зеркало из https://github.com/mozilla/gecko-dev.git
464 строки
16 KiB
C++
464 строки
16 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef nsTArray_h__
|
|
# error "Don't include this file directly"
|
|
#endif
|
|
|
|
template<class Alloc, class Copy>
|
|
nsTArray_base<Alloc, Copy>::nsTArray_base()
|
|
: mHdr(EmptyHdr())
|
|
{
|
|
MOZ_COUNT_CTOR(nsTArray_base);
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
nsTArray_base<Alloc, Copy>::~nsTArray_base()
|
|
{
|
|
if (mHdr != EmptyHdr() && !UsesAutoArrayBuffer()) {
|
|
Alloc::Free(mHdr);
|
|
}
|
|
MOZ_COUNT_DTOR(nsTArray_base);
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
const nsTArrayHeader*
|
|
nsTArray_base<Alloc, Copy>::GetAutoArrayBufferUnsafe(size_t aElemAlign) const
|
|
{
|
|
// Assuming |this| points to an nsAutoArray, we want to get a pointer to
|
|
// mAutoBuf. So just cast |this| to nsAutoArray* and read &mAutoBuf!
|
|
|
|
const void* autoBuf =
|
|
&reinterpret_cast<const nsAutoArrayBase<nsTArray<uint32_t>, 1>*>(this)->mAutoBuf;
|
|
|
|
// If we're on a 32-bit system and aElemAlign is 8, we need to adjust our
|
|
// pointer to take into account the extra alignment in the auto array.
|
|
|
|
static_assert(sizeof(void*) != 4 ||
|
|
(MOZ_ALIGNOF(mozilla::AlignedElem<8>) == 8 &&
|
|
sizeof(nsAutoTArray<mozilla::AlignedElem<8>, 1>) ==
|
|
sizeof(void*) + sizeof(nsTArrayHeader) +
|
|
4 + sizeof(mozilla::AlignedElem<8>)),
|
|
"auto array padding wasn't what we expected");
|
|
|
|
// We don't support alignments greater than 8 bytes.
|
|
MOZ_ASSERT(aElemAlign <= 4 || aElemAlign == 8,
|
|
"unsupported alignment.");
|
|
if (sizeof(void*) == 4 && aElemAlign == 8) {
|
|
autoBuf = reinterpret_cast<const char*>(autoBuf) + 4;
|
|
}
|
|
|
|
return reinterpret_cast<const Header*>(autoBuf);
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
bool
|
|
nsTArray_base<Alloc, Copy>::UsesAutoArrayBuffer() const
|
|
{
|
|
if (!mHdr->mIsAutoArray) {
|
|
return false;
|
|
}
|
|
|
|
// This is nuts. If we were sane, we'd pass aElemAlign as a parameter to
|
|
// this function. Unfortunately this function is called in nsTArray_base's
|
|
// destructor, at which point we don't know elem_type's alignment.
|
|
//
|
|
// We'll fall on our face and return true when we should say false if
|
|
//
|
|
// * we're not using our auto buffer,
|
|
// * aElemAlign == 4, and
|
|
// * mHdr == GetAutoArrayBuffer(8).
|
|
//
|
|
// This could happen if |*this| lives on the heap and malloc allocated our
|
|
// buffer on the heap adjacent to |*this|.
|
|
//
|
|
// However, we can show that this can't happen. If |this| is an auto array
|
|
// (as we ensured at the beginning of the method), GetAutoArrayBuffer(8)
|
|
// always points to memory owned by |*this|, because (as we assert below)
|
|
//
|
|
// * GetAutoArrayBuffer(8) is at most 4 bytes past GetAutoArrayBuffer(4), and
|
|
// * sizeof(nsTArrayHeader) > 4.
|
|
//
|
|
// Since nsAutoTArray always contains an nsTArrayHeader,
|
|
// GetAutoArrayBuffer(8) will always point inside the auto array object,
|
|
// even if it doesn't point at the beginning of the header.
|
|
//
|
|
// Note that this means that we can't store elements with alignment 16 in an
|
|
// nsTArray, because GetAutoArrayBuffer(16) could lie outside the memory
|
|
// owned by this nsAutoTArray. We statically assert that elem_type's
|
|
// alignment is 8 bytes or less in nsAutoArrayBase.
