRC(5,
("%d: SSL[%d]: server-hello, hit=%d vers=%x certLen=%d csLen=%d cidLen=%d",
SSL_GETPID(), ss->fd, sidHit, ss->version, certLen,
csLen, cidLen));
if (ss->version != SSL_LIBRARY_VERSION_2) {
if (ss->version < SSL_LIBRARY_VERSION_2) {
SSL_TRC(3, ("%d: SSL[%d]: demoting self (%x) to server version (%x)",
SSL_GETPID(), ss->fd, SSL_LIBRARY_VERSION_2,
ss->version));
} else {
SSL_TRC(1, ("%d: SSL[%d]: server version is %x (we are %x)",
SSL_GETPID(), ss->fd, ss->version, SSL_LIBRARY_VERSION_2));
/* server claims to be newer but does not follow protocol */
PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION);
goto loser;
}
}
if ((SSL_HL_SERVER_HELLO_HBYTES + certLen + csLen + cidLen
> ss->gs.recordLen)
|| (csLen % 3) != 0
/* || cidLen < SSL_CONNECTIONID_BYTES || cidLen > 32 */
) {
goto bad_server;
}
/* Save connection-id.
** This code only saves the first 16 byte of the connectionID.
** If the connectionID is shorter than 16 bytes, it is zero-padded.
*/
if (cidLen < sizeof ss->sec.ci.connectionID)
memset(ss->sec.ci.connectionID, 0, sizeof ss->sec.ci.connectionID);
cidLen = PR_MIN(cidLen, sizeof ss->sec.ci.connectionID);
PORT_Memcpy(ss->sec.ci.connectionID, cs + csLen, cidLen);
/* See if session-id hit */
needed = CIS_HAVE_MASTER_KEY | CIS_HAVE_FINISHED | CIS_HAVE_VERIFY;
if (sidHit) {
if (certLen || csLen) {
/* Uh oh - bogus server */
SSL_DBG(("%d: SSL[%d]: client, huh? hit=%d certLen=%d csLen=%d",
SSL_GETPID(), ss->fd, sidHit, certLen, csLen));
goto bad_server;
}
/* Total winner. */
SSL_TRC(1, ("%d: SSL[%d]: client, using nonce for peer=0x%08x "
"port=0x%04x",
SSL_GETPID(), ss->fd, ss->sec.ci.peer, ss->sec.ci.port));
ss->sec.peerCert = CERT_DupCertificate(sid->peerCert);
ss->sec.authAlgorithm = sid->authAlgorithm;
ss->sec.authKeyBits = sid->authKeyBits;
ss->sec.keaType = sid->keaType;
ss->sec.keaKeyBits = sid->keaKeyBits;
rv = ssl2_CreateSessionCypher(ss, sid, PR_TRUE);
if (rv != SECSuccess) {
goto loser;
}
} else {
if (certType != SSL_CT_X509_CERTIFICATE) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
goto loser;
}
if (csLen == 0) {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
SSL_DBG(("%d: SSL[%d]: no cipher overlap",
SSL_GETPID(), ss->fd));
goto loser;
}
if (certLen == 0) {
SSL_DBG(("%d: SSL[%d]: client, huh? certLen=%d csLen=%d",
SSL_GETPID(), ss->fd, certLen, csLen));
goto bad_server;
}
if (sid->cached != never_cached) {
/* Forget our session-id - server didn't like it */
SSL_TRC(7, ("%d: SSL[%d]: server forgot me, uncaching session-id",
SSL_GETPID(), ss->fd));
if (ss->sec.uncache)
(*ss->sec.uncache)(sid);
ssl_FreeSID(sid);
ss->sec.ci.sid = sid = PORT_ZNew(sslSessionID);
if (!sid) {
goto loser;
}
sid->references = 1;
sid->addr = ss->sec.ci.peer;
sid->port = ss->sec.ci.port;
}
/* decode the server's certificate */
rv = ssl2_ClientHandleServerCert(ss, cert, certLen);
if (rv != SECSuccess) {
if (PORT_GetError() == SSL_ERROR_BAD_CERTIFICATE) {
(void) ssl2_SendErrorMessage(ss, SSL_PE_BAD_CERTIFICATE);
}
goto loser;
}
/* Setup new session cipher */
