gecko-dev/dom/serializers/nsDocumentEncoder.cpp

2110 строки
68 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Object that can be used to serialize selections, ranges, or nodes
* to strings in a gazillion different ways.
*/
#include <utility>
#include "nscore.h"
#include "nsISupports.h"
#include "nsCOMPtr.h"
#include "nsCRT.h"
#include "nsIContentSerializer.h"
#include "nsIDocumentEncoder.h"
#include "nsINode.h"
#include "nsIContentInlines.h"
#include "nsComponentManagerUtils.h"
#include "nsIOutputStream.h"
#include "nsRange.h"
#include "nsGkAtoms.h"
#include "nsHTMLDocument.h"
#include "nsIContent.h"
#include "nsIScriptContext.h"
#include "nsIScriptGlobalObject.h"
#include "nsITransferable.h"
#include "mozilla/dom/Selection.h"
#include "nsContentUtils.h"
#include "nsElementTable.h"
#include "nsUnicharUtils.h"
#include "nsReadableUtils.h"
#include "nsTArray.h"
#include "nsIFrame.h"
#include "nsLayoutUtils.h"
#include "nsStringBuffer.h"
#include "mozilla/dom/Comment.h"
#include "mozilla/dom/Document.h"
#include "mozilla/dom/DocumentType.h"
#include "mozilla/dom/Element.h"
#include "mozilla/dom/HTMLBRElement.h"
#include "mozilla/dom/ProcessingInstruction.h"
#include "mozilla/dom/ShadowRoot.h"
#include "mozilla/dom/Text.h"
#include "mozilla/Encoding.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/Maybe.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/UniquePtr.h"
using namespace mozilla;
using namespace mozilla::dom;
enum nsRangeIterationDirection { kDirectionOut = -1, kDirectionIn = 1 };
class TextStreamer {
public:
/**
* @param aStream Will be kept alive by the TextStreamer.
* @param aUnicodeEncoder Needs to be non-nullptr.
*/
TextStreamer(nsIOutputStream& aStream, UniquePtr<Encoder> aUnicodeEncoder,
bool aIsPlainText, nsAString& aOutputBuffer);
/**
* String will be truncated if it is written to stream.
*/
nsresult FlushIfStringLongEnough();
/**
* String will be truncated.
*/
nsresult ForceFlush();
private:
const static uint32_t kMaxLengthBeforeFlush = 1024;
const static uint32_t kEncoderBufferSizeInBytes = 4096;
nsresult EncodeAndWrite();
nsresult EncodeAndWriteAndTruncate();
const nsCOMPtr<nsIOutputStream> mStream;
const UniquePtr<Encoder> mUnicodeEncoder;
const bool mIsPlainText;
nsAString& mOutputBuffer;
};
TextStreamer::TextStreamer(nsIOutputStream& aStream,
UniquePtr<Encoder> aUnicodeEncoder,
bool aIsPlainText, nsAString& aOutputBuffer)
: mStream{&aStream},
mUnicodeEncoder(std::move(aUnicodeEncoder)),
mIsPlainText(aIsPlainText),
mOutputBuffer(aOutputBuffer) {
MOZ_ASSERT(mUnicodeEncoder);
}
nsresult TextStreamer::FlushIfStringLongEnough() {
nsresult rv = NS_OK;
if (mOutputBuffer.Length() > kMaxLengthBeforeFlush) {
rv = EncodeAndWriteAndTruncate();
}
return rv;
}
nsresult TextStreamer::ForceFlush() { return EncodeAndWriteAndTruncate(); }
nsresult TextStreamer::EncodeAndWrite() {
if (mOutputBuffer.IsEmpty()) {
return NS_OK;
}
uint8_t buffer[kEncoderBufferSizeInBytes];
auto src = Span(mOutputBuffer);
auto bufferSpan = Span(buffer);
// Reserve space for terminator
auto dst = bufferSpan.To(bufferSpan.Length() - 1);
for (;;) {
uint32_t result;
size_t read;
size_t written;
if (mIsPlainText) {
std::tie(result, read, written) =
mUnicodeEncoder->EncodeFromUTF16WithoutReplacement(src, dst, false);
if (result != kInputEmpty && result != kOutputFull) {
// There's always room for one byte in the case of
// an unmappable character, because otherwise
// we'd have gotten `kOutputFull`.
dst[written++] = '?';
}
} else {
std::tie(result, read, written, std::ignore) =
mUnicodeEncoder->EncodeFromUTF16(src, dst, false);
}
src = src.From(read);
// Sadly, we still have test cases that implement nsIOutputStream in JS, so
// the buffer needs to be zero-terminated for XPConnect to do its thing.
// See bug 170416.
bufferSpan[written] = 0;
uint32_t streamWritten;
nsresult rv = mStream->Write(reinterpret_cast<char*>(dst.Elements()),
written, &streamWritten);
if (NS_FAILED(rv)) {
return rv;
}
if (result == kInputEmpty) {
return NS_OK;
}
}
}
nsresult TextStreamer::EncodeAndWriteAndTruncate() {
const nsresult rv = EncodeAndWrite();
mOutputBuffer.Truncate();
return rv;
}
/**
* The scope may be limited to either a selection, range, or node.
*/
class EncodingScope {
public:
/**
* @return true, iff the scope is limited to a selection, range or node.
*/
bool IsLimited() const;
RefPtr<Selection> mSelection;
RefPtr<nsRange> mRange;
nsCOMPtr<nsINode> mNode;
bool mNodeIsContainer = false;
};
bool EncodingScope::IsLimited() const { return mSelection || mRange || mNode; }
struct RangeBoundariesInclusiveAncestorsAndOffsets {
/**
* https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor.
*/
using InclusiveAncestors = AutoTArray<nsIContent*, 8>;
/**
* https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor.
*/
using InclusiveAncestorsOffsets = AutoTArray<Maybe<uint32_t>, 8>;
// The first node is the range's boundary node, the following ones the
// ancestors.
InclusiveAncestors mInclusiveAncestorsOfStart;
// The first offset represents where at the boundary node the range starts.
// Each other offset is the index of the child relative to its parent.
InclusiveAncestorsOffsets mInclusiveAncestorsOffsetsOfStart;
// The first node is the range's boundary node, the following one the
// ancestors.
InclusiveAncestors mInclusiveAncestorsOfEnd;
// The first offset represents where at the boundary node the range ends.
// Each other offset is the index of the child relative to its parent.
InclusiveAncestorsOffsets mInclusiveAncestorsOffsetsOfEnd;
};
struct ContextInfoDepth {
uint32_t mStart = 0;
uint32_t mEnd = 0;
};
class nsDocumentEncoder : public nsIDocumentEncoder {
protected:
class RangeNodeContext {
public:
virtual ~RangeNodeContext() = default;
virtual bool IncludeInContext(nsINode& aNode) const { return false; }
virtual int32_t GetImmediateContextCount(
const nsTArray<nsINode*>& aAncestorArray) const {
return -1;
}
};
public:
nsDocumentEncoder();
protected:
/**
* @param aRangeNodeContext has to be non-null.
*/
explicit nsDocumentEncoder(UniquePtr<RangeNodeContext> aRangeNodeContext);
public:
NS_DECL_CYCLE_COLLECTING_ISUPPORTS
NS_DECL_CYCLE_COLLECTION_CLASS(nsDocumentEncoder)
NS_DECL_NSIDOCUMENTENCODER
protected:
virtual ~nsDocumentEncoder();
void Initialize(bool aClearCachedSerializer = true);
/**
* @param aMaxLength As described at
* `nsIDocumentEncodder.encodeToStringWithMaxLength`.
*/
nsresult SerializeDependingOnScope(uint32_t aMaxLength);
nsresult SerializeSelection();
nsresult SerializeNode();
/**
* @param aMaxLength As described at
* `nsIDocumentEncodder.encodeToStringWithMaxLength`.
*/
nsresult SerializeWholeDocument(uint32_t aMaxLength);
/**
* @param aFlags multiple of the flags defined in nsIDocumentEncoder.idl.o
*/
static bool IsInvisibleNodeAndShouldBeSkipped(const nsINode& aNode,
const uint32_t aFlags) {
if (aFlags & SkipInvisibleContent) {
// Treat the visibility of the ShadowRoot as if it were
// the host content.
//
// FIXME(emilio): I suspect instead of this a bunch of the GetParent()
// calls here should be doing GetFlattenedTreeParent, then this condition
// should be unreachable...
const nsINode* node{&aNode};
if (const ShadowRoot* shadowRoot = ShadowRoot::FromNode(node)) {
node = shadowRoot->GetHost();
}
if (node->IsContent()) {
nsIFrame* frame = node->AsContent()->GetPrimaryFrame();
if (!frame) {
if (node->IsElement() && node->AsElement()->IsDisplayContents()) {
return false;
}
if (node->IsText()) {
// We have already checked that our parent is visible.