|
|
|
|
static_assert(sizeof(nsTArrayHeader) > 4,
|
|
"see comment above");
|
|
|
|
#ifdef DEBUG
|
|
ptrdiff_t diff = reinterpret_cast<const char*>(GetAutoArrayBuffer(8)) -
|
|
reinterpret_cast<const char*>(GetAutoArrayBuffer(4));
|
|
MOZ_ASSERT(diff >= 0 && diff <= 4,
|
|
"GetAutoArrayBuffer doesn't do what we expect.");
|
|
#endif
|
|
|
|
return mHdr == GetAutoArrayBuffer(4) || mHdr == GetAutoArrayBuffer(8);
|
|
}
|
|
|
|
// defined in nsTArray.cpp
|
|
bool IsTwiceTheRequiredBytesRepresentableAsUint32(size_t aCapacity,
|
|
size_t aElemSize);
|
|
|
|
template<class Alloc, class Copy>
|
|
template<typename ActualAlloc>
|
|
typename ActualAlloc::ResultTypeProxy
|
|
nsTArray_base<Alloc, Copy>::EnsureCapacity(size_type aCapacity,
|
|
size_type aElemSize)
|
|
{
|
|
// This should be the most common case so test this first
|
|
if (aCapacity <= mHdr->mCapacity) {
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// If the requested memory allocation exceeds size_type(-1)/2, then
|
|
// our doubling algorithm may not be able to allocate it.
|
|
// Additionally, if it exceeds uint32_t(-1) then we couldn't fit in the
|
|
// Header::mCapacity member. Just bail out in cases like that. We don't want
|
|
// to be allocating 2 GB+ arrays anyway.
|
|
if (!IsTwiceTheRequiredBytesRepresentableAsUint32(aCapacity, aElemSize)) {
|
|
ActualAlloc::SizeTooBig((size_t)aCapacity * aElemSize);
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
size_t reqSize = sizeof(Header) + aCapacity * aElemSize;
|
|
|
|
if (mHdr == EmptyHdr()) {
|
|
// Malloc() new data
|
|
Header* header = static_cast<Header*>(ActualAlloc::Malloc(reqSize));
|
|
if (!header) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
header->mLength = 0;
|
|
header->mCapacity = aCapacity;
|
|
header->mIsAutoArray = 0;
|
|
mHdr = header;
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// We increase our capacity so that the allocated buffer grows exponentially,
|
|
// which gives us amortized O(1) appending. Below the threshold, we use
|
|
// powers-of-two. Above the threshold, we grow by at least 1.125, rounding up
|
|
// to the nearest MiB.
|
|
const size_t slowGrowthThreshold = 8 * 1024 * 1024;
|
|
|
|
size_t bytesToAlloc;
|
|
if (reqSize >= slowGrowthThreshold) {
|
|
size_t currSize = sizeof(Header) + Capacity() * aElemSize;
|
|
size_t minNewSize = currSize + (currSize >> 3); // multiply by 1.125
|
|
bytesToAlloc = reqSize > minNewSize ? reqSize : minNewSize;
|
|
|
|
// Round up to the next multiple of MiB.
|
|
const size_t MiB = 1 << 20;
|
|
bytesToAlloc = MiB * ((bytesToAlloc + MiB - 1) / MiB);
|
|
} else {
|
|
// Round up to the next power of two.
|
|
bytesToAlloc = mozilla::RoundUpPow2(reqSize);
|
|
}
|
|
|
|
Header* header;
|
|
if (UsesAutoArrayBuffer() || !Copy::allowRealloc) {
|
|
// Malloc() and copy
|
|
header = static_cast<Header*>(ActualAlloc::Malloc(bytesToAlloc));
|
|
if (!header) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
Copy::CopyHeaderAndElements(header, mHdr, Length(), aElemSize);
|
|
|
|
if (!UsesAutoArrayBuffer()) {
|
|
ActualAlloc::Free(mHdr);
|
|
}
|
|
} else {
|
|
// Realloc() existing data
|
|
header = static_cast<Header*>(ActualAlloc::Realloc(mHdr, bytesToAlloc));
|
|
if (!header) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
}
|
|
|
|
// How many elements can we fit in bytesToAlloc?