rv = ssl2_ClientSetupSessionCypher(ss, cs, csLen);
if (rv != SECSuccess) {
if (PORT_GetError() == SSL_ERROR_BAD_CERTIFICATE) {
(void) ssl2_SendErrorMessage(ss, SSL_PE_BAD_CERTIFICATE);
}
goto loser;
}
}
/* Build up final list of required elements */
ss->sec.ci.elements = CIS_HAVE_MASTER_KEY;
ss->sec.ci.requiredElements = needed;
if (!sidHit) {
/* verify the server's certificate. if sidHit, don't check signatures */
rv = (* ss->authCertificate)(ss->authCertificateArg, ss->fd,
(PRBool)(!sidHit), PR_FALSE);
if (rv) {
if (ss->handleBadCert) {
rv = (*ss->handleBadCert)(ss->badCertArg, ss->fd);
if ( rv ) {
if ( rv == SECWouldBlock ) {
SSL_DBG(("%d: SSL[%d]: SSL2 bad cert handler returned "
"SECWouldBlock", SSL_GETPID(), ss->fd));
PORT_SetError(SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SSL2);
rv = SECFailure;
} else {
/* cert is bad */
SSL_DBG(("%d: SSL[%d]: server certificate is no good: error=%d",
SSL_GETPID(), ss->fd, PORT_GetError()));
}
goto loser;
}
/* cert is good */
} else {
SSL_DBG(("%d: SSL[%d]: server certificate is no good: error=%d",
SSL_GETPID(), ss->fd, PORT_GetError()));
goto loser;
}
}
}
/*
** At this point we have a completed session key and our session
** cipher is setup and ready to go. Switch to encrypted write routine
** as all future message data is to be encrypted.
*/
ssl2_UseEncryptedSendFunc(ss);
rv = ssl2_TryToFinish(ss);
if (rv != SECSuccess)
goto loser;
ss->gs.recordLen = 0;
ssl_ReleaseRecvBufLock(ss);
if (ss->handshake == 0) {
return SECSuccess;
}
SSL_TRC(5, ("%d: SSL[%d]: got server-hello, required=0x%d got=0x%x",
SSL_GETPID(), ss->fd, ss->sec.ci.requiredElements,
ss->sec.ci.elements));
ss->handshake = ssl_GatherRecord1stHandshake;
ss->nextHandshake = ssl2_HandleVerifyMessage;
return SECSuccess;
bad_server:
PORT_SetError(SSL_ERROR_BAD_SERVER);
/* FALL THROUGH */
loser:
ssl_ReleaseRecvBufLock(ss);
return SECFailure;
}
/* Sends out the initial client Hello message on the connection.
* Acquires and releases the socket's xmitBufLock.
*/
SECStatus
ssl2_BeginClientHandshake(sslSocket *ss)
{
sslSessionID *sid;
PRUint8 *msg;
PRUint8 *cp;
PRUint8 *localCipherSpecs = NULL;
unsigned int localCipherSize;
unsigned int i;
int sendLen, sidLen = 0;
SECStatus rv;
TLSExtensionData *xtnData;
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
ss->sec.isServer = 0;
ss->sec.sendSequence = 0;
ss->sec.rcvSequence = 0;
ssl_ChooseSessionIDProcs(&ss->sec);
if (!ss->cipherSpecs) {
rv = ssl2_ConstructCipherSpecs(ss);
if (rv != SECSuccess)
goto loser;
}
/* count the SSL2 and SSL3 enabled ciphers.
* if either is zero, clear the socket's enable for that protocol.
*/
rv = ssl2_CheckConfigSanity(ss);
if (rv != SECSuccess)
goto loser;
/* Get peer name of server */
rv = ssl_GetPeerInfo(ss);
if (rv < 0) {
#ifdef HPUX11
/*
* On some HP-UX B.11.00 systems, getpeername() occasionally
* fails with ENOTCONN after a successful completion of
* non-blocking connect. I found that if we do a write()
* and then retry getpeername(), it will work.