//
// FIXME(emilio): Text not assigned to a <slot> in Shadow DOM should
// probably return false...
return false;
}
if (node->IsHTMLElement(nsGkAtoms::rp)) {
// Ruby parentheses are part of ruby structure, hence
// shouldn't be stripped out even if it is not displayed.
return false;
}
return true;
}
bool isVisible = frame->StyleVisibility()->IsVisible();
if (!isVisible && node->IsText()) {
return true;
}
}
}
return false;
}
void ReleaseDocumentReferenceAndInitialize(bool aClearCachedSerializer);
class MOZ_STACK_CLASS AutoReleaseDocumentIfNeeded final {
public:
explicit AutoReleaseDocumentIfNeeded(nsDocumentEncoder* aEncoder)
: mEncoder(aEncoder) {}
~AutoReleaseDocumentIfNeeded() {
if (mEncoder->mFlags & RequiresReinitAfterOutput) {
const bool clearCachedSerializer = false;
mEncoder->ReleaseDocumentReferenceAndInitialize(clearCachedSerializer);
}
}
private:
nsDocumentEncoder* mEncoder;
};
nsCOMPtr<Document> mDocument;
EncodingScope mEncodingScope;
nsCOMPtr<nsIContentSerializer> mSerializer;
Maybe<TextStreamer> mTextStreamer;
nsCOMPtr<nsIDocumentEncoderNodeFixup> mNodeFixup;
nsString mMimeType;
const Encoding* mEncoding;
// Multiple of the flags defined in nsIDocumentEncoder.idl.
uint32_t mFlags;
uint32_t mWrapColumn;
// Whether the serializer cares about being notified to scan elements to
// keep track of whether they are preformatted. This stores the out
// argument of nsIContentSerializer::Init().
bool mNeedsPreformatScanning;
bool mIsCopying; // Set to true only while copying
nsStringBuffer* mCachedBuffer;
class NodeSerializer {
public:
/**
* @param aFlags multiple of the flags defined in nsIDocumentEncoder.idl.
*/
NodeSerializer(const bool& aNeedsPreformatScanning,
const nsCOMPtr<nsIContentSerializer>& aSerializer,
const uint32_t& aFlags,
const nsCOMPtr<nsIDocumentEncoderNodeFixup>& aNodeFixup,
Maybe<TextStreamer>& aTextStreamer)
: mNeedsPreformatScanning{aNeedsPreformatScanning},
mSerializer{aSerializer},
mFlags{aFlags},
mNodeFixup{aNodeFixup},
mTextStreamer{aTextStreamer} {}
nsresult SerializeNodeStart(nsINode& aOriginalNode, int32_t aStartOffset,
int32_t aEndOffset,
nsINode* aFixupNode = nullptr) const;
enum class SerializeRoot { eYes, eNo };
nsresult SerializeToStringRecursive(nsINode* aNode,
SerializeRoot aSerializeRoot,
uint32_t aMaxLength = 0) const;
nsresult SerializeNodeEnd(nsINode& aOriginalNode,
nsINode* aFixupNode = nullptr) const;
[[nodiscard]] nsresult SerializeTextNode(nsINode& aNode,
int32_t aStartOffset,
int32_t aEndOffset) const;
nsresult SerializeToStringIterative(nsINode* aNode) const;
private:
const bool& mNeedsPreformatScanning;
const nsCOMPtr<nsIContentSerializer>& mSerializer;
// Multiple of the flags defined in nsIDocumentEncoder.idl.
const uint32_t& mFlags;
const nsCOMPtr<nsIDocumentEncoderNodeFixup>& mNodeFixup;
Maybe<TextStreamer>& mTextStreamer;
};
NodeSerializer mNodeSerializer;
const UniquePtr<RangeNodeContext> mRangeNodeContext;
struct RangeContextSerializer final {
RangeContextSerializer(const RangeNodeContext& aRangeNodeContext,
const NodeSerializer& aNodeSerializer)
: mDisableContextSerialize{false},
mRangeNodeContext{aRangeNodeContext},
mNodeSerializer{aNodeSerializer} {}
nsresult SerializeRangeContextStart(
const nsTArray<nsINode*>& aAncestorArray);
nsresult SerializeRangeContextEnd();
// Used when context has already been serialized for
// table cell selections (where parent is <tr>)
bool mDisableContextSerialize;
AutoTArray<AutoTArray<nsINode*, 8>, 8> mRangeContexts;
const RangeNodeContext& mRangeNodeContext;
private:
const NodeSerializer& mNodeSerializer;
};
RangeContextSerializer mRangeContextSerializer;
struct RangeSerializer {
// @param aFlags multiple of the flags defined in nsIDocumentEncoder.idl.
RangeSerializer(const uint32_t& aFlags,
const NodeSerializer& aNodeSerializer,
RangeContextSerializer& aRangeContextSerializer)
: mStartRootIndex{0},
mEndRootIndex{0},
mHaltRangeHint{false},
mFlags{aFlags},
mNodeSerializer{aNodeSerializer},
mRangeContextSerializer{aRangeContextSerializer} {}
void Initialize();
/**
* @param aDepth the distance (number of `GetParent` calls) from aNode to
* aRange's closest common inclusive ancestor.
*/
nsresult SerializeRangeNodes(const nsRange* aRange, nsINode* aNode,
int32_t aDepth);
/**
* Serialize aContent's children from aStartOffset to aEndOffset.
*
* @param aDepth the distance (number of `GetParent` calls) from aContent to
* aRange's closest common inclusive ancestor.
*/
[[nodiscard]] nsresult SerializeChildrenOfContent(nsIContent& aContent,
uint32_t aStartOffset,
uint32_t aEndOffset,
const nsRange* aRange,
int32_t aDepth);
nsresult SerializeRangeToString(const nsRange* aRange);
/**
* https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor.
*/
nsCOMPtr<nsINode> mClosestCommonInclusiveAncestorOfRange;
/**
* https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor.
*/
AutoTArray<nsINode*, 8> mCommonInclusiveAncestors;
ContextInfoDepth mContextInfoDepth;
private:
struct StartAndEndContent {
nsCOMPtr<nsIContent> mStart;
nsCOMPtr<nsIContent> mEnd;
};
StartAndEndContent GetStartAndEndContentForRecursionLevel(
int32_t aDepth) const;
bool HasInvisibleParentAndShouldBeSkipped(nsINode& aNode) const;
nsresult SerializeNodePartiallyContainedInRange(
nsINode& aNode, nsIContent& aContent,
const StartAndEndContent& aStartAndEndContent, const nsRange& aRange,
int32_t aDepth);
nsresult SerializeTextNode(nsINode& aNode, const nsIContent& aContent,
const StartAndEndContent& aStartAndEndContent,
const nsRange& aRange) const;
RangeBoundariesInclusiveAncestorsAndOffsets
mRangeBoundariesInclusiveAncestorsAndOffsets;
int32_t mStartRootIndex;
int32_t mEndRootIndex;
bool mHaltRangeHint;
// Multiple of the flags defined in nsIDocumentEncoder.idl.
