зеркало из https://github.com/mozilla/gecko-dev.git
354 строки
8.9 KiB
C
354 строки
8.9 KiB
C
/*
|
|
* FFT/IFFT transforms
|
|
* Copyright (c) 2008 Loren Merritt
|
|
* Copyright (c) 2002 Fabrice Bellard
|
|
* Partly based on libdjbfft by D. J. Bernstein
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* FFT/IFFT transforms.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "libavutil/mathematics.h"
|
|
#include "fft.h"
|
|
#include "fft-internal.h"
|
|
|
|
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
|
|
#if !CONFIG_HARDCODED_TABLES
|
|
COSTABLE(16);
|
|
COSTABLE(32);
|
|
COSTABLE(64);
|
|
COSTABLE(128);
|
|
COSTABLE(256);
|
|
COSTABLE(512);
|
|
COSTABLE(1024);
|
|
COSTABLE(2048);
|
|
COSTABLE(4096);
|
|
COSTABLE(8192);
|
|
COSTABLE(16384);
|
|
COSTABLE(32768);
|
|
COSTABLE(65536);
|
|
#endif
|
|
COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
|
|
NULL, NULL, NULL, NULL,
|
|
FFT_NAME(ff_cos_16),
|
|
FFT_NAME(ff_cos_32),
|
|
FFT_NAME(ff_cos_64),
|
|
FFT_NAME(ff_cos_128),
|
|
FFT_NAME(ff_cos_256),
|
|
FFT_NAME(ff_cos_512),
|
|
FFT_NAME(ff_cos_1024),
|
|
FFT_NAME(ff_cos_2048),
|
|
FFT_NAME(ff_cos_4096),
|
|
FFT_NAME(ff_cos_8192),
|
|
FFT_NAME(ff_cos_16384),
|
|
FFT_NAME(ff_cos_32768),
|
|
FFT_NAME(ff_cos_65536),
|
|
};
|
|
|
|
static void fft_permute_c(FFTContext *s, FFTComplex *z);
|
|
static void fft_calc_c(FFTContext *s, FFTComplex *z);
|
|
|
|
static int split_radix_permutation(int i, int n, int inverse)
|
|
{
|
|
int m;
|
|
if(n <= 2) return i&1;
|
|
m = n >> 1;
|
|
if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
|
|
m >>= 1;
|
|
if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
|
|
else return split_radix_permutation(i, m, inverse)*4 - 1;
|
|
}
|
|
|
|
av_cold void ff_init_ff_cos_tabs(int index)
|
|
{
|
|
#if !CONFIG_HARDCODED_TABLES
|
|
int i;
|
|
int m = 1<<index;
|
|
double freq = 2*M_PI/m;
|
|
FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
|
|
for(i=0; i<=m/4; i++)
|
|
tab[i] = FIX15(cos(i*freq));
|
|
for(i=1; i<m/4; i++)
|
|
tab[m/2-i] = tab[i];
|
|
#endif
|
|
}
|
|
|
|
static const int avx_tab[] = {
|
|
0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
|
|
};
|
|
|
|
static int is_second_half_of_fft32(int i, int n)
|
|
{
|
|
if (n <= 32)
|
|
return i >= 16;
|
|
else if (i < n/2)
|
|
return is_second_half_of_fft32(i, n/2);
|
|
else if (i < 3*n/4)
|
|
return is_second_half_of_fft32(i - n/2, n/4);
|
|
else
|
|
return is_second_half_of_fft32(i - 3*n/4, n/4);
|
|
}
|
|
|
|
static av_cold void fft_perm_avx(FFTContext *s)
|
|
{
|
|
int i;
|
|
int n = 1 << s->nbits;
|
|
|
|
for (i = 0; i < n; i += 16) {
|
|
int k;