*/
if (PR_GetError() == PR_NOT_CONNECTED_ERROR) {
char dummy;
(void) PR_Write(ss->fd->lower, &dummy, 0);
rv = ssl_GetPeerInfo(ss);
if (rv < 0) {
goto loser;
}
}
#else
goto loser;
#endif
}
SSL_TRC(3, ("%d: SSL[%d]: sending client-hello", SSL_GETPID(), ss->fd));
/* Try to find server in our session-id cache */
if (ss->opt.noCache) {
sid = NULL;
} else {
sid = ssl_LookupSID(&ss->sec.ci.peer, ss->sec.ci.port, ss->peerID,
ss->url);
}
while (sid) { /* this isn't really a loop */
PRBool sidVersionEnabled =
(!SSL3_ALL_VERSIONS_DISABLED(&ss->vrange) &&
sid->version >= ss->vrange.min &&
sid->version <= ss->vrange.max) ||
(sid->version < SSL_LIBRARY_VERSION_3_0 && ss->opt.enableSSL2);
/* if we're not doing this SID's protocol any more, drop it. */
if (!sidVersionEnabled) {
if (ss->sec.uncache)
ss->sec.uncache(sid);
ssl_FreeSID(sid);
sid = NULL;
break;
}
if (sid->version < SSL_LIBRARY_VERSION_3_0) {
/* If the cipher in this sid is not enabled, drop it. */
for (i = 0; i < ss->sizeCipherSpecs; i += 3) {
if (ss->cipherSpecs[i] == sid->u.ssl2.cipherType)
break;
}
if (i >= ss->sizeCipherSpecs) {
if (ss->sec.uncache)
ss->sec.uncache(sid);
ssl_FreeSID(sid);
sid = NULL;
break;
}
}
sidLen = sizeof(sid->u.ssl2.sessionID);
PRINT_BUF(4, (ss, "client, found session-id:", sid->u.ssl2.sessionID,
sidLen));
ss->version = sid->version;
PORT_Assert(!ss->sec.localCert);
if (ss->sec.localCert) {
CERT_DestroyCertificate(ss->sec.localCert);
}
ss->sec.localCert = CERT_DupCertificate(sid->localCert);
break; /* this isn't really a loop */
}
if (!sid) {
sidLen = 0;
sid = PORT_ZNew(sslSessionID);
if (!sid) {
goto loser;
}
sid->references = 1;
sid->cached = never_cached;
sid->addr = ss->sec.ci.peer;
sid->port = ss->sec.ci.port;
if (ss->peerID != NULL) {
sid->peerID = PORT_Strdup(ss->peerID);
}
if (ss->url != NULL) {
sid->urlSvrName = PORT_Strdup(ss->url);
}
}
ss->sec.ci.sid = sid;
PORT_Assert(sid != NULL);
if ((sid->version >= SSL_LIBRARY_VERSION_3_0 || !ss->opt.v2CompatibleHello) &&
!SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
ss->gs.state = GS_INIT;
ss->handshake = ssl_GatherRecord1stHandshake;
/* ssl3_SendClientHello will override this if it succeeds. */
ss->version = SSL_LIBRARY_VERSION_3_0;
ssl_GetSSL3HandshakeLock(ss);
ssl_GetXmitBufLock(ss);
rv = ssl3_SendClientHello(ss, PR_FALSE);
ssl_ReleaseXmitBufLock(ss);
ssl_ReleaseSSL3HandshakeLock(ss);
return rv;
}
#ifndef NSS_DISABLE_ECC
/* ensure we don't neogtiate ECC cipher suites with SSL2 hello */
ssl3_DisableECCSuites(ss, NULL); /* disable all ECC suites */
if (ss->cipherSpecs != NULL) {
PORT_Free(ss->cipherSpecs);
ss->cipherSpecs = NULL;
ss->sizeCipherSpecs = 0;
}
#endif /* NSS_DISABLE_ECC */
if (!ss->cipherSpecs) {
rv = ssl2_ConstructCipherSpecs(ss);
if (rv < 0) {
return rv;
}
}
localCipherSpecs = ss->cipherSpecs;
localCipherSize = ss->sizeCipherSpecs;
/* Add 3 for SCSV */
sendLen = SSL_HL_CLIENT_HELLO_HBYTES + localCipherSize + 3 + sidLen +
SSL_CHALLENGE_BYTES;
/* Generate challenge bytes for server */
PK11_GenerateRandom(ss->sec.ci.clientChallenge, SSL_CHALLENGE_BYTES);
ssl_GetXmitBufLock(ss); /***************************************/
rv = ssl2_GetSendBuffer(ss, sendLen);
if (rv)
goto unlock_loser;
/* Construct client-hello message */
cp = msg = ss->sec.ci.sendBuf.buf;
msg[0] = SSL_MT_CLIENT_HELLO;
ss->clientHelloVersion = SSL3_ALL_VERSIONS_DISABLED(&ss->vrange) ?