const uint32_t& mFlags;
const NodeSerializer& mNodeSerializer;
RangeContextSerializer& mRangeContextSerializer;
};
RangeSerializer mRangeSerializer;
};
void nsDocumentEncoder::RangeSerializer::Initialize() {
mContextInfoDepth = {};
mStartRootIndex = 0;
mEndRootIndex = 0;
mHaltRangeHint = false;
mClosestCommonInclusiveAncestorOfRange = nullptr;
mRangeBoundariesInclusiveAncestorsAndOffsets = {};
}
NS_IMPL_CYCLE_COLLECTING_ADDREF(nsDocumentEncoder)
NS_IMPL_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE(
nsDocumentEncoder, ReleaseDocumentReferenceAndInitialize(true))
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(nsDocumentEncoder)
NS_INTERFACE_MAP_ENTRY(nsIDocumentEncoder)
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
NS_IMPL_CYCLE_COLLECTION(
nsDocumentEncoder, mDocument, mEncodingScope.mSelection,
mEncodingScope.mRange, mEncodingScope.mNode, mSerializer,
mRangeSerializer.mClosestCommonInclusiveAncestorOfRange)
nsDocumentEncoder::nsDocumentEncoder(
UniquePtr<RangeNodeContext> aRangeNodeContext)
: mEncoding(nullptr),
mIsCopying(false),
mCachedBuffer(nullptr),
mNodeSerializer(mNeedsPreformatScanning, mSerializer, mFlags, mNodeFixup,
mTextStreamer),
mRangeNodeContext(std::move(aRangeNodeContext)),
mRangeContextSerializer(*mRangeNodeContext, mNodeSerializer),
mRangeSerializer(mFlags, mNodeSerializer, mRangeContextSerializer) {
MOZ_ASSERT(mRangeNodeContext);
Initialize();
mMimeType.AssignLiteral("text/plain");
}
nsDocumentEncoder::nsDocumentEncoder()
: nsDocumentEncoder(MakeUnique<RangeNodeContext>()) {}
void nsDocumentEncoder::Initialize(bool aClearCachedSerializer) {
mFlags = 0;
mWrapColumn = 72;
mRangeSerializer.Initialize();
mNeedsPreformatScanning = false;
mRangeContextSerializer.mDisableContextSerialize = false;
mEncodingScope = {};
mNodeFixup = nullptr;
if (aClearCachedSerializer) {
mSerializer = nullptr;
}
}
static bool ParentIsTR(nsIContent* aContent) {
mozilla::dom::Element* parent = aContent->GetParentElement();
if (!parent) {
return false;
}
return parent->IsHTMLElement(nsGkAtoms::tr);
}
nsresult nsDocumentEncoder::SerializeDependingOnScope(uint32_t aMaxLength) {
nsresult rv = NS_OK;
if (mEncodingScope.mSelection) {
rv = SerializeSelection();
} else if (nsRange* range = mEncodingScope.mRange) {
rv = mRangeSerializer.SerializeRangeToString(range);
} else if (mEncodingScope.mNode) {
rv = SerializeNode();
} else {
rv = SerializeWholeDocument(aMaxLength);
}
mEncodingScope = {};
return rv;
}
nsresult nsDocumentEncoder::SerializeSelection() {
NS_ENSURE_TRUE(mEncodingScope.mSelection, NS_ERROR_FAILURE);
nsresult rv = NS_OK;
const Selection* selection = mEncodingScope.mSelection;
nsCOMPtr<nsINode> node;
nsCOMPtr<nsINode> prevNode;
uint32_t firstRangeStartDepth = 0;
const uint32_t rangeCount = selection->RangeCount();
for (const uint32_t i : IntegerRange(rangeCount)) {
MOZ_ASSERT(selection->RangeCount() == rangeCount);
RefPtr<const nsRange> range = selection->GetRangeAt(i);
// Bug 236546: newlines not added when copying table cells into clipboard
// Each selected cell shows up as a range containing a row with a single
// cell get the row, compare it to previous row and emit </tr><tr> as
// needed Bug 137450: Problem copying/pasting a table from a web page to
// Excel. Each separate block of <tr></tr> produced above will be wrapped
// by the immediate context. This assumes that you can't select cells that
// are multiple selections from two tables simultaneously.
node = range->GetStartContainer();
NS_ENSURE_TRUE(node, NS_ERROR_FAILURE);
if (node != prevNode) {
if (prevNode) {
rv = mNodeSerializer.SerializeNodeEnd(*prevNode);
NS_ENSURE_SUCCESS(rv, rv);
}
nsCOMPtr<nsIContent> content = nsIContent::FromNodeOrNull(node);
if (content && content->IsHTMLElement(nsGkAtoms::tr) &&
!ParentIsTR(content)) {
if (!prevNode) {
// Went from a non-<tr> to a <tr>
mRangeSerializer.mCommonInclusiveAncestors.Clear();
nsContentUtils::GetInclusiveAncestors(
node->GetParentNode(),
mRangeSerializer.mCommonInclusiveAncestors);
rv = mRangeContextSerializer.SerializeRangeContextStart(
mRangeSerializer.mCommonInclusiveAncestors);
NS_ENSURE_SUCCESS(rv, rv);
// Don't let SerializeRangeToString serialize the context again
mRangeContextSerializer.mDisableContextSerialize = true;
}
rv = mNodeSerializer.SerializeNodeStart(*node, 0, -1);
NS_ENSURE_SUCCESS(rv, rv);
prevNode = node;
} else if (prevNode) {
// Went from a <tr> to a non-<tr>
mRangeContextSerializer.mDisableContextSerialize = false;
// `mCommonInclusiveAncestors` is used in `EncodeToStringWithContext`
// too. Update it here to mimic the old behavior.
mRangeSerializer.mCommonInclusiveAncestors.Clear();
nsContentUtils::GetInclusiveAncestors(
prevNode->GetParentNode(),
mRangeSerializer.mCommonInclusiveAncestors);
rv = mRangeContextSerializer.SerializeRangeContextEnd();
NS_ENSURE_SUCCESS(rv, rv);
prevNode = nullptr;
}
}
rv = mRangeSerializer.SerializeRangeToString(range);
NS_ENSURE_SUCCESS(rv, rv);
if (i == 0) {
firstRangeStartDepth = mRangeSerializer.mContextInfoDepth.mStart;
}
}
mRangeSerializer.mContextInfoDepth.mStart = firstRangeStartDepth;
if (prevNode) {
rv = mNodeSerializer.SerializeNodeEnd(*prevNode);
NS_ENSURE_SUCCESS(rv, rv);
mRangeContextSerializer.mDisableContextSerialize = false;
// `mCommonInclusiveAncestors` is used in `EncodeToStringWithContext`
// too. Update it here to mimic the old behavior.
mRangeSerializer.mCommonInclusiveAncestors.Clear();
nsContentUtils::GetInclusiveAncestors(
prevNode->GetParentNode(), mRangeSerializer.mCommonInclusiveAncestors);
rv = mRangeContextSerializer.SerializeRangeContextEnd();
NS_ENSURE_SUCCESS(rv, rv);
}
// Just to be safe
mRangeContextSerializer.mDisableContextSerialize = false;
return rv;
}
nsresult nsDocumentEncoder::SerializeNode() {
NS_ENSURE_TRUE(mEncodingScope.mNode, NS_ERROR_FAILURE);
nsresult rv = NS_OK;
nsINode* node = mEncodingScope.mNode;
const bool nodeIsContainer = mEncodingScope.mNodeIsContainer;
if (!mNodeFixup && !(mFlags & SkipInvisibleContent) && !mTextStreamer &&
nodeIsContainer) {
rv = mNodeSerializer.SerializeToStringIterative(node);
} else {
rv = mNodeSerializer.SerializeToStringRecursive(
node, nodeIsContainer ? NodeSerializer::SerializeRoot::eNo
: NodeSerializer::SerializeRoot::eYes);
}
return rv;
}
nsresult nsDocumentEncoder::SerializeWholeDocument(uint32_t aMaxLength) {
NS_ENSURE_FALSE(mEncodingScope.mSelection, NS_ERROR_FAILURE);
NS_ENSURE_FALSE(mEncodingScope.mRange, NS_ERROR_FAILURE);
NS_ENSURE_FALSE(mEncodingScope.mNode, NS_ERROR_FAILURE);
nsresult rv = mSerializer->AppendDocumentStart(mDocument);
NS_ENSURE_SUCCESS(rv, rv);
rv = mNodeSerializer.SerializeToStringRecursive(
mDocument, NodeSerializer::SerializeRoot::eYes, aMaxLength);
return rv;
}
nsDocumentEncoder::~nsDocumentEncoder() {
if (mCachedBuffer) {
mCachedBuffer->Release();
}
}
NS_IMETHODIMP
nsDocumentEncoder::Init(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) {
return NativeInit(aDocument, aMimeType, aFlags);
}
NS_IMETHODIMP
nsDocumentEncoder::NativeInit(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) {
if (!aDocument) return NS_ERROR_INVALID_ARG;
Initialize(!mMimeType.Equals(aMimeType));
mDocument = aDocument;
mMimeType = aMimeType;
mFlags = aFlags;
mIsCopying = false;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetWrapColumn(uint32_t aWC) {
mWrapColumn = aWC;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetSelection(Selection* aSelection) {
mEncodingScope.mSelection = aSelection;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetRange(nsRange* aRange) {
mEncodingScope.mRange = aRange;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetNode(nsINode* aNode) {
mEncodingScope.mNodeIsContainer = false;
mEncodingScope.mNode = aNode;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetContainerNode(nsINode* aContainer) {
mEncodingScope.mNodeIsContainer = true;
mEncodingScope.mNode = aContainer;
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::SetCharset(const nsACString& aCharset) {
const Encoding* encoding = Encoding::ForLabel(aCharset);
if (!encoding) {
return NS_ERROR_UCONV_NOCONV;
}
mEncoding = encoding->OutputEncoding();
return NS_OK;
}
NS_IMETHODIMP
nsDocumentEncoder::GetMimeType(nsAString& aMimeType) {
aMimeType = mMimeType;
return NS_OK;
}
class FixupNodeDeterminer {
public:
FixupNodeDeterminer(nsIDocumentEncoderNodeFixup* aNodeFixup,
nsINode* aFixupNode, nsINode& aOriginalNode)
: mIsSerializationOfFixupChildrenNeeded{false},
mNodeFixup(aNodeFixup),
mOriginalNode(aOriginalNode) {
if (mNodeFixup) {
if (aFixupNode) {
mFixupNode = aFixupNode;
} else {
mNodeFixup->FixupNode(&mOriginalNode,
&mIsSerializationOfFixupChildrenNeeded,
getter_AddRefs(mFixupNode));
}
}
}
bool IsSerializationOfFixupChildrenNeeded() const {
return mIsSerializationOfFixupChildrenNeeded;
}
/**
* @return The fixup node, if available, otherwise the original node. The
* former is kept alive by this object.