|
|
size_t newCapacity = (bytesToAlloc - sizeof(Header)) / aElemSize;
|
|
MOZ_ASSERT(newCapacity >= aCapacity, "Didn't enlarge the array enough!");
|
|
header->mCapacity = newCapacity;
|
|
|
|
mHdr = header;
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// We don't need use Alloc template parameter specified here because failure to
|
|
// shrink the capacity will leave the array unchanged.
|
|
template<class Alloc, class Copy>
|
|
void
|
|
nsTArray_base<Alloc, Copy>::ShrinkCapacity(size_type aElemSize,
|
|
size_t aElemAlign)
|
|
{
|
|
if (mHdr == EmptyHdr() || UsesAutoArrayBuffer()) {
|
|
return;
|
|
}
|
|
|
|
if (mHdr->mLength >= mHdr->mCapacity) { // should never be greater than...
|
|
return;
|
|
}
|
|
|
|
size_type length = Length();
|
|
|
|
if (IsAutoArray() && GetAutoArrayBuffer(aElemAlign)->mCapacity >= length) {
|
|
Header* header = GetAutoArrayBuffer(aElemAlign);
|
|
|
|
// Copy data, but don't copy the header to avoid overwriting mCapacity
|
|
header->mLength = length;
|
|
Copy::CopyElements(header + 1, mHdr + 1, length, aElemSize);
|
|
|
|
nsTArrayFallibleAllocator::Free(mHdr);
|
|
mHdr = header;
|
|
return;
|
|
}
|
|
|
|
if (length == 0) {
|
|
MOZ_ASSERT(!IsAutoArray(), "autoarray should have fit 0 elements");
|
|
nsTArrayFallibleAllocator::Free(mHdr);
|
|
mHdr = EmptyHdr();
|
|
return;
|
|
}
|
|
|
|
size_type size = sizeof(Header) + length * aElemSize;
|
|
void* ptr = nsTArrayFallibleAllocator::Realloc(mHdr, size);
|
|
if (!ptr) {
|
|
return;
|
|
}
|
|
mHdr = static_cast<Header*>(ptr);
|
|
mHdr->mCapacity = length;
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
template<typename ActualAlloc>
|
|
void
|
|
nsTArray_base<Alloc, Copy>::ShiftData(index_type aStart,
|
|
size_type aOldLen, size_type aNewLen,
|
|
size_type aElemSize, size_t aElemAlign)
|
|
{
|
|
if (aOldLen == aNewLen) {
|
|
return;
|
|
}
|
|
|
|
// Determine how many elements need to be shifted
|
|
size_type num = mHdr->mLength - (aStart + aOldLen);
|
|
|
|
// Compute the resulting length of the array
|
|
mHdr->mLength += aNewLen - aOldLen;
|
|
if (mHdr->mLength == 0) {
|
|
ShrinkCapacity(aElemSize, aElemAlign);
|
|
} else {
|
|
// Maybe nothing needs to be shifted
|
|
if (num == 0) {
|
|
return;
|
|
}
|
|
// Perform shift (change units to bytes first)
|
|
aStart *= aElemSize;
|
|
aNewLen *= aElemSize;
|
|
aOldLen *= aElemSize;
|
|
char* baseAddr = reinterpret_cast<char*>(mHdr + 1) + aStart;
|
|
Copy::MoveElements(baseAddr + aNewLen, baseAddr + aOldLen, num, aElemSize);
|
|
}
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
template<typename ActualAlloc>
|
|
bool
|
|
nsTArray_base<Alloc, Copy>::InsertSlotsAt(index_type aIndex, size_type aCount,
|
|
size_type aElemSize,
|
|
size_t aElemAlign)
|
|
{
|
|
MOZ_ASSERT(aIndex <= Length(), "Bogus insertion index");
|
|
size_type newLen = Length() + aCount;
|
|
|
|
EnsureCapacity<ActualAlloc>(newLen, aElemSize);
|
|
|
|
// Check for out of memory conditions
|
|
if (Capacity() < newLen) {
|
|
return false;
|
|
}
|
|
|
|
// Move the existing elements as needed. Note that this will
|
|
// change our mLength, so no need to call IncrementLength.