SSL_LIBRARY_VERSION_2 : ss->vrange.max;
msg[1] = MSB(ss->clientHelloVersion);
msg[2] = LSB(ss->clientHelloVersion);
/* Add 3 for SCSV */
msg[3] = MSB(localCipherSize + 3);
msg[4] = LSB(localCipherSize + 3);
msg[5] = MSB(sidLen);
msg[6] = LSB(sidLen);
msg[7] = MSB(SSL_CHALLENGE_BYTES);
msg[8] = LSB(SSL_CHALLENGE_BYTES);
cp += SSL_HL_CLIENT_HELLO_HBYTES;
PORT_Memcpy(cp, localCipherSpecs, localCipherSize);
cp += localCipherSize;
/*
* Add SCSV. SSL 2.0 cipher suites are listed before SSL 3.0 cipher
* suites in localCipherSpecs for compatibility with SSL 2.0 servers.
* Since SCSV looks like an SSL 3.0 cipher suite, we can't add it at
* the beginning.
*/
cp[0] = 0x00;
cp[1] = 0x00;
cp[2] = 0xff;
cp += 3;
if (sidLen) {
PORT_Memcpy(cp, sid->u.ssl2.sessionID, sidLen);
cp += sidLen;
}
PORT_Memcpy(cp, ss->sec.ci.clientChallenge, SSL_CHALLENGE_BYTES);
/* Send it to the server */
DUMP_MSG(29, (ss, msg, sendLen));
ss->handshakeBegun = 1;
rv = (*ss->sec.send)(ss, msg, sendLen, 0);
ssl_ReleaseXmitBufLock(ss); /***************************************/
if (rv < 0) {
goto loser;
}
rv = ssl3_StartHandshakeHash(ss, msg, sendLen);
if (rv < 0) {
goto loser;
}
/*
* Since we sent the SCSV, pretend we sent empty RI extension. We need
* to record the extension has been advertised after ssl3_InitState has
* been called, which ssl3_StartHandshakeHash took care for us above.
*/
xtnData = &ss->xtnData;
xtnData->advertised[xtnData->numAdvertised++] = ssl_renegotiation_info_xtn;
/* Setup to receive servers hello message */
ssl_GetRecvBufLock(ss);
ss->gs.recordLen = 0;
ssl_ReleaseRecvBufLock(ss);
ss->handshake = ssl_GatherRecord1stHandshake;
ss->nextHandshake = ssl2_HandleServerHelloMessage;
return SECSuccess;
unlock_loser:
ssl_ReleaseXmitBufLock(ss);
loser:
return SECFailure;
}
/************************************************************************/
/* Handle the CLIENT-MASTER-KEY message.