*/
nsINode& GetFixupNodeFallBackToOriginalNode() const {
return mFixupNode ? *mFixupNode : mOriginalNode;
}
private:
bool mIsSerializationOfFixupChildrenNeeded;
nsIDocumentEncoderNodeFixup* mNodeFixup;
nsCOMPtr<nsINode> mFixupNode;
nsINode& mOriginalNode;
};
nsresult nsDocumentEncoder::NodeSerializer::SerializeNodeStart(
nsINode& aOriginalNode, int32_t aStartOffset, int32_t aEndOffset,
nsINode* aFixupNode) const {
if (mNeedsPreformatScanning) {
if (aOriginalNode.IsElement()) {
mSerializer->ScanElementForPreformat(aOriginalNode.AsElement());
} else if (aOriginalNode.IsText()) {
const nsCOMPtr<nsINode> parent = aOriginalNode.GetParent();
if (parent && parent->IsElement()) {
mSerializer->ScanElementForPreformat(parent->AsElement());
}
}
}
if (IsInvisibleNodeAndShouldBeSkipped(aOriginalNode, mFlags)) {
return NS_OK;
}
FixupNodeDeterminer fixupNodeDeterminer{mNodeFixup, aFixupNode,
aOriginalNode};
nsINode* node = &fixupNodeDeterminer.GetFixupNodeFallBackToOriginalNode();
nsresult rv = NS_OK;
if (node->IsElement()) {
if ((mFlags & (nsIDocumentEncoder::OutputPreformatted |
nsIDocumentEncoder::OutputDropInvisibleBreak)) &&
nsLayoutUtils::IsInvisibleBreak(node)) {
return rv;
}
rv = mSerializer->AppendElementStart(node->AsElement(),
aOriginalNode.AsElement());
return rv;
}
switch (node->NodeType()) {
case nsINode::TEXT_NODE: {
rv = mSerializer->AppendText(static_cast<nsIContent*>(node), aStartOffset,
aEndOffset);
break;
}
case nsINode::CDATA_SECTION_NODE: {
rv = mSerializer->AppendCDATASection(static_cast<nsIContent*>(node),
aStartOffset, aEndOffset);
break;
}
case nsINode::PROCESSING_INSTRUCTION_NODE: {
rv = mSerializer->AppendProcessingInstruction(
static_cast<ProcessingInstruction*>(node), aStartOffset, aEndOffset);
break;
}
case nsINode::COMMENT_NODE: {
rv = mSerializer->AppendComment(static_cast<Comment*>(node), aStartOffset,
aEndOffset);
break;
}
case nsINode::DOCUMENT_TYPE_NODE: {
rv = mSerializer->AppendDoctype(static_cast<DocumentType*>(node));
break;
}
}
return rv;
}
nsresult nsDocumentEncoder::NodeSerializer::SerializeNodeEnd(
nsINode& aOriginalNode, nsINode* aFixupNode) const {
if (mNeedsPreformatScanning) {
if (aOriginalNode.IsElement()) {
mSerializer->ForgetElementForPreformat(aOriginalNode.AsElement());
} else if (aOriginalNode.IsText()) {
const nsCOMPtr<nsINode> parent = aOriginalNode.GetParent();
if (parent && parent->IsElement()) {
mSerializer->ForgetElementForPreformat(parent->AsElement());
}
}
}
if (IsInvisibleNodeAndShouldBeSkipped(aOriginalNode, mFlags)) {
return NS_OK;
}
nsresult rv = NS_OK;
FixupNodeDeterminer fixupNodeDeterminer{mNodeFixup, aFixupNode,
aOriginalNode};
nsINode* node = &fixupNodeDeterminer.GetFixupNodeFallBackToOriginalNode();
if (node->IsElement()) {
rv = mSerializer->AppendElementEnd(node->AsElement(),
aOriginalNode.AsElement());
}
return rv;
}
nsresult nsDocumentEncoder::NodeSerializer::SerializeToStringRecursive(
nsINode* aNode, SerializeRoot aSerializeRoot, uint32_t aMaxLength) const {
uint32_t outputLength{0};
nsresult rv = mSerializer->GetOutputLength(outputLength);
NS_ENSURE_SUCCESS(rv, rv);
if (aMaxLength > 0 && outputLength >= aMaxLength) {
return NS_OK;
}
NS_ENSURE_TRUE(aNode, NS_ERROR_NULL_POINTER);
if (IsInvisibleNodeAndShouldBeSkipped(*aNode, mFlags)) {
return NS_OK;
}
FixupNodeDeterminer fixupNodeDeterminer{mNodeFixup, nullptr, *aNode};
nsINode* maybeFixedNode =
&fixupNodeDeterminer.GetFixupNodeFallBackToOriginalNode();
if (mFlags & SkipInvisibleContent) {
if (aNode->IsContent()) {
if (nsIFrame* frame = aNode->AsContent()->GetPrimaryFrame()) {
if (!frame->IsSelectable(nullptr)) {
aSerializeRoot = SerializeRoot::eNo;
}
}
}
}
if (aSerializeRoot == SerializeRoot::eYes) {
int32_t endOffset = -1;
if (aMaxLength > 0) {
MOZ_ASSERT(aMaxLength >= outputLength);
endOffset = aMaxLength - outputLength;
}
rv = SerializeNodeStart(*aNode, 0, endOffset, maybeFixedNode);
NS_ENSURE_SUCCESS(rv, rv);
}
nsINode* node = fixupNodeDeterminer.IsSerializationOfFixupChildrenNeeded()
? maybeFixedNode
: aNode;
for (nsINode* child = node->GetFirstChildOfTemplateOrNode(); child;
child = child->GetNextSibling()) {
rv = SerializeToStringRecursive(child, SerializeRoot::eYes, aMaxLength);
NS_ENSURE_SUCCESS(rv, rv);
}
if (aSerializeRoot == SerializeRoot::eYes) {
rv = SerializeNodeEnd(*aNode, maybeFixedNode);
NS_ENSURE_SUCCESS(rv, rv);
}
if (mTextStreamer) {
rv = mTextStreamer->FlushIfStringLongEnough();
}
return rv;
}
nsresult nsDocumentEncoder::NodeSerializer::SerializeToStringIterative(
nsINode* aNode) const {
nsresult rv;
nsINode* node = aNode->GetFirstChildOfTemplateOrNode();
while (node) {
nsINode* current = node;
rv = SerializeNodeStart(*current, 0, -1, current);
NS_ENSURE_SUCCESS(rv, rv);
node = current->GetFirstChildOfTemplateOrNode();
while (!node && current && current != aNode) {
rv = SerializeNodeEnd(*current);
NS_ENSURE_SUCCESS(rv, rv);
// Check if we have siblings.
node = current->GetNextSibling();
if (!node) {
// Perhaps parent node has siblings.
current = current->GetParentNode();
// Handle template element. If the parent is a template's content,
// then adjust the parent to be the template element.
