зеркало из https://github.com/mozilla/gecko-dev.git
540 строки
20 KiB
C++
540 строки
20 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef MOZILLA_AUDIOSEGMENT_H_
|
|
#define MOZILLA_AUDIOSEGMENT_H_
|
|
|
|
#include <speex/speex_resampler.h>
|
|
#include "MediaTrackGraph.h"
|
|
#include "MediaSegment.h"
|
|
#include "AudioSampleFormat.h"
|
|
#include "AudioChannelFormat.h"
|
|
#include "SharedBuffer.h"
|
|
#include "WebAudioUtils.h"
|
|
#include "mozilla/ScopeExit.h"
|
|
#include "nsAutoRef.h"
|
|
#ifdef MOZILLA_INTERNAL_API
|
|
# include "mozilla/TimeStamp.h"
|
|
#endif
|
|
#include <float.h>
|
|
|
|
namespace mozilla {
|
|
struct AudioChunk;
|
|
class AudioSegment;
|
|
} // namespace mozilla
|
|
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::AudioChunk)
|
|
|
|
/**
|
|
* This allows compilation of nsTArray<AudioSegment> and
|
|
* AutoTArray<AudioSegment> since without it, static analysis fails on the
|
|
* mChunks member being a non-memmovable AutoTArray.
|
|
*
|
|
* Note that AudioSegment(const AudioSegment&) is deleted, so this should
|
|
* never come into effect.
|
|
*/
|
|
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::AudioSegment)
|
|
|
|
namespace mozilla {
|
|
|
|
template <typename T>
|
|
class SharedChannelArrayBuffer : public ThreadSharedObject {
|
|
public:
|
|
explicit SharedChannelArrayBuffer(nsTArray<nsTArray<T> >&& aBuffers)
|
|
: mBuffers(std::move(aBuffers)) {}
|
|
|
|
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override {
|
|
size_t amount = 0;
|
|
amount += mBuffers.ShallowSizeOfExcludingThis(aMallocSizeOf);
|
|
for (size_t i = 0; i < mBuffers.Length(); i++) {
|
|
amount += mBuffers[i].ShallowSizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
return amount;
|
|
}
|
|
|
|
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override {
|
|
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
nsTArray<nsTArray<T> > mBuffers;
|
|
};
|
|
|
|
class AudioMixer;
|
|
|
|
/**
|
|
* For auto-arrays etc, guess this as the common number of channels.
|
|
*/
|
|
const int GUESS_AUDIO_CHANNELS = 2;
|
|
|
|
// We ensure that the graph advances in steps that are multiples of the Web
|
|
// Audio block size
|
|
const uint32_t WEBAUDIO_BLOCK_SIZE_BITS = 7;
|
|
const uint32_t WEBAUDIO_BLOCK_SIZE = 1 << WEBAUDIO_BLOCK_SIZE_BITS;
|
|
|
|
template <typename SrcT, typename DestT>
|
|
static void InterleaveAndConvertBuffer(const SrcT* const* aSourceChannels,
|
|
uint32_t aLength, float aVolume,
|
|
uint32_t aChannels, DestT* aOutput) {
|
|
DestT* output = aOutput;
|
|
for (size_t i = 0; i < aLength; ++i) {
|
|
for (size_t channel = 0; channel < aChannels; ++channel) {
|
|
float v = AudioSampleToFloat(aSourceChannels[channel][i]) * aVolume;
|
|
*output = FloatToAudioSample<DestT>(v);
|
|
++output;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename SrcT, typename DestT>
|
|
static void DeinterleaveAndConvertBuffer(const SrcT* aSourceBuffer,
|
|
uint32_t aFrames, uint32_t aChannels,
|
|
DestT** aOutput) {
|
|
for (size_t i = 0; i < aChannels; i++) {
|
|
size_t interleavedIndex = i;
|
|
for (size_t j = 0; j < aFrames; j++) {
|
|
ConvertAudioSample(aSourceBuffer[interleavedIndex], aOutput[i][j]);
|
|
interleavedIndex += aChannels;
|
|
}
|
|
}
|
|
}
|
|
|
|
class SilentChannel {
|
|
public:
|
|
static const int AUDIO_PROCESSING_FRAMES = 640; /* > 10ms of 48KHz audio */
|
|
static const uint8_t
|
|
gZeroChannel[MAX_AUDIO_SAMPLE_SIZE * AUDIO_PROCESSING_FRAMES];
|
|
// We take advantage of the fact that zero in float and zero in int have the
|
|
// same all-zeros bit layout.