** Acquires and releases RecvBufLock.
** Called from ssl2_HandleClientHelloMessage().
*/
static SECStatus
ssl2_HandleClientSessionKeyMessage(sslSocket *ss)
{
PRUint8 * data;
unsigned int caLen;
unsigned int ckLen;
unsigned int ekLen;
unsigned int keyBits;
int cipher;
SECStatus rv;
ssl_GetRecvBufLock(ss);
data = ss->gs.buf.buf + ss->gs.recordOffset;
DUMP_MSG(29, (ss, data, ss->gs.recordLen));
if ((ss->gs.recordLen < SSL_HL_CLIENT_MASTER_KEY_HBYTES)
|| (data[0] != SSL_MT_CLIENT_MASTER_KEY)) {
goto bad_client;
}
cipher = data[1];
keyBits = (data[2] << 8) | data[3];
ckLen = (data[4] << 8) | data[5];
ekLen = (data[6] << 8) | data[7];
caLen = (data[8] << 8) | data[9];
SSL_TRC(5, ("%d: SSL[%d]: session-key, cipher=%d keyBits=%d ckLen=%d ekLen=%d caLen=%d",
SSL_GETPID(), ss->fd, cipher, keyBits, ckLen, ekLen, caLen));
if (ss->gs.recordLen <
SSL_HL_CLIENT_MASTER_KEY_HBYTES + ckLen + ekLen + caLen) {
SSL_DBG(("%d: SSL[%d]: protocol size mismatch dataLen=%d",
SSL_GETPID(), ss->fd, ss->gs.recordLen));
goto bad_client;
}
/* Use info from client to setup session key */
rv = ssl2_ServerSetupSessionCypher(ss, cipher, keyBits,
data + SSL_HL_CLIENT_MASTER_KEY_HBYTES, ckLen,
data + SSL_HL_CLIENT_MASTER_KEY_HBYTES + ckLen, ekLen,
data + SSL_HL_CLIENT_MASTER_KEY_HBYTES + ckLen + ekLen, caLen);
ss->gs.recordLen = 0; /* we're done with this record. */
ssl_ReleaseRecvBufLock(ss);
if (rv != SECSuccess) {
goto loser;
}
ss->sec.ci.elements |= CIS_HAVE_MASTER_KEY;
ssl2_UseEncryptedSendFunc(ss);
/* Send server verify message now that keys are established */
rv = ssl2_SendServerVerifyMessage(ss);
if (rv != SECSuccess)
goto loser;
rv = ssl2_TryToFinish(ss);
if (rv != SECSuccess)
goto loser;
if (ss->handshake == 0) {
return SECSuccess;
}
SSL_TRC(5, ("%d: SSL[%d]: server: waiting for elements=0x%d",
SSL_GETPID(), ss->fd,
ss->sec.ci.requiredElements ^ ss->sec.ci.elements));
ss->handshake = ssl_GatherRecord1stHandshake;
ss->nextHandshake = ssl2_HandleMessage;
return ssl2_TriggerNextMessage(ss);
bad_client:
ssl_ReleaseRecvBufLock(ss);
PORT_SetError(SSL_ERROR_BAD_CLIENT);
/* FALLTHROUGH */
loser:
return SECFailure;
}
/*
** Handle the initial hello message from the client
**
** not static because ssl2_GatherData() tests ss->nextHandshake for this value.
*/
SECStatus
ssl2_HandleClientHelloMessage(sslSocket *ss)
{
sslSessionID *sid;
sslServerCerts * sc;
CERTCertificate *serverCert;
PRUint8 *msg;
PRUint8 *data;
PRUint8 *cs;
PRUint8 *sd;
PRUint8 *cert = NULL;
PRUint8 *challenge;
unsigned int challengeLen;
SECStatus rv;
int csLen;
int sendLen;
int sdLen;
int certLen;
int pid;
int sent;
int gotXmitBufLock = 0;
#if defined(SOLARIS) && defined(i386)
volatile PRUint8 hit;
#else
int hit;
#endif
PRUint8 csImpl[sizeof implementedCipherSuites];
PORT_Assert( ss->opt.noLocks || ssl_Have1stHandshakeLock(ss) );
sc = ss->serverCerts + kt_rsa;
serverCert = sc->serverCert;
ssl_GetRecvBufLock(ss);
data = ss->gs.buf.buf + ss->gs.recordOffset;
DUMP_MSG(29, (ss, data, ss->gs.recordLen));
/* Make sure first message has some data and is the client hello message */
if ((ss->gs.recordLen < SSL_HL_CLIENT_HELLO_HBYTES)
|| (data[0] != SSL_MT_CLIENT_HELLO)) {
goto bad_client;
}
/* Get peer name of client */
rv = ssl_GetPeerInfo(ss);
if (rv != SECSuccess) {
goto loser;
}
/* Examine version information */
/*
* See if this might be a V2 client hello asking to use the V3 protocol
*/
if ((data[0] == SSL_MT_CLIENT_HELLO) &&
(data[1] >= MSB(SSL_LIBRARY_VERSION_3_0)) &&
!SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
rv = ssl3_HandleV2ClientHello(ss, data, ss->gs.recordLen);
if (rv != SECFailure) { /* Success */
ss->handshake = NULL;
ss->nextHandshake = ssl_GatherRecord1stHandshake;
ss->securityHandshake = NULL;
ss->gs.state = GS_INIT;
/* ssl3_HandleV3ClientHello has set ss->version,
** and has gotten us a brand new sid.
*/
ss->sec.ci.sid->version = ss->version;
}
ssl_ReleaseRecvBufLock(ss);
return rv;
}
/* Previously, there was a test here to see if SSL2 was enabled.