if (current && current != aNode && current->IsDocumentFragment()) {
nsIContent* host = current->AsDocumentFragment()->GetHost();
if (host && host->IsHTMLElement(nsGkAtoms::_template)) {
current = host;
}
}
}
}
}
return NS_OK;
}
static bool IsTextNode(nsINode* aNode) { return aNode && aNode->IsText(); }
nsresult nsDocumentEncoder::NodeSerializer::SerializeTextNode(
nsINode& aNode, int32_t aStartOffset, int32_t aEndOffset) const {
MOZ_ASSERT(IsTextNode(&aNode));
nsresult rv = SerializeNodeStart(aNode, aStartOffset, aEndOffset);
NS_ENSURE_SUCCESS(rv, rv);
rv = SerializeNodeEnd(aNode);
NS_ENSURE_SUCCESS(rv, rv);
return rv;
}
nsDocumentEncoder::RangeSerializer::StartAndEndContent
nsDocumentEncoder::RangeSerializer::GetStartAndEndContentForRecursionLevel(
const int32_t aDepth) const {
StartAndEndContent result;
const auto& inclusiveAncestorsOfStart =
mRangeBoundariesInclusiveAncestorsAndOffsets.mInclusiveAncestorsOfStart;
const auto& inclusiveAncestorsOfEnd =
mRangeBoundariesInclusiveAncestorsAndOffsets.mInclusiveAncestorsOfEnd;
int32_t start = mStartRootIndex - aDepth;
if (start >= 0 && (uint32_t)start <= inclusiveAncestorsOfStart.Length()) {
result.mStart = inclusiveAncestorsOfStart[start];
}
int32_t end = mEndRootIndex - aDepth;
if (end >= 0 && (uint32_t)end <= inclusiveAncestorsOfEnd.Length()) {
result.mEnd = inclusiveAncestorsOfEnd[end];
}
return result;
}
nsresult nsDocumentEncoder::RangeSerializer::SerializeTextNode(
nsINode& aNode, const nsIContent& aContent,
const StartAndEndContent& aStartAndEndContent,
const nsRange& aRange) const {
const int32_t startOffset =
(aStartAndEndContent.mStart == &aContent) ? aRange.StartOffset() : 0;
const int32_t endOffset =
(aStartAndEndContent.mEnd == &aContent) ? aRange.EndOffset() : -1;
return mNodeSerializer.SerializeTextNode(aNode, startOffset, endOffset);
}
nsresult nsDocumentEncoder::RangeSerializer::SerializeRangeNodes(
const nsRange* const aRange, nsINode* const aNode, const int32_t aDepth) {
MOZ_ASSERT(aDepth >= 0);
MOZ_ASSERT(aRange);
nsCOMPtr<nsIContent> content = nsIContent::FromNodeOrNull(aNode);
NS_ENSURE_TRUE(content, NS_ERROR_FAILURE);
if (nsDocumentEncoder::IsInvisibleNodeAndShouldBeSkipped(*aNode, mFlags)) {
return NS_OK;
}
nsresult rv = NS_OK;
StartAndEndContent startAndEndContent =
GetStartAndEndContentForRecursionLevel(aDepth);
if (startAndEndContent.mStart != content &&
startAndEndContent.mEnd != content) {
// node is completely contained in range. Serialize the whole subtree
// rooted by this node.
rv = mNodeSerializer.SerializeToStringRecursive(
aNode, NodeSerializer::SerializeRoot::eYes);
NS_ENSURE_SUCCESS(rv, rv);
} else {
rv = SerializeNodePartiallyContainedInRange(
*aNode, *content, startAndEndContent, *aRange, aDepth);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
return NS_OK;
}
nsresult
nsDocumentEncoder::RangeSerializer::SerializeNodePartiallyContainedInRange(
nsINode& aNode, nsIContent& aContent,
const StartAndEndContent& aStartAndEndContent, const nsRange& aRange,
const int32_t aDepth) {
// due to implementation it is impossible for text node to be both start and
// end of range. We would have handled that case without getting here.
// XXXsmaug What does this all mean?
if (IsTextNode(&aNode)) {
nsresult rv =
SerializeTextNode(aNode, aContent, aStartAndEndContent, aRange);
NS_ENSURE_SUCCESS(rv, rv);
} else {
if (&aNode != mClosestCommonInclusiveAncestorOfRange) {
if (mRangeContextSerializer.mRangeNodeContext.IncludeInContext(aNode)) {
// halt the incrementing of mContextInfoDepth. This
// is so paste client will include this node in paste.
mHaltRangeHint = true;
}
if ((aStartAndEndContent.mStart == &aContent) && !mHaltRangeHint) {
++mContextInfoDepth.mStart;
}
if ((aStartAndEndContent.mEnd == &aContent) && !mHaltRangeHint) {
++mContextInfoDepth.mEnd;
}
// serialize the start of this node
nsresult rv = mNodeSerializer.SerializeNodeStart(aNode, 0, -1);
NS_ENSURE_SUCCESS(rv, rv);
}
const auto& inclusiveAncestorsOffsetsOfStart =
mRangeBoundariesInclusiveAncestorsAndOffsets
.mInclusiveAncestorsOffsetsOfStart;
const auto& inclusiveAncestorsOffsetsOfEnd =
mRangeBoundariesInclusiveAncestorsAndOffsets
.mInclusiveAncestorsOffsetsOfEnd;
// do some calculations that will tell us which children of this
// node are in the range.
Maybe<uint32_t> startOffset = Some(0);
Maybe<uint32_t> endOffset;
if (aStartAndEndContent.mStart == &aContent && mStartRootIndex >= aDepth) {
startOffset = inclusiveAncestorsOffsetsOfStart[mStartRootIndex - aDepth];
}
if (aStartAndEndContent.mEnd == &aContent && mEndRootIndex >= aDepth) {
endOffset = inclusiveAncestorsOffsetsOfEnd[mEndRootIndex - aDepth];
}
// generated aContent will cause offset values of Nothing to be returned.
if (startOffset.isNothing()) {
startOffset = Some(0);
}
if (endOffset.isNothing()) {
endOffset = Some(aContent.GetChildCount());
} else {
// if we are at the "tip" of the selection, endOffset is fine.
// otherwise, we need to add one. This is because of the semantics
// of the offset list created by GetInclusiveAncestorsAndOffsets(). The
// intermediate points on the list use the endOffset of the
// location of the ancestor, rather than just past it. So we need
// to add one here in order to include it in the children we serialize.
if (&aNode != aRange.GetEndContainer()) {
MOZ_ASSERT(*endOffset != UINT32_MAX);
endOffset.ref()++;
}
}
if (*endOffset) {
nsresult rv = SerializeChildrenOfContent(aContent, *startOffset,
*endOffset, &aRange, aDepth);
NS_ENSURE_SUCCESS(rv, rv);
}
// serialize the end of this node
if (&aNode != mClosestCommonInclusiveAncestorOfRange) {
nsresult rv = mNodeSerializer.SerializeNodeEnd(aNode);
NS_ENSURE_SUCCESS(rv, rv);
}
}
return NS_OK;
}
nsresult nsDocumentEncoder::RangeSerializer::SerializeChildrenOfContent(
nsIContent& aContent, uint32_t aStartOffset, uint32_t aEndOffset,
const nsRange* aRange, int32_t aDepth) {
// serialize the children of this node that are in the range
nsIContent* childAsNode = aContent.GetFirstChild();
uint32_t j = 0;
for (; j < aStartOffset && childAsNode; ++j) {
childAsNode = childAsNode->GetNextSibling();
}
MOZ_ASSERT(j == aStartOffset);
for (; childAsNode && j < aEndOffset; ++j) {
nsresult rv{NS_OK};
if ((j == aStartOffset) || (j == aEndOffset - 1)) {
rv = SerializeRangeNodes(aRange, childAsNode, aDepth + 1);
} else {
rv = mNodeSerializer.SerializeToStringRecursive(
childAsNode, NodeSerializer::SerializeRoot::eYes);
}
if (NS_FAILED(rv)) {
return rv;
}
childAsNode = childAsNode->GetNextSibling();
}
return NS_OK;
}
nsresult nsDocumentEncoder::RangeContextSerializer::SerializeRangeContextStart(
const nsTArray<nsINode*>& aAncestorArray) {
if (mDisableContextSerialize) {
return NS_OK;
}
AutoTArray<nsINode*, 8>* serializedContext = mRangeContexts.AppendElement();
int32_t i = aAncestorArray.Length(), j;
nsresult rv = NS_OK;
// currently only for table-related elements; see Bug 137450
j = mRangeNodeContext.GetImmediateContextCount(aAncestorArray);
while (i > 0) {
nsINode* node = aAncestorArray.ElementAt(--i);
if (!node) break;
// Either a general inclusion or as immediate context
if (mRangeNodeContext.IncludeInContext(*node) || i < j) {
rv = mNodeSerializer.SerializeNodeStart(*node, 0, -1);
serializedContext->AppendElement(node);
if (NS_FAILED(rv)) break;
}
}
return rv;
}
nsresult nsDocumentEncoder::RangeContextSerializer::SerializeRangeContextEnd() {
if (mDisableContextSerialize) {
return NS_OK;
}
MOZ_RELEASE_ASSERT(!mRangeContexts.IsEmpty(),
"Tried to end context without starting one.");
AutoTArray<nsINode*, 8>& serializedContext = mRangeContexts.LastElement();
nsresult rv = NS_OK;
for (nsINode* node : Reversed(serializedContext)) {
rv = mNodeSerializer.SerializeNodeEnd(*node);
if (NS_FAILED(rv)) break;
}
mRangeContexts.RemoveLastElement();
return rv;
}
bool nsDocumentEncoder::RangeSerializer::HasInvisibleParentAndShouldBeSkipped(
nsINode& aNode) const {
if (!(mFlags & SkipInvisibleContent)) {
return false;
}
// Check that the parent is visible if we don't a frame.