|
|
template <typename T>
|
|
static const T* ZeroChannel();
|
|
};
|
|
|
|
/**
|
|
* Given an array of input channels (aChannelData), downmix to aOutputChannels,
|
|
* interleave the channel data. A total of aOutputChannels*aDuration
|
|
* interleaved samples will be copied to a channel buffer in aOutput.
|
|
*/
|
|
template <typename SrcT, typename DestT>
|
|
void DownmixAndInterleave(const nsTArray<const SrcT*>& aChannelData,
|
|
int32_t aDuration, float aVolume,
|
|
uint32_t aOutputChannels, DestT* aOutput) {
|
|
if (aChannelData.Length() == aOutputChannels) {
|
|
InterleaveAndConvertBuffer(aChannelData.Elements(), aDuration, aVolume,
|
|
aOutputChannels, aOutput);
|
|
} else {
|
|
AutoTArray<SrcT*, GUESS_AUDIO_CHANNELS> outputChannelData;
|
|
AutoTArray<SrcT,
|
|
SilentChannel::AUDIO_PROCESSING_FRAMES * GUESS_AUDIO_CHANNELS>
|
|
outputBuffers;
|
|
outputChannelData.SetLength(aOutputChannels);
|
|
outputBuffers.SetLength(aDuration * aOutputChannels);
|
|
for (uint32_t i = 0; i < aOutputChannels; i++) {
|
|
outputChannelData[i] = outputBuffers.Elements() + aDuration * i;
|
|
}
|
|
AudioChannelsDownMix(aChannelData, outputChannelData.Elements(),
|
|
aOutputChannels, aDuration);
|
|
InterleaveAndConvertBuffer(outputChannelData.Elements(), aDuration, aVolume,
|
|
aOutputChannels, aOutput);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* An AudioChunk represents a multi-channel buffer of audio samples.
|
|
* It references an underlying ThreadSharedObject which manages the lifetime
|
|
* of the buffer. An AudioChunk maintains its own duration and channel data
|
|
* pointers so it can represent a subinterval of a buffer without copying.
|
|
* An AudioChunk can store its individual channels anywhere; it maintains
|
|
* separate pointers to each channel's buffer.
|
|
*/
|
|
struct AudioChunk {
|
|
typedef mozilla::AudioSampleFormat SampleFormat;
|
|
|
|
AudioChunk() = default;
|
|
|
|
template <typename T>
|
|
AudioChunk(already_AddRefed<ThreadSharedObject> aBuffer,
|
|
const nsTArray<const T*>& aChannelData, TrackTime aDuration,
|
|
PrincipalHandle aPrincipalHandle)
|
|
: mDuration(aDuration),
|
|
mBuffer(aBuffer),
|
|
mBufferFormat(AudioSampleTypeToFormat<T>::Format),
|
|
mPrincipalHandle(std::move(aPrincipalHandle)) {
|
|
MOZ_ASSERT(!mBuffer == aChannelData.IsEmpty(), "Appending invalid data ?");
|
|
for (const T* data : aChannelData) {
|
|
mChannelData.AppendElement(data);
|
|
}
|
|
}
|
|
|
|
// Generic methods
|
|
void SliceTo(TrackTime aStart, TrackTime aEnd) {
|
|
MOZ_ASSERT(aStart >= 0, "Slice out of bounds: invalid start");
|
|
MOZ_ASSERT(aStart < aEnd, "Slice out of bounds: invalid range");
|
|
MOZ_ASSERT(aEnd <= mDuration, "Slice out of bounds: invalid end");