** If not, an error code was set, and SECFailure was returned,
** without sending any error code to the other end of the connection.
** That test has been removed. If SSL2 has been disabled, there
** should be no SSL2 ciphers enabled, and consequently, the code
** below should send the ssl2 error message SSL_PE_NO_CYPHERS.
** We now believe this is the correct thing to do, even when SSL2
** has been explicitly disabled by the application.
*/
/* Extract info from message */
ss->version = (data[1] << 8) | data[2];
/* If some client thinks ssl v2 is 2.0 instead of 0.2, we'll allow it. */
if (ss->version >= SSL_LIBRARY_VERSION_3_0) {
ss->version = SSL_LIBRARY_VERSION_2;
}
csLen = (data[3] << 8) | data[4];
sdLen = (data[5] << 8) | data[6];
challengeLen = (data[7] << 8) | data[8];
cs = data + SSL_HL_CLIENT_HELLO_HBYTES;
sd = cs + csLen;
challenge = sd + sdLen;
PRINT_BUF(7, (ss, "server, client session-id value:", sd, sdLen));
if (!csLen || (csLen % 3) != 0 ||
(sdLen != 0 && sdLen != SSL2_SESSIONID_BYTES) ||
challengeLen < SSL_MIN_CHALLENGE_BYTES ||
challengeLen > SSL_MAX_CHALLENGE_BYTES ||
(unsigned)ss->gs.recordLen !=
SSL_HL_CLIENT_HELLO_HBYTES + csLen + sdLen + challengeLen) {
SSL_DBG(("%d: SSL[%d]: bad client hello message, len=%d should=%d",
SSL_GETPID(), ss->fd, ss->gs.recordLen,
SSL_HL_CLIENT_HELLO_HBYTES+csLen+sdLen+challengeLen));
goto bad_client;
}
SSL_TRC(3, ("%d: SSL[%d]: client version is %x",
SSL_GETPID(), ss->fd, ss->version));
if (ss->version != SSL_LIBRARY_VERSION_2) {
if (ss->version > SSL_LIBRARY_VERSION_2) {
/*
** Newer client than us. Things are ok because new clients
** are required to be backwards compatible with old servers.
** Change version number to our version number so that client
** knows whats up.
*/
ss->version = SSL_LIBRARY_VERSION_2;
} else {
SSL_TRC(1, ("%d: SSL[%d]: client version is %x (we are %x)",
SSL_GETPID(), ss->fd, ss->version, SSL_LIBRARY_VERSION_2));
PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION);
goto loser;
}
}
/* Qualify cipher specs before returning them to client */
csLen = ssl2_QualifyCypherSpecs(ss, cs, csLen);
if (csLen == 0) {
/* no overlap, send client our list of supported SSL v2 ciphers. */
cs = csImpl;
csLen = sizeof implementedCipherSuites;
PORT_Memcpy(cs, implementedCipherSuites, csLen);
csLen = ssl2_QualifyCypherSpecs(ss, cs, csLen);
if (csLen == 0) {
/* We don't support any SSL v2 ciphers! */
ssl2_SendErrorMessage(ss, SSL_PE_NO_CYPHERS);
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
goto loser;
}
/* Since this handhsake is going to fail, don't cache it. */
ss->opt.noCache = 1;
}
/* Squirrel away the challenge for later */
PORT_Memcpy(ss->sec.ci.clientChallenge, challenge, challengeLen);
/* Examine message and see if session-id is good */
ss->sec.ci.elements = 0;
if (sdLen > 0 && !ss->opt.noCache) {
SSL_TRC(7, ("%d: SSL[%d]: server, lookup client session-id for 0x%08x%08x%08x%08x",
SSL_GETPID(), ss->fd, ss->sec.ci.peer.pr_s6_addr32[0],
ss->sec.ci.peer.pr_s6_addr32[1],