// IsInvisibleNodeAndShouldBeSkipped() will do it when there's a frame.
nsCOMPtr<nsIContent> content = nsIContent::FromNode(aNode);
if (content && !content->GetPrimaryFrame()) {
nsIContent* parent = content->GetParent();
return !parent || IsInvisibleNodeAndShouldBeSkipped(*parent, mFlags);
}
return false;
}
nsresult nsDocumentEncoder::RangeSerializer::SerializeRangeToString(
const nsRange* aRange) {
if (!aRange || aRange->Collapsed()) return NS_OK;
mClosestCommonInclusiveAncestorOfRange =
aRange->GetClosestCommonInclusiveAncestor();
if (!mClosestCommonInclusiveAncestorOfRange) {
return NS_OK;
}
nsINode* startContainer = aRange->GetStartContainer();
NS_ENSURE_TRUE(startContainer, NS_ERROR_FAILURE);
int32_t startOffset = aRange->StartOffset();
nsINode* endContainer = aRange->GetEndContainer();
NS_ENSURE_TRUE(endContainer, NS_ERROR_FAILURE);
int32_t endOffset = aRange->EndOffset();
mContextInfoDepth = {};
mCommonInclusiveAncestors.Clear();
mRangeBoundariesInclusiveAncestorsAndOffsets = {};
auto& inclusiveAncestorsOfStart =
mRangeBoundariesInclusiveAncestorsAndOffsets.mInclusiveAncestorsOfStart;
auto& inclusiveAncestorsOffsetsOfStart =
mRangeBoundariesInclusiveAncestorsAndOffsets
.mInclusiveAncestorsOffsetsOfStart;
auto& inclusiveAncestorsOfEnd =
mRangeBoundariesInclusiveAncestorsAndOffsets.mInclusiveAncestorsOfEnd;
auto& inclusiveAncestorsOffsetsOfEnd =
mRangeBoundariesInclusiveAncestorsAndOffsets
.mInclusiveAncestorsOffsetsOfEnd;
nsContentUtils::GetInclusiveAncestors(mClosestCommonInclusiveAncestorOfRange,
mCommonInclusiveAncestors);
nsContentUtils::GetInclusiveAncestorsAndOffsets(
startContainer, startOffset, &inclusiveAncestorsOfStart,
&inclusiveAncestorsOffsetsOfStart);
nsContentUtils::GetInclusiveAncestorsAndOffsets(
endContainer, endOffset, &inclusiveAncestorsOfEnd,
&inclusiveAncestorsOffsetsOfEnd);
nsCOMPtr<nsIContent> commonContent =
nsIContent::FromNodeOrNull(mClosestCommonInclusiveAncestorOfRange);
mStartRootIndex = inclusiveAncestorsOfStart.IndexOf(commonContent);
mEndRootIndex = inclusiveAncestorsOfEnd.IndexOf(commonContent);
nsresult rv = NS_OK;
rv = mRangeContextSerializer.SerializeRangeContextStart(
mCommonInclusiveAncestors);
NS_ENSURE_SUCCESS(rv, rv);
if (startContainer == endContainer && IsTextNode(startContainer)) {
if (HasInvisibleParentAndShouldBeSkipped(*startContainer)) {
return NS_OK;
}
rv = mNodeSerializer.SerializeTextNode(*startContainer, startOffset,
endOffset);
NS_ENSURE_SUCCESS(rv, rv);
} else {
rv = SerializeRangeNodes(aRange, mClosestCommonInclusiveAncestorOfRange, 0);
NS_ENSURE_SUCCESS(rv, rv);
}
rv = mRangeContextSerializer.SerializeRangeContextEnd();
NS_ENSURE_SUCCESS(rv, rv);
return rv;
}
void nsDocumentEncoder::ReleaseDocumentReferenceAndInitialize(
bool aClearCachedSerializer) {
mDocument = nullptr;
Initialize(aClearCachedSerializer);
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToString(nsAString& aOutputString) {
return EncodeToStringWithMaxLength(0, aOutputString);
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToStringWithMaxLength(uint32_t aMaxLength,
nsAString& aOutputString) {
MOZ_ASSERT(mRangeContextSerializer.mRangeContexts.IsEmpty(),
"Re-entrant call to nsDocumentEncoder.");
auto rangeContextGuard =
MakeScopeExit([&] { mRangeContextSerializer.mRangeContexts.Clear(); });
if (!mDocument) return NS_ERROR_NOT_INITIALIZED;
AutoReleaseDocumentIfNeeded autoReleaseDocument(this);
aOutputString.Truncate();
nsString output;
static const size_t kStringBufferSizeInBytes = 2048;
if (!mCachedBuffer) {
mCachedBuffer = nsStringBuffer::Alloc(kStringBufferSizeInBytes).take();
if (NS_WARN_IF(!mCachedBuffer)) {
return NS_ERROR_OUT_OF_MEMORY;
}
}
NS_ASSERTION(
!mCachedBuffer->IsReadonly(),
"nsIDocumentEncoder shouldn't keep reference to non-readonly buffer!");
static_cast<char16_t*>(mCachedBuffer->Data())[0] = char16_t(0);
mCachedBuffer->ToString(0, output, true);
// output owns the buffer now!
mCachedBuffer = nullptr;
if (!mSerializer) {
nsAutoCString progId(NS_CONTENTSERIALIZER_CONTRACTID_PREFIX);
AppendUTF16toUTF8(mMimeType, progId);
mSerializer = do_CreateInstance(progId.get());
NS_ENSURE_TRUE(mSerializer, NS_ERROR_NOT_IMPLEMENTED);
}
nsresult rv = NS_OK;
bool rewriteEncodingDeclaration =
!mEncodingScope.IsLimited() &&
!(mFlags & OutputDontRewriteEncodingDeclaration);
mSerializer->Init(mFlags, mWrapColumn, mEncoding, mIsCopying,
rewriteEncodingDeclaration, &mNeedsPreformatScanning,
output);
rv = SerializeDependingOnScope(aMaxLength);
NS_ENSURE_SUCCESS(rv, rv);
rv = mSerializer->FlushAndFinish();
mCachedBuffer = nsStringBuffer::FromString(output);
// We have to be careful how we set aOutputString, because we don't
// want it to end up sharing mCachedBuffer if we plan to reuse it.
bool setOutput = false;
// Try to cache the buffer.
if (mCachedBuffer) {
if ((mCachedBuffer->StorageSize() == kStringBufferSizeInBytes) &&
!mCachedBuffer->IsReadonly()) {
mCachedBuffer->AddRef();
} else {
if (NS_SUCCEEDED(rv)) {
mCachedBuffer->ToString(output.Length(), aOutputString);
setOutput = true;
}
mCachedBuffer = nullptr;
}
}
if (!setOutput && NS_SUCCEEDED(rv)) {
aOutputString.Append(output.get(), output.Length());
}
return rv;
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToStream(nsIOutputStream* aStream) {
MOZ_ASSERT(mRangeContextSerializer.mRangeContexts.IsEmpty(),
"Re-entrant call to nsDocumentEncoder.");
auto rangeContextGuard =
MakeScopeExit([&] { mRangeContextSerializer.mRangeContexts.Clear(); });
NS_ENSURE_ARG_POINTER(aStream);
nsresult rv = NS_OK;
if (!mDocument) return NS_ERROR_NOT_INITIALIZED;
if (!mEncoding) {
return NS_ERROR_UCONV_NOCONV;
}
nsAutoString buf;
const bool isPlainText = mMimeType.LowerCaseEqualsLiteral(kTextMime);
mTextStreamer.emplace(*aStream, mEncoding->NewEncoder(), isPlainText, buf);
rv = EncodeToString(buf);
// Force a flush of the last chunk of data.