|
|
|
|
if (mBuffer) {
|
|
MOZ_ASSERT(aStart < INT32_MAX,
|
|
"Can't slice beyond 32-bit sample lengths");
|
|
for (uint32_t channel = 0; channel < mChannelData.Length(); ++channel) {
|
|
mChannelData[channel] = AddAudioSampleOffset(
|
|
mChannelData[channel], mBufferFormat, int32_t(aStart));
|
|
}
|
|
}
|
|
mDuration = aEnd - aStart;
|
|
}
|
|
TrackTime GetDuration() const { return mDuration; }
|
|
bool CanCombineWithFollowing(const AudioChunk& aOther) const {
|
|
if (aOther.mBuffer != mBuffer) {
|
|
return false;
|
|
}
|
|
if (!mBuffer) {
|
|
return true;
|
|
}
|
|
if (aOther.mVolume != mVolume) {
|
|
return false;
|
|
}
|
|
if (aOther.mPrincipalHandle != mPrincipalHandle) {
|
|
return false;
|
|
}
|
|
NS_ASSERTION(aOther.mBufferFormat == mBufferFormat,
|
|
"Wrong metadata about buffer");
|
|
NS_ASSERTION(aOther.mChannelData.Length() == mChannelData.Length(),
|
|
"Mismatched channel count");
|
|
if (mDuration > INT32_MAX) {
|
|
return false;
|
|
}
|
|
for (uint32_t channel = 0; channel < mChannelData.Length(); ++channel) {
|
|
if (aOther.mChannelData[channel] !=
|
|
AddAudioSampleOffset(mChannelData[channel], mBufferFormat,
|
|
int32_t(mDuration))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
bool IsNull() const { return mBuffer == nullptr; }
|
|
void SetNull(TrackTime aDuration) {
|
|
mBuffer = nullptr;
|
|
mChannelData.Clear();
|
|
mDuration = aDuration;
|
|
mVolume = 1.0f;
|
|
mBufferFormat = AUDIO_FORMAT_SILENCE;
|
|
mPrincipalHandle = PRINCIPAL_HANDLE_NONE;
|
|
}
|
|
|
|
uint32_t ChannelCount() const { return mChannelData.Length(); }
|
|
|
|
bool IsMuted() const { return mVolume == 0.0f; }
|
|
|
|
size_t SizeOfExcludingThisIfUnshared(MallocSizeOf aMallocSizeOf) const {
|
|
return SizeOfExcludingThis(aMallocSizeOf, true);
|
|
}
|
|
|
|
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf, bool aUnshared) const {
|
|
size_t amount = 0;
|
|
|
|
// Possibly owned:
|
|
// - mBuffer - Can hold data that is also in the decoded audio queue. If it
|
|
// is not shared, or unshared == false it gets counted.
|
|
if (mBuffer && (!aUnshared || !mBuffer->IsShared())) {
|
|
amount += mBuffer->SizeOfIncludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
// Memory in the array is owned by mBuffer.
|
|
amount += mChannelData.ShallowSizeOfExcludingThis(aMallocSizeOf);
|
|
return amount;
|
|
}
|
|
|
|
template <typename T>
|
|
const nsTArray<const T*>& ChannelData() const {
|
|
MOZ_ASSERT(AudioSampleTypeToFormat<T>::Format == mBufferFormat);
|
|
return *reinterpret_cast<const AutoTArray<const T*, GUESS_AUDIO_CHANNELS>*>(
|
|
&mChannelData);
|
|
}
|
|
|
|
/**
|
|
* ChannelFloatsForWrite() should be used only when mBuffer is owned solely
|
|
* by the calling thread.