ss->sec.ci.peer.pr_s6_addr32[2],
ss->sec.ci.peer.pr_s6_addr32[3]));
sid = (*ssl_sid_lookup)(&ss->sec.ci.peer, sd, sdLen, ss->dbHandle);
} else {
sid = NULL;
}
if (sid) {
/* Got a good session-id. Short cut! */
SSL_TRC(1, ("%d: SSL[%d]: server, using session-id for 0x%08x (age=%d)",
SSL_GETPID(), ss->fd, ss->sec.ci.peer,
ssl_Time() - sid->creationTime));
PRINT_BUF(1, (ss, "session-id value:", sd, sdLen));
ss->sec.ci.sid = sid;
ss->sec.ci.elements = CIS_HAVE_MASTER_KEY;
hit = 1;
certLen = 0;
csLen = 0;
ss->sec.authAlgorithm = sid->authAlgorithm;
ss->sec.authKeyBits = sid->authKeyBits;
ss->sec.keaType = sid->keaType;
ss->sec.keaKeyBits = sid->keaKeyBits;
rv = ssl2_CreateSessionCypher(ss, sid, PR_FALSE);
if (rv != SECSuccess) {
goto loser;
}
} else {
SECItem * derCert = &serverCert->derCert;
SSL_TRC(7, ("%d: SSL[%d]: server, lookup nonce missed",
SSL_GETPID(), ss->fd));
if (!serverCert) {
SET_ERROR_CODE
goto loser;
}
hit = 0;
sid = PORT_ZNew(sslSessionID);
if (!sid) {
goto loser;
}
sid->references = 1;
sid->addr = ss->sec.ci.peer;
sid->port = ss->sec.ci.port;
/* Invent a session-id */
ss->sec.ci.sid = sid;
PK11_GenerateRandom(sid->u.ssl2.sessionID+2, SSL2_SESSIONID_BYTES-2);
pid = SSL_GETPID();
sid->u.ssl2.sessionID[0] = MSB(pid);
sid->u.ssl2.sessionID[1] = LSB(pid);
cert = derCert->data;
certLen = derCert->len;
/* pretend that server sids remember the local cert. */
PORT_Assert(!sid->localCert);
if (sid->localCert) {
CERT_DestroyCertificate(sid->localCert);
}
sid->localCert = CERT_DupCertificate(serverCert);
ss->sec.authAlgorithm = ssl_sign_rsa;
ss->sec.keaType = ssl_kea_rsa;
ss->sec.keaKeyBits = \
ss->sec.authKeyBits = ss->serverCerts[kt_rsa].serverKeyBits;
}
/* server sids don't remember the local cert, so whether we found
** a sid or not, just "remember" we used the rsa server cert.
*/
if (ss->sec.localCert) {
CERT_DestroyCertificate(ss->sec.localCert);
}
ss->sec.localCert = CERT_DupCertificate(serverCert);
/* Build up final list of required elements */
ss->sec.ci.requiredElements = CIS_HAVE_MASTER_KEY | CIS_HAVE_FINISHED;
if (ss->opt.requestCertificate) {
ss->sec.ci.requiredElements |= CIS_HAVE_CERTIFICATE;
}
ss->sec.ci.sentElements = 0;
/* Send hello message back to client */
sendLen = SSL_HL_SERVER_HELLO_HBYTES + certLen + csLen
+ SSL_CONNECTIONID_BYTES;
ssl_GetXmitBufLock(ss); gotXmitBufLock = 1;
rv = ssl2_GetSendBuffer(ss, sendLen);
if (rv != SECSuccess) {
goto loser;
}
SSL_TRC(3, ("%d: SSL[%d]: sending server-hello (%d)",
SSL_GETPID(), ss->fd, sendLen));
msg = ss->sec.ci.sendBuf.buf;
msg[0] = SSL_MT_SERVER_HELLO;
msg[1] = hit;
msg[2] = SSL_CT_X509_CERTIFICATE;
msg[3] = MSB(ss->version);
msg[4] = LSB(ss->version);
msg[5] = MSB(certLen);
msg[6] = LSB(certLen);
msg[7] = MSB(csLen);
msg[8] = LSB(csLen);
msg[9] = MSB(SSL_CONNECTIONID_BYTES);
msg[10] = LSB(SSL_CONNECTIONID_BYTES);
if (certLen) {
PORT_Memcpy(msg+SSL_HL_SERVER_HELLO_HBYTES, cert, certLen);
}
if (csLen) {
PORT_Memcpy(msg+SSL_HL_SERVER_HELLO_HBYTES+certLen, cs, csLen);