|
|
ShiftData<ActualAlloc>(aIndex, 0, aCount, aElemSize, aElemAlign);
|
|
|
|
return true;
|
|
}
|
|
|
|
// nsTArray_base::IsAutoArrayRestorer is an RAII class which takes
|
|
// |nsTArray_base &array| in its constructor. When it's destructed, it ensures
|
|
// that
|
|
//
|
|
// * array.mIsAutoArray has the same value as it did when we started, and
|
|
// * if array has an auto buffer and mHdr would otherwise point to sEmptyHdr,
|
|
// array.mHdr points to array's auto buffer.
|
|
|
|
template<class Alloc, class Copy>
|
|
nsTArray_base<Alloc, Copy>::IsAutoArrayRestorer::IsAutoArrayRestorer(
|
|
nsTArray_base<Alloc, Copy>& aArray,
|
|
size_t aElemAlign)
|
|
: mArray(aArray)
|
|
, mElemAlign(aElemAlign)
|
|
, mIsAuto(aArray.IsAutoArray())
|
|
{
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
nsTArray_base<Alloc, Copy>::IsAutoArrayRestorer::~IsAutoArrayRestorer()
|
|
{
|
|
// Careful: We don't want to set mIsAutoArray = 1 on sEmptyHdr.
|
|
if (mIsAuto && mArray.mHdr == mArray.EmptyHdr()) {
|
|
// Call GetAutoArrayBufferUnsafe() because GetAutoArrayBuffer() asserts
|
|
// that mHdr->mIsAutoArray is true, which surely isn't the case here.
|
|
mArray.mHdr = mArray.GetAutoArrayBufferUnsafe(mElemAlign);
|
|
mArray.mHdr->mLength = 0;
|
|
} else if (mArray.mHdr != mArray.EmptyHdr()) {
|
|
mArray.mHdr->mIsAutoArray = mIsAuto;
|
|
}
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
template<typename ActualAlloc, class Allocator>
|
|
typename ActualAlloc::ResultTypeProxy
|
|
nsTArray_base<Alloc, Copy>::SwapArrayElements(nsTArray_base<Allocator,
|
|
Copy>& aOther,
|
|
size_type aElemSize,
|
|
size_t aElemAlign)
|
|
{
|
|
|
|
// EnsureNotUsingAutoArrayBuffer will set mHdr = sEmptyHdr even if we have an
|
|
// auto buffer. We need to point mHdr back to our auto buffer before we
|
|
// return, otherwise we'll forget that we have an auto buffer at all!
|
|
// IsAutoArrayRestorer takes care of this for us.
|
|
|
|
IsAutoArrayRestorer ourAutoRestorer(*this, aElemAlign);
|
|
typename nsTArray_base<Allocator, Copy>::IsAutoArrayRestorer
|
|
otherAutoRestorer(aOther, aElemAlign);
|
|
|
|
// If neither array uses an auto buffer which is big enough to store the
|
|
// other array's elements, then ensure that both arrays use malloc'ed storage
|
|
// and swap their mHdr pointers.
|
|
if ((!UsesAutoArrayBuffer() || Capacity() < aOther.Length()) &&
|
|
(!aOther.UsesAutoArrayBuffer() || aOther.Capacity() < Length())) {
|
|
|
|
if (!EnsureNotUsingAutoArrayBuffer<ActualAlloc>(aElemSize) ||
|
|
!aOther.template EnsureNotUsingAutoArrayBuffer<ActualAlloc>(aElemSize)) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
Header* temp = mHdr;
|
|
mHdr = aOther.mHdr;
|
|
aOther.mHdr = temp;
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// Swap the two arrays by copying, since at least one is using an auto
|
|
// buffer which is large enough to hold all of the aOther's elements. We'll
|
|
// copy the shorter array into temporary storage.
|
|
//
|
|
// (We could do better than this in some circumstances. Suppose we're
|
|
// swapping arrays X and Y. X has space for 2 elements in its auto buffer,
|
|
// but currently has length 4, so it's using malloc'ed storage. Y has length
|
|
// 2. When we swap X and Y, we don't need to use a temporary buffer; we can
|
|
// write Y straight into X's auto buffer, write X's malloc'ed buffer on top
|
|
// of Y, and then switch X to using its auto buffer.)