|
|
*/
|
|
template <typename T>
|
|
T* ChannelDataForWrite(size_t aChannel) {
|
|
MOZ_ASSERT(AudioSampleTypeToFormat<T>::Format == mBufferFormat);
|
|
MOZ_ASSERT(!mBuffer->IsShared());
|
|
return static_cast<T*>(const_cast<void*>(mChannelData[aChannel]));
|
|
}
|
|
|
|
template <typename T>
|
|
static AudioChunk FromInterleavedBuffer(
|
|
const T* aBuffer, size_t aFrames, uint32_t aChannels,
|
|
const PrincipalHandle& aPrincipalHandle) {
|
|
CheckedInt<size_t> bufferSize(sizeof(T));
|
|
bufferSize *= aFrames;
|
|
bufferSize *= aChannels;
|
|
RefPtr<SharedBuffer> buffer = SharedBuffer::Create(bufferSize);
|
|
|
|
AutoTArray<T*, 8> deinterleaved;
|
|
if (aChannels == 1) {
|
|
PodCopy(static_cast<T*>(buffer->Data()), aBuffer, aFrames);
|
|
deinterleaved.AppendElement(static_cast<T*>(buffer->Data()));
|
|
} else {
|
|
deinterleaved.SetLength(aChannels);
|
|
T* samples = static_cast<T*>(buffer->Data());
|
|
|
|
size_t offset = 0;
|
|
for (uint32_t i = 0; i < aChannels; ++i) {
|
|
deinterleaved[i] = samples + offset;
|
|
offset += aFrames;
|
|
}
|
|
|
|
DeinterleaveAndConvertBuffer(aBuffer, static_cast<uint32_t>(aFrames),
|
|
aChannels, deinterleaved.Elements());
|
|
}
|
|
|
|
AutoTArray<const T*, GUESS_AUDIO_CHANNELS> channelData;
|
|
channelData.AppendElements(deinterleaved);
|
|
return AudioChunk(buffer.forget(), channelData,
|
|
static_cast<TrackTime>(aFrames), aPrincipalHandle);
|
|
}
|
|
|
|
const PrincipalHandle& GetPrincipalHandle() const { return mPrincipalHandle; }
|
|
|
|
TrackTime mDuration = 0; // in frames within the buffer
|
|
RefPtr<ThreadSharedObject> mBuffer; // the buffer object whose lifetime is
|
|
// managed; null means data is all zeroes
|
|
// one pointer per channel; empty if and only if mBuffer is null
|
|
CopyableAutoTArray<const void*, GUESS_AUDIO_CHANNELS> mChannelData;
|
|
float mVolume = 1.0f; // volume multiplier to apply
|
|
// format of frames in mBuffer (or silence if mBuffer is null)
|
|
SampleFormat mBufferFormat = AUDIO_FORMAT_SILENCE;
|
|
// principalHandle for the data in this chunk.
|
|
// This can be compared to an nsIPrincipal* when back on main thread.
|
|
PrincipalHandle mPrincipalHandle = PRINCIPAL_HANDLE_NONE;
|
|
};
|
|
|
|
/**
|
|
* A list of audio samples consisting of a sequence of slices of SharedBuffers.
|
|
* The audio rate is determined by the track, not stored in this class.
|
|
*/
|
|
class AudioSegment : public MediaSegmentBase<AudioSegment, AudioChunk> {
|
|
// The channel count that MaxChannelCount() returned last time it was called.
|
|
uint32_t mMemoizedMaxChannelCount = 0;
|
|
|
|
public:
|
|
typedef mozilla::AudioSampleFormat SampleFormat;
|
|
|
|
AudioSegment() : MediaSegmentBase<AudioSegment, AudioChunk>(AUDIO) {}
|
|
|
|
AudioSegment(AudioSegment&& aSegment) = default;
|
|
|
|
AudioSegment(const AudioSegment&) = delete;
|
|
AudioSegment& operator=(const AudioSegment&) = delete;
|
|
|
|
~AudioSegment() = default;
|
|
|
|
// Resample the whole segment in place. `aResampler` is an instance of a
|
|
// resampler, initialized with `aResamplerChannelCount` channels. If this
|
|
// function finds a chunk with more channels, `aResampler` is destroyed and a
|
|
// new resampler is created, and `aResamplerChannelCount` is updated with the
|
|
// new channel count value.
|
|
template <typename T>
|
|
void Resample(nsAutoRef<SpeexResamplerState>& aResampler,
|
|
uint32_t* aResamplerChannelCount, uint32_t aInRate,
|
|
uint32_t aOutRate) {
|
|
mDuration = 0;
|
|
|
|
for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
|
|
AutoTArray<nsTArray<T>, GUESS_AUDIO_CHANNELS> output;
|
|
AutoTArray<const T*, GUESS_AUDIO_CHANNELS> bufferPtrs;
|
|
AudioChunk& c = *ci;
|
|
// If this chunk is null, don't bother resampling, just alter its duration
|
|
if (c.IsNull()) {
|
|
c.mDuration = (c.mDuration * aOutRate) / aInRate;
|
|
mDuration += c.mDuration;
|
|
continue;
|
|
}
|
|
uint32_t channels = c.mChannelData.Length();
|
|
// This might introduce a discontinuity, but a channel count change in the
|
|
// middle of a stream is not that common. This also initializes the
|
|
// resampler as late as possible.