}
PORT_Memcpy(msg+SSL_HL_SERVER_HELLO_HBYTES+certLen+csLen,
ss->sec.ci.connectionID, SSL_CONNECTIONID_BYTES);
DUMP_MSG(29, (ss, msg, sendLen));
ss->handshakeBegun = 1;
sent = (*ss->sec.send)(ss, msg, sendLen, 0);
if (sent < 0) {
goto loser;
}
ssl_ReleaseXmitBufLock(ss); gotXmitBufLock = 0;
ss->gs.recordLen = 0;
ss->handshake = ssl_GatherRecord1stHandshake;
if (hit) {
/* Old SID Session key is good. Go encrypted */
ssl2_UseEncryptedSendFunc(ss);
/* Send server verify message now that keys are established */
rv = ssl2_SendServerVerifyMessage(ss);
if (rv != SECSuccess)
goto loser;
ss->nextHandshake = ssl2_HandleMessage;
ssl_ReleaseRecvBufLock(ss);
rv = ssl2_TriggerNextMessage(ss);
return rv;
}
ss->nextHandshake = ssl2_HandleClientSessionKeyMessage;
ssl_ReleaseRecvBufLock(ss);
return SECSuccess;
bad_client:
PORT_SetError(SSL_ERROR_BAD_CLIENT);
/* FALLTHROUGH */
loser:
if (gotXmitBufLock) {
ssl_ReleaseXmitBufLock(ss); gotXmitBufLock = 0;
}
SSL_TRC(10, ("%d: SSL[%d]: server, wait for client-hello lossage",
SSL_GETPID(), ss->fd));
ssl_ReleaseRecvBufLock(ss);
return SECFailure;
}
SECStatus
ssl2_BeginServerHandshake(sslSocket *ss)
{
SECStatus rv;
sslServerCerts * rsaAuth = ss->serverCerts + kt_rsa;
ss->sec.isServer = 1;
ssl_ChooseSessionIDProcs(&ss->sec);
ss->sec.sendSequence = 0;
ss->sec.rcvSequence = 0;
/* don't turn on SSL2 if we don't have an RSA key and cert */
if (!rsaAuth->serverKeyPair || !rsaAuth->SERVERKEY ||
!rsaAuth->serverCert) {
ss->opt.enableSSL2 = PR_FALSE;
}
if (!ss->cipherSpecs) {
rv = ssl2_ConstructCipherSpecs(ss);
if (rv != SECSuccess)
goto loser;
}
/* count the SSL2 and SSL3 enabled ciphers.
* if either is zero, clear the socket's enable for that protocol.
*/
rv = ssl2_CheckConfigSanity(ss);
if (rv != SECSuccess)
goto loser;
/*
** Generate connection-id. Always do this, even if things fail
** immediately. This way the random number generator is always
** rolling around, every time we get a connection.
*/
PK11_GenerateRandom(ss->sec.ci.connectionID,
sizeof(ss->sec.ci.connectionID));
ss->gs.recordLen = 0;
ss->handshake = ssl_GatherRecord1stHandshake;
ss->nextHandshake = ssl2_HandleClientHelloMessage;
return SECSuccess;
loser:
return SECFailure;
}
/* This function doesn't really belong in this file.
** It's here to keep AIX compilers from optimizing it away,
** and not including it in the DSO.
*/
#include "nss.h"
extern const char __nss_ssl_rcsid[];
extern const char __nss_ssl_sccsid[];
PRBool
NSSSSL_VersionCheck(const char *importedVersion)
{
/*
* This is the secret handshake algorithm.
*
* This release has a simple version compatibility
* check algorithm. This release is not backward
* compatible with previous major releases. It is
* not compatible with future major, minor, or
* patch releases.
*/
volatile char c; /* force a reference that won't get optimized away */
c = __nss_ssl_rcsid[0] + __nss_ssl_sccsid[0];
return NSS_VersionCheck(importedVersion);
}
const char *
NSSSSL_GetVersion(void)
{
return NSS_VERSION;
}