|
|
if (is_second_half_of_fft32(i, n)) {
|
|
for (k = 0; k < 16; k++)
|
|
s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
|
|
i + avx_tab[k];
|
|
|
|
} else {
|
|
for (k = 0; k < 16; k++) {
|
|
int j = i + k;
|
|
j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
|
|
s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
|
|
{
|
|
int i, j, n;
|
|
|
|
if (nbits < 2 || nbits > 16)
|
|
goto fail;
|
|
s->nbits = nbits;
|
|
n = 1 << nbits;
|
|
|
|
s->revtab = av_malloc(n * sizeof(uint16_t));
|
|
if (!s->revtab)
|
|
goto fail;
|
|
s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
|
|
if (!s->tmp_buf)
|
|
goto fail;
|
|
s->inverse = inverse;
|
|
s->fft_permutation = FF_FFT_PERM_DEFAULT;
|
|
|
|
s->fft_permute = fft_permute_c;
|
|
s->fft_calc = fft_calc_c;
|
|
#if CONFIG_MDCT
|
|
s->imdct_calc = ff_imdct_calc_c;
|
|
s->imdct_half = ff_imdct_half_c;
|
|
s->mdct_calc = ff_mdct_calc_c;
|
|
#endif
|
|
|
|
#if FFT_FLOAT
|
|
if (ARCH_AARCH64) ff_fft_init_aarch64(s);
|
|
if (ARCH_ARM) ff_fft_init_arm(s);
|
|
if (ARCH_PPC) ff_fft_init_ppc(s);
|
|
if (ARCH_X86) ff_fft_init_x86(s);
|
|
if (CONFIG_MDCT) s->mdct_calcw = s->mdct_calc;
|
|
#else
|
|
if (CONFIG_MDCT) s->mdct_calcw = ff_mdct_calcw_c;
|
|
if (ARCH_ARM) ff_fft_fixed_init_arm(s);
|
|
#endif
|
|
|
|
for(j=4; j<=nbits; j++) {
|
|
ff_init_ff_cos_tabs(j);
|
|
}
|
|
|
|
if (s->fft_permutation == FF_FFT_PERM_AVX) {
|
|
fft_perm_avx(s);
|
|
} else {
|
|
for(i=0; i<n; i++) {
|
|
int j = i;
|
|
if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
|
|
j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
|
|
s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
av_freep(&s->revtab);
|
|
av_freep(&s->tmp_buf);
|
|
return -1;
|
|
}
|
|
|
|
static void fft_permute_c(FFTContext *s, FFTComplex *z)
|
|
{
|
|
int j, np;
|
|
const uint16_t *revtab = s->revtab;
|
|
np = 1 << s->nbits;
|
|
/* TODO: handle split-radix permute in a more optimal way, probably in-place */
|
|
for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
|
|
memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
|
|
}
|
|
|
|
av_cold void ff_fft_end(FFTContext *s)
|
|
{
|
|
av_freep(&s->revtab);
|
|
av_freep(&s->tmp_buf);
|
|
}
|
|
|
|
#define BUTTERFLIES(a0,a1,a2,a3) {\
|
|
BF(t3, t5, t5, t1);\
|
|
BF(a2.re, a0.re, a0.re, t5);\
|
|
BF(a3.im, a1.im, a1.im, t3);\
|
|
BF(t4, t6, t2, t6);\
|
|
BF(a3.re, a1.re, a1.re, t4);\
|
|
BF(a2.im, a0.im, a0.im, t6);\
|
|
}
|
|
|
|
// force loading all the inputs before storing any.
|
|
// this is slightly slower for small data, but avoids store->load aliasing
|
|
// for addresses separated by large powers of 2.