|
|
if (channels != *aResamplerChannelCount) {
|
|
SpeexResamplerState* state =
|
|
speex_resampler_init(channels, aInRate, aOutRate,
|
|
SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr);
|
|
MOZ_ASSERT(state);
|
|
aResampler.own(state);
|
|
*aResamplerChannelCount = channels;
|
|
}
|
|
output.SetLength(channels);
|
|
bufferPtrs.SetLength(channels);
|
|
uint32_t inFrames = c.mDuration;
|
|
// Round up to allocate; the last frame may not be used.
|
|
NS_ASSERTION((UINT64_MAX - aInRate + 1) / c.mDuration >= aOutRate,
|
|
"Dropping samples");
|
|
uint32_t outSize =
|
|
(static_cast<uint64_t>(c.mDuration) * aOutRate + aInRate - 1) /
|
|
aInRate;
|
|
for (uint32_t i = 0; i < channels; i++) {
|
|
T* out = output[i].AppendElements(outSize);
|
|
uint32_t outFrames = outSize;
|
|
|
|
const T* in = static_cast<const T*>(c.mChannelData[i]);
|
|
dom::WebAudioUtils::SpeexResamplerProcess(aResampler.get(), i, in,
|
|
&inFrames, out, &outFrames);
|
|
MOZ_ASSERT(inFrames == c.mDuration);
|
|
|
|
bufferPtrs[i] = out;
|
|
output[i].SetLength(outFrames);
|
|
}
|
|
MOZ_ASSERT(channels > 0);
|
|
c.mDuration = output[0].Length();
|
|
c.mBuffer = new mozilla::SharedChannelArrayBuffer<T>(std::move(output));
|
|
for (uint32_t i = 0; i < channels; i++) {
|
|
c.mChannelData[i] = bufferPtrs[i];
|
|
}
|
|
mDuration += c.mDuration;
|
|
}
|
|
}
|
|
|
|
void ResampleChunks(nsAutoRef<SpeexResamplerState>& aResampler,
|
|
uint32_t* aResamplerChannelCount, uint32_t aInRate,
|
|
uint32_t aOutRate);
|
|
|
|
template <typename T>
|
|
void AppendFrames(already_AddRefed<ThreadSharedObject> aBuffer,
|
|
const nsTArray<const T*>& aChannelData, TrackTime aDuration,
|
|
const PrincipalHandle& aPrincipalHandle) {
|
|
AppendAndConsumeChunk(AudioChunk(std::move(aBuffer), aChannelData,
|
|
aDuration, aPrincipalHandle));
|
|
}
|
|
void AppendSegment(const AudioSegment* aSegment) {
|
|
MOZ_ASSERT(aSegment);
|
|
|
|
for (const AudioChunk& c : aSegment->mChunks) {
|
|
AudioChunk* chunk = AppendChunk(c.GetDuration());
|
|
chunk->mBuffer = c.mBuffer;
|
|
chunk->mChannelData = c.mChannelData;
|
|
chunk->mBufferFormat = c.mBufferFormat;
|
|
chunk->mPrincipalHandle = c.mPrincipalHandle;
|
|
}
|
|
}
|
|
template <typename T>
|
|
void AppendFromInterleavedBuffer(const T* aBuffer, size_t aFrames,
|
|
uint32_t aChannels,
|
|
const PrincipalHandle& aPrincipalHandle) {
|
|
AppendAndConsumeChunk(AudioChunk::FromInterleavedBuffer<T>(
|
|
aBuffer, aFrames, aChannels, aPrincipalHandle));
|
|
}
|
|
// Write the segement data into an interleaved buffer. Do mixing if the
|
|
// AudioChunk's channel count in the segment is different from aChannels.
|
|
// Returns sample count of the converted audio data. The converted data will
|
|
// be stored into aBuffer.
|
|
size_t WriteToInterleavedBuffer(nsTArray<AudioDataValue>& aBuffer,
|
|
uint32_t aChannels) const;
|
|
// Consumes aChunk, and append it to the segment if its duration is not zero.
|
|
void AppendAndConsumeChunk(AudioChunk&& aChunk) {
|
|
AudioChunk unused;
|
|
AudioChunk* chunk = &unused;
|
|
|
|
// Always consume aChunk. The chunk's mBuffer can be non-null even if its
|
|
// duration is 0.