rv = mTextStreamer->ForceFlush();
NS_ENSURE_SUCCESS(rv, rv);
mTextStreamer.reset();
return rv;
}
NS_IMETHODIMP
nsDocumentEncoder::EncodeToStringWithContext(nsAString& aContextString,
nsAString& aInfoString,
nsAString& aEncodedString) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsDocumentEncoder::SetNodeFixup(nsIDocumentEncoderNodeFixup* aFixup) {
mNodeFixup = aFixup;
return NS_OK;
}
bool do_getDocumentTypeSupportedForEncoding(const char* aContentType) {
if (!nsCRT::strcmp(aContentType, "text/xml") ||
!nsCRT::strcmp(aContentType, "application/xml") ||
!nsCRT::strcmp(aContentType, "application/xhtml+xml") ||
!nsCRT::strcmp(aContentType, "image/svg+xml") ||
!nsCRT::strcmp(aContentType, "text/html") ||
!nsCRT::strcmp(aContentType, "text/plain")) {
return true;
}
return false;
}
already_AddRefed<nsIDocumentEncoder> do_createDocumentEncoder(
const char* aContentType) {
if (do_getDocumentTypeSupportedForEncoding(aContentType)) {
return do_AddRef(new nsDocumentEncoder);
}
return nullptr;
}
class nsHTMLCopyEncoder : public nsDocumentEncoder {
private:
class RangeNodeContext final : public nsDocumentEncoder::RangeNodeContext {
bool IncludeInContext(nsINode& aNode) const final;
int32_t GetImmediateContextCount(
const nsTArray<nsINode*>& aAncestorArray) const final;
};
public:
nsHTMLCopyEncoder();
~nsHTMLCopyEncoder();
NS_IMETHOD Init(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) override;
// overridden methods from nsDocumentEncoder
MOZ_CAN_RUN_SCRIPT_BOUNDARY
NS_IMETHOD SetSelection(Selection* aSelection) override;
NS_IMETHOD EncodeToStringWithContext(nsAString& aContextString,
nsAString& aInfoString,
nsAString& aEncodedString) override;
NS_IMETHOD EncodeToString(nsAString& aOutputString) override;
protected:
enum Endpoint { kStart, kEnd };
nsresult PromoteRange(nsRange* inRange);
nsresult PromoteAncestorChain(nsCOMPtr<nsINode>* ioNode,
int32_t* ioStartOffset, int32_t* ioEndOffset);
nsresult GetPromotedPoint(Endpoint aWhere, nsINode* aNode, int32_t aOffset,
nsCOMPtr<nsINode>* outNode, int32_t* outOffset,
nsINode* aCommon);
static nsCOMPtr<nsINode> GetChildAt(nsINode* aParent, int32_t aOffset);
static bool IsMozBR(Element* aNode);
static nsresult GetNodeLocation(nsINode* inChild,
nsCOMPtr<nsINode>* outParent,
int32_t* outOffset);
bool IsRoot(nsINode* aNode);
static bool IsFirstNode(nsINode* aNode);
static bool IsLastNode(nsINode* aNode);
bool mIsTextWidget;
};
nsHTMLCopyEncoder::nsHTMLCopyEncoder()
: nsDocumentEncoder{MakeUnique<nsHTMLCopyEncoder::RangeNodeContext>()} {
mIsTextWidget = false;
}
nsHTMLCopyEncoder::~nsHTMLCopyEncoder() = default;
NS_IMETHODIMP
nsHTMLCopyEncoder::Init(Document* aDocument, const nsAString& aMimeType,
uint32_t aFlags) {
if (!aDocument) return NS_ERROR_INVALID_ARG;
mIsTextWidget = false;
Initialize();
mIsCopying = true;
mDocument = aDocument;
// Hack, hack! Traditionally, the caller passes text/plain, which is
// treated as "guess text/html or text/plain" in this context. (It has a
// different meaning in other contexts. Sigh.) From now on, "text/plain"
// means forcing text/plain instead of guessing.
if (aMimeType.EqualsLiteral("text/plain")) {
mMimeType.AssignLiteral("text/plain");
} else {
mMimeType.AssignLiteral("text/html");
}
// Make all links absolute when copying
// (see related bugs #57296, #41924, #58646, #32768)
mFlags = aFlags | OutputAbsoluteLinks;
if (!mDocument->IsScriptEnabled()) mFlags |= OutputNoScriptContent;
return NS_OK;
}
NS_IMETHODIMP
nsHTMLCopyEncoder::SetSelection(Selection* aSelection) {
// check for text widgets: we need to recognize these so that
// we don't tweak the selection to be outside of the magic
// div that ender-lite text widgets are embedded in.
if (!aSelection) return NS_ERROR_NULL_POINTER;
const uint32_t rangeCount = aSelection->RangeCount();
// if selection is uninitialized return
if (!rangeCount) {
return NS_ERROR_FAILURE;
}
// we'll just use the common parent of the first range. Implicit assumption
// here that multi-range selections are table cell selections, in which case
// the common parent is somewhere in the table and we don't really care where.
//
// FIXME(emilio, bug 1455894): This assumption is already wrong, and will
// probably be more wrong in a Shadow DOM world...
//
// We should be able to write this as "Find the common ancestor of the
// selection, then go through the flattened tree and serialize the selected
// nodes", effectively serializing the composed tree.
RefPtr<nsRange> range = aSelection->GetRangeAt(0);
nsINode* commonParent = range->GetClosestCommonInclusiveAncestor();
for (nsCOMPtr<nsIContent> selContent(
nsIContent::FromNodeOrNull(commonParent));
selContent; selContent = selContent->GetParent()) {
// checking for selection inside a plaintext form widget
if (selContent->IsAnyOfHTMLElements(nsGkAtoms::input,
nsGkAtoms::textarea)) {
mIsTextWidget = true;
break;
}
}
// normalize selection if we are not in a widget
if (mIsTextWidget) {
mEncodingScope.mSelection = aSelection;
mMimeType.AssignLiteral("text/plain");
return NS_OK;
}
// XXX We should try to get rid of the Selection object here.
// XXX bug 1245883
// also consider ourselves in a text widget if we can't find an html document
if (!(mDocument && mDocument->IsHTMLDocument())) {
mIsTextWidget = true;
mEncodingScope.mSelection = aSelection;
// mMimeType is set to text/plain when encoding starts.
return NS_OK;
}
// there's no Clone() for selection! fix...
// nsresult rv = aSelection->Clone(getter_AddRefs(mSelection);
// NS_ENSURE_SUCCESS(rv, rv);
mEncodingScope.mSelection = new Selection(SelectionType::eNormal, nullptr);
// loop thru the ranges in the selection
for (const uint32_t rangeIdx : IntegerRange(rangeCount)) {
MOZ_ASSERT(aSelection->RangeCount() == rangeCount);
range = aSelection->GetRangeAt(rangeIdx);
NS_ENSURE_TRUE(range, NS_ERROR_FAILURE);
RefPtr<nsRange> myRange = range->CloneRange();
MOZ_ASSERT(myRange);
// adjust range to include any ancestors who's children are entirely
// selected
nsresult rv = PromoteRange(myRange);
NS_ENSURE_SUCCESS(rv, rv);
ErrorResult result;
RefPtr<Selection> selection(mEncodingScope.mSelection);
RefPtr<Document> document(mDocument);
selection->AddRangeAndSelectFramesAndNotifyListenersInternal(
*myRange, document, result);
rv = result.StealNSResult();
NS_ENSURE_SUCCESS(rv, rv);
}
return NS_OK;
}
NS_IMETHODIMP
nsHTMLCopyEncoder::EncodeToString(nsAString& aOutputString) {
if (mIsTextWidget) {
mMimeType.AssignLiteral("text/plain");
}
return nsDocumentEncoder::EncodeToString(aOutputString);
}
NS_IMETHODIMP
nsHTMLCopyEncoder::EncodeToStringWithContext(nsAString& aContextString,
nsAString& aInfoString,
nsAString& aEncodedString) {
nsresult rv = EncodeToString(aEncodedString);
NS_ENSURE_SUCCESS(rv, rv);
// do not encode any context info or range hints if we are in a text widget.
if (mIsTextWidget) return NS_OK;
// now encode common ancestors into aContextString. Note that the common
// ancestors will be for the last range in the selection in the case of
// multirange selections. encoding ancestors every range in a multirange
// selection in a way that could be understood by the paste code would be a
// lot more work to do. As a practical matter, selections are single range,
// and the ones that aren't are table cell selections where all the cells are
// in the same table.
mSerializer->Init(mFlags, mWrapColumn, mEncoding, mIsCopying, false,
&mNeedsPreformatScanning, aContextString);
// leaf of ancestors might be text node. If so discard it.
int32_t count = mRangeSerializer.mCommonInclusiveAncestors.Length();
int32_t i;
nsCOMPtr<nsINode> node;
if (count > 0) {
node = mRangeSerializer.mCommonInclusiveAncestors.ElementAt(0);
}
if (node && IsTextNode(node)) {
mRangeSerializer.mCommonInclusiveAncestors.RemoveElementAt(0);
if (mRangeSerializer.mContextInfoDepth.mStart) {
--mRangeSerializer.mContextInfoDepth.mStart;
}
if (mRangeSerializer.mContextInfoDepth.mEnd) {
--mRangeSerializer.mContextInfoDepth.mEnd;
}
count--;
}
i = count;
while (i > 0) {
node = mRangeSerializer.mCommonInclusiveAncestors.ElementAt(--i);
rv = mNodeSerializer.SerializeNodeStart(*node, 0, -1);
NS_ENSURE_SUCCESS(rv, rv);
}
// i = 0; guaranteed by above
while (i < count) {
node = mRangeSerializer.mCommonInclusiveAncestors.ElementAt(i++);
rv = mNodeSerializer.SerializeNodeEnd(*node);
NS_ENSURE_SUCCESS(rv, rv);
}
mSerializer->Finish();
// encode range info : the start and end depth of the selection, where the
// depth is distance down in the parent hierarchy. Later we will need to add
// leading/trailing whitespace info to this.