|
|
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
|
|
FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
|
|
BF(t3, t5, t5, t1);\
|
|
BF(a2.re, a0.re, r0, t5);\
|
|
BF(a3.im, a1.im, i1, t3);\
|
|
BF(t4, t6, t2, t6);\
|
|
BF(a3.re, a1.re, r1, t4);\
|
|
BF(a2.im, a0.im, i0, t6);\
|
|
}
|
|
|
|
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
|
|
CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
|
|
CMUL(t5, t6, a3.re, a3.im, wre, wim);\
|
|
BUTTERFLIES(a0,a1,a2,a3)\
|
|
}
|
|
|
|
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
|
|
t1 = a2.re;\
|
|
t2 = a2.im;\
|
|
t5 = a3.re;\
|
|
t6 = a3.im;\
|
|
BUTTERFLIES(a0,a1,a2,a3)\
|
|
}
|
|
|
|
/* z[0...8n-1], w[1...2n-1] */
|
|
#define PASS(name)\
|
|
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
|
|
{\
|
|
FFTDouble t1, t2, t3, t4, t5, t6;\
|
|
int o1 = 2*n;\
|
|
int o2 = 4*n;\
|
|
int o3 = 6*n;\
|
|
const FFTSample *wim = wre+o1;\
|
|
n--;\
|
|
\
|
|
TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
|
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
|
|
do {\
|
|
z += 2;\
|
|
wre += 2;\
|
|
wim -= 2;\
|
|
TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
|
|
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
|
|
} while(--n);\
|
|
}
|
|
|
|
PASS(pass)
|
|
#undef BUTTERFLIES
|
|
#define BUTTERFLIES BUTTERFLIES_BIG
|
|
PASS(pass_big)
|
|
|
|
#define DECL_FFT(n,n2,n4)\
|
|
static void fft##n(FFTComplex *z)\
|
|
{\
|
|
fft##n2(z);\
|
|
fft##n4(z+n4*2);\
|
|
fft##n4(z+n4*3);\
|
|
pass(z,FFT_NAME(ff_cos_##n),n4/2);\
|
|
}
|
|
|
|
static void fft4(FFTComplex *z)
|
|
{
|
|
FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
|
|
|
|
BF(t3, t1, z[0].re, z[1].re);
|
|
BF(t8, t6, z[3].re, z[2].re);
|
|
BF(z[2].re, z[0].re, t1, t6);
|
|
BF(t4, t2, z[0].im, z[1].im);
|
|
BF(t7, t5, z[2].im, z[3].im);
|
|
BF(z[3].im, z[1].im, t4, t8);
|
|
BF(z[3].re, z[1].re, t3, t7);
|
|
BF(z[2].im, z[0].im, t2, t5);
|
|
}
|
|
|
|
static void fft8(FFTComplex *z)
|
|
{
|
|
FFTDouble t1, t2, t3, t4, t5, t6;
|
|
|
|
fft4(z);
|
|
|
|
BF(t1, z[5].re, z[4].re, -z[5].re);
|
|
BF(t2, z[5].im, z[4].im, -z[5].im);
|
|
BF(t5, z[7].re, z[6].re, -z[7].re);
|
|
BF(t6, z[7].im, z[6].im, -z[7].im);
|
|
|
|
BUTTERFLIES(z[0],z[2],z[4],z[6]);
|
|
TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
|
|
}
|
|
|
|
#if !CONFIG_SMALL
|
|
static void fft16(FFTComplex *z)
|
|
{
|
|
FFTDouble t1, t2, t3, t4, t5, t6;
|
|
FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
|
|
FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
|
|
|
|
fft8(z);
|
|
fft4(z+8);
|
|
fft4(z+12);
|
|
|
|
TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
|
|
TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
|
|
TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
|
|
TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
|
|
}
|
|
#else
|
|
DECL_FFT(16,8,4)
|
|
#endif
|
|
DECL_FFT(32,16,8)
|
|
DECL_FFT(64,32,16)
|
|
DECL_FFT(128,64,32)
|
|
DECL_FFT(256,128,64)
|
|
DECL_FFT(512,256,128)
|
|
#if !CONFIG_SMALL
|
|
#define pass pass_big
|
|
#endif
|
|
DECL_FFT(1024,512,256)
|
|
DECL_FFT(2048,1024,512)
|
|
DECL_FFT(4096,2048,1024)
|
|
DECL_FFT(8192,4096,2048)
|
|
DECL_FFT(16384,8192,4096)
|
|
DECL_FFT(32768,16384,8192)
|
|
DECL_FFT(65536,32768,16384)
|
|
|
|
static void (* const fft_dispatch[])(FFTComplex*) = {
|
|
fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
|
|
fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
|
|
};
|
|
|
|
static void fft_calc_c(FFTContext *s, FFTComplex *z)
|
|
{
|
|
fft_dispatch[s->nbits-2](z);
|
|
}
|