|
|
auto consume = MakeScopeExit([&] {
|
|
chunk->mBuffer = std::move(aChunk.mBuffer);
|
|
chunk->mChannelData = std::move(aChunk.mChannelData);
|
|
|
|
MOZ_ASSERT(chunk->mBuffer || chunk->mChannelData.IsEmpty(),
|
|
"Appending invalid data ?");
|
|
|
|
chunk->mVolume = aChunk.mVolume;
|
|
chunk->mBufferFormat = aChunk.mBufferFormat;
|
|
chunk->mPrincipalHandle = std::move(aChunk.mPrincipalHandle);
|
|
});
|
|
|
|
if (aChunk.GetDuration() == 0) {
|
|
return;
|
|
}
|
|
|
|
if (!mChunks.IsEmpty() &&
|
|
mChunks.LastElement().CanCombineWithFollowing(aChunk)) {
|
|
mChunks.LastElement().mDuration += aChunk.GetDuration();
|
|
mDuration += aChunk.GetDuration();
|
|
return;
|
|
}
|
|
|
|
chunk = AppendChunk(aChunk.mDuration);
|
|
}
|
|
void ApplyVolume(float aVolume);
|
|
// Mix the segment into a mixer, interleaved. This is useful to output a
|
|
// segment to a system audio callback. It up or down mixes to aChannelCount
|
|
// channels.
|
|
void WriteTo(AudioMixer& aMixer, uint32_t aChannelCount,
|
|
uint32_t aSampleRate);
|
|
// Mix the segment into a mixer, keeping it planar, up or down mixing to
|
|
// aChannelCount channels.
|
|
void Mix(AudioMixer& aMixer, uint32_t aChannelCount, uint32_t aSampleRate);
|
|
|
|
// Returns the maximum channel count across all chunks in this segment.
|
|
// Should there be no chunk with a channel count we return the memoized return
|
|
// value from last time this method was called.
|
|
uint32_t MaxChannelCount() {
|
|
uint32_t channelCount = 0;
|
|
for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
|
|
if (ci->ChannelCount()) {
|
|
channelCount = std::max(channelCount, ci->ChannelCount());
|
|
}
|
|
}
|
|
if (channelCount == 0) {
|
|
return mMemoizedMaxChannelCount;
|
|
}
|
|
return mMemoizedMaxChannelCount = channelCount;
|
|
}
|
|
|
|
static Type StaticType() { return AUDIO; }
|
|
|
|
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override {
|
|
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
PrincipalHandle GetOldestPrinciple() const {
|
|
const AudioChunk* chunk = mChunks.IsEmpty() ? nullptr : &mChunks[0];
|
|
return chunk ? chunk->GetPrincipalHandle() : PRINCIPAL_HANDLE_NONE;
|
|
}
|
|
|
|
// Iterate on each chunks until the input function returns true.
|
|
template <typename Function>
|
|
void IterateOnChunks(const Function&& aFunction) {
|
|
for (uint32_t idx = 0; idx < mChunks.Length(); idx++) {
|
|
if (aFunction(&mChunks[idx])) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename SrcT>
|
|
void WriteChunk(const AudioChunk& aChunk, uint32_t aOutputChannels,
|
|
float aVolume, AudioDataValue* aOutputBuffer) {
|
|
AutoTArray<const SrcT*, GUESS_AUDIO_CHANNELS> channelData;
|
|
|
|
channelData = aChunk.ChannelData<SrcT>().Clone();
|
|
|
|
if (channelData.Length() < aOutputChannels) {
|
|
// Up-mix. Note that this might actually make channelData have more
|
|
// than aOutputChannels temporarily.
|
|
AudioChannelsUpMix(&channelData, aOutputChannels,
|
|
SilentChannel::ZeroChannel<SrcT>());
|
|
}
|
|
if (channelData.Length() > aOutputChannels) {
|
|
// Down-mix.
|
|
DownmixAndInterleave(channelData, aChunk.mDuration, aVolume,
|
|
aOutputChannels, aOutputBuffer);
|
|
} else {
|
|
InterleaveAndConvertBuffer(channelData.Elements(), aChunk.mDuration,
|
|
aVolume, aOutputChannels, aOutputBuffer);
|
|
}
|
|
}
|
|
|
|
} // namespace mozilla
|
|
|
|
#endif /* MOZILLA_AUDIOSEGMENT_H_ */
|