|
|
|
|
if (!ActualAlloc::Successful(EnsureCapacity<ActualAlloc>(aOther.Length(), aElemSize)) ||
|
|
!Allocator::Successful(aOther.template EnsureCapacity<Allocator>(Length(), aElemSize))) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
// The EnsureCapacity calls above shouldn't have caused *both* arrays to
|
|
// switch from their auto buffers to malloc'ed space.
|
|
MOZ_ASSERT(UsesAutoArrayBuffer() || aOther.UsesAutoArrayBuffer(),
|
|
"One of the arrays should be using its auto buffer.");
|
|
|
|
size_type smallerLength = XPCOM_MIN(Length(), aOther.Length());
|
|
size_type largerLength = XPCOM_MAX(Length(), aOther.Length());
|
|
void* smallerElements;
|
|
void* largerElements;
|
|
if (Length() <= aOther.Length()) {
|
|
smallerElements = Hdr() + 1;
|
|
largerElements = aOther.Hdr() + 1;
|
|
} else {
|
|
smallerElements = aOther.Hdr() + 1;
|
|
largerElements = Hdr() + 1;
|
|
}
|
|
|
|
// Allocate temporary storage for the smaller of the two arrays. We want to
|
|
// allocate this space on the stack, if it's not too large. Sounds like a
|
|
// job for AutoTArray! (One of the two arrays we're swapping is using an
|
|
// auto buffer, so we're likely not allocating a lot of space here. But one
|
|
// could, in theory, allocate a huge AutoTArray on the heap.)
|
|
nsAutoArrayBase<nsTArray_Impl<uint8_t, ActualAlloc>, 64> temp;
|
|
if (!ActualAlloc::Successful(temp.template EnsureCapacity<ActualAlloc>(smallerLength,
|
|
aElemSize))) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
Copy::CopyElements(temp.Elements(), smallerElements, smallerLength, aElemSize);
|
|
Copy::CopyElements(smallerElements, largerElements, largerLength, aElemSize);
|
|
Copy::CopyElements(largerElements, temp.Elements(), smallerLength, aElemSize);
|
|
|
|
// Swap the arrays' lengths.
|
|
MOZ_ASSERT((aOther.Length() == 0 || mHdr != EmptyHdr()) &&
|
|
(Length() == 0 || aOther.mHdr != EmptyHdr()),
|
|
"Don't set sEmptyHdr's length.");
|
|
size_type tempLength = Length();
|
|
|
|
// Avoid writing to EmptyHdr, since it can trigger false
|
|
// positives with TSan.
|
|
if (mHdr != EmptyHdr()) {
|
|
mHdr->mLength = aOther.Length();
|
|
}
|
|
if (aOther.mHdr != EmptyHdr()) {
|
|
aOther.mHdr->mLength = tempLength;
|
|
}
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
template<class Alloc, class Copy>
|
|
template<typename ActualAlloc>
|
|
bool
|
|
nsTArray_base<Alloc, Copy>::EnsureNotUsingAutoArrayBuffer(size_type aElemSize)
|
|
{
|
|
if (UsesAutoArrayBuffer()) {
|
|
|
|
// If you call this on a 0-length array, we'll set that array's mHdr to
|
|
// sEmptyHdr, in flagrant violation of the nsAutoTArray invariants. It's
|
|
// up to you to set it back! (If you don't, the nsAutoTArray will forget
|
|
// that it has an auto buffer.)
|
|
if (Length() == 0) {
|
|
mHdr = EmptyHdr();
|
|
return true;
|
|
}
|
|
|
|
size_type size = sizeof(Header) + Length() * aElemSize;
|
|
|
|
Header* header = static_cast<Header*>(ActualAlloc::Malloc(size));
|
|
if (!header) {
|
|
return false;
|
|
}
|
|
|
|
Copy::CopyHeaderAndElements(header, mHdr, Length(), aElemSize);
|
|
header->mCapacity = Length();
|
|
mHdr = header;
|
|
}
|
|
|
|
return true;
|
|
}
|