nsAutoString infoString;
infoString.AppendInt(mRangeSerializer.mContextInfoDepth.mStart);
infoString.Append(char16_t(','));
infoString.AppendInt(mRangeSerializer.mContextInfoDepth.mEnd);
aInfoString = infoString;
return rv;
}
bool nsHTMLCopyEncoder::RangeNodeContext::IncludeInContext(
nsINode& aNode) const {
nsCOMPtr<nsIContent> content(nsIContent::FromNodeOrNull(&aNode));
if (!content) return false;
return content->IsAnyOfHTMLElements(
nsGkAtoms::b, nsGkAtoms::i, nsGkAtoms::u, nsGkAtoms::a, nsGkAtoms::tt,
nsGkAtoms::s, nsGkAtoms::big, nsGkAtoms::small, nsGkAtoms::strike,
nsGkAtoms::em, nsGkAtoms::strong, nsGkAtoms::dfn, nsGkAtoms::code,
nsGkAtoms::cite, nsGkAtoms::var, nsGkAtoms::abbr, nsGkAtoms::font,
nsGkAtoms::script, nsGkAtoms::span, nsGkAtoms::pre, nsGkAtoms::h1,
nsGkAtoms::h2, nsGkAtoms::h3, nsGkAtoms::h4, nsGkAtoms::h5,
nsGkAtoms::h6);
}
nsresult nsHTMLCopyEncoder::PromoteRange(nsRange* inRange) {
if (!inRange->IsPositioned()) {
return NS_ERROR_UNEXPECTED;
}
nsCOMPtr<nsINode> startNode = inRange->GetStartContainer();
uint32_t startOffset = inRange->StartOffset();
nsCOMPtr<nsINode> endNode = inRange->GetEndContainer();
uint32_t endOffset = inRange->EndOffset();
nsCOMPtr<nsINode> common = inRange->GetClosestCommonInclusiveAncestor();
nsCOMPtr<nsINode> opStartNode;
nsCOMPtr<nsINode> opEndNode;
int32_t opStartOffset, opEndOffset;
// examine range endpoints.
nsresult rv =
GetPromotedPoint(kStart, startNode, static_cast<int32_t>(startOffset),
address_of(opStartNode), &opStartOffset, common);
NS_ENSURE_SUCCESS(rv, rv);
rv = GetPromotedPoint(kEnd, endNode, static_cast<int32_t>(endOffset),
address_of(opEndNode), &opEndOffset, common);
NS_ENSURE_SUCCESS(rv, rv);
// if both range endpoints are at the common ancestor, check for possible
// inclusion of ancestors
if (opStartNode == common && opEndNode == common) {
rv = PromoteAncestorChain(address_of(opStartNode), &opStartOffset,
&opEndOffset);
NS_ENSURE_SUCCESS(rv, rv);
opEndNode = opStartNode;
}
// set the range to the new values
ErrorResult err;
inRange->SetStart(*opStartNode, static_cast<uint32_t>(opStartOffset), err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
inRange->SetEnd(*opEndNode, static_cast<uint32_t>(opEndOffset), err);
if (NS_WARN_IF(err.Failed())) {
return err.StealNSResult();
}
return NS_OK;
}
// PromoteAncestorChain will promote a range represented by
// [{*ioNode,*ioStartOffset} , {*ioNode,*ioEndOffset}] The promotion is
// different from that found in getPromotedPoint: it will only promote one
// endpoint if it can promote the other. Thus, instead of having a
// startnode/endNode, there is just the one ioNode.
nsresult nsHTMLCopyEncoder::PromoteAncestorChain(nsCOMPtr<nsINode>* ioNode,
int32_t* ioStartOffset,
int32_t* ioEndOffset) {
if (!ioNode || !ioStartOffset || !ioEndOffset) return NS_ERROR_NULL_POINTER;
nsresult rv = NS_OK;
bool done = false;
nsCOMPtr<nsINode> frontNode, endNode, parent;
int32_t frontOffset, endOffset;
// save the editable state of the ioNode, so we don't promote an ancestor if
// it has different editable state
nsCOMPtr<nsINode> node = *ioNode;
bool isEditable = node->IsEditable();
// loop for as long as we can promote both endpoints
while (!done) {
node = *ioNode;
parent = node->GetParentNode();
if (!parent) {
done = true;
} else {
// passing parent as last param to GetPromotedPoint() allows it to promote
// only one level up the hierarchy.
rv = GetPromotedPoint(kStart, *ioNode, *ioStartOffset,
address_of(frontNode), &frontOffset, parent);
NS_ENSURE_SUCCESS(rv, rv);
// then we make the same attempt with the endpoint
rv = GetPromotedPoint(kEnd, *ioNode, *ioEndOffset, address_of(endNode),
&endOffset, parent);
NS_ENSURE_SUCCESS(rv, rv);
// if both endpoints were promoted one level and isEditable is the same as
// the original node, keep looping - otherwise we are done.
if ((frontNode != parent) || (endNode != parent) ||
(frontNode->IsEditable() != isEditable))
done = true;
else {
*ioNode = frontNode;
*ioStartOffset = frontOffset;
*ioEndOffset = endOffset;
}
}
}
return rv;
}
nsresult nsHTMLCopyEncoder::GetPromotedPoint(Endpoint aWhere, nsINode* aNode,
int32_t aOffset,
nsCOMPtr<nsINode>* outNode,
int32_t* outOffset,
nsINode* common) {
nsresult rv = NS_OK;
nsCOMPtr<nsINode> node = aNode;
nsCOMPtr<nsINode> parent = aNode;
int32_t offset = aOffset;
bool bResetPromotion = false;
// default values
*outNode = node;
*outOffset = offset;
if (common == node) return NS_OK;
if (aWhere == kStart) {
// some special casing for text nodes
if (auto nodeAsText = aNode->GetAsText()) {
// if not at beginning of text node, we are done
if (offset > 0) {
// unless everything before us in just whitespace. NOTE: we need a more
// general solution that truly detects all cases of non-significant
// whitesace with no false alarms.
nsAutoString text;
nodeAsText->SubstringData(0, offset, text, IgnoreErrors());
text.CompressWhitespace();
if (!text.IsEmpty()) return NS_OK;
bResetPromotion = true;
}
// else
rv = GetNodeLocation(aNode, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
} else {
node = GetChildAt(parent, offset);
}
if (!node) node = parent;
// finding the real start for this point. look up the tree for as long as
// we are the first node in the container, and as long as we haven't hit the
// body node.
if (!IsRoot(node) && (parent != common)) {
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) return NS_OK; // we hit generated content; STOP
while ((IsFirstNode(node)) && (!IsRoot(parent)) && (parent != common)) {
if (bResetPromotion) {
nsCOMPtr<nsIContent> content = nsIContent::FromNodeOrNull(parent);
if (content && content->IsHTMLElement()) {
if (nsHTMLElement::IsBlock(
nsHTMLTags::AtomTagToId(content->NodeInfo()->NameAtom()))) {
bResetPromotion = false;
}
}
}
node = parent;
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) // we hit generated content; STOP
{
// back up a bit
parent = node;
offset = 0;
break;
}
}
if (bResetPromotion) {
*outNode = aNode;
*outOffset = aOffset;
} else {
*outNode = parent;
*outOffset = offset;
}
return rv;
}
}
if (aWhere == kEnd) {
// some special casing for text nodes
if (auto nodeAsText = aNode->GetAsText()) {
// if not at end of text node, we are done
uint32_t len = aNode->Length();
if (offset < (int32_t)len) {
// unless everything after us in just whitespace. NOTE: we need a more
// general solution that truly detects all cases of non-significant
// whitespace with no false alarms.
nsAutoString text;
nodeAsText->SubstringData(offset, len - offset, text, IgnoreErrors());
text.CompressWhitespace();
if (!text.IsEmpty()) return NS_OK;
bResetPromotion = true;
}
rv = GetNodeLocation(aNode, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
} else {
if (offset) offset--; // we want node _before_ offset
node = GetChildAt(parent, offset);
}
if (!node) node = parent;
// finding the real end for this point. look up the tree for as long as we
// are the last node in the container, and as long as we haven't hit the
// body node.
if (!IsRoot(node) && (parent != common)) {
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) return NS_OK; // we hit generated content; STOP
while ((IsLastNode(node)) && (!IsRoot(parent)) && (parent != common)) {
if (bResetPromotion) {
nsCOMPtr<nsIContent> content = nsIContent::FromNodeOrNull(parent);
if (content && content->IsHTMLElement()) {
if (nsHTMLElement::IsBlock(
nsHTMLTags::AtomTagToId(content->NodeInfo()->NameAtom()))) {
bResetPromotion = false;
}
}
}
node = parent;
rv = GetNodeLocation(node, address_of(parent), &offset);
NS_ENSURE_SUCCESS(rv, rv);
if (offset == -1) // we hit generated content; STOP
{
// back up a bit
parent = node;
offset = 0;
break;
}
}
if (bResetPromotion) {
*outNode = aNode;
*outOffset = aOffset;
} else {
*outNode = parent;
offset++; // add one since this in an endpoint - want to be AFTER node.
*outOffset = offset;
}
return rv;
}
}
return rv;
}
nsCOMPtr<nsINode> nsHTMLCopyEncoder::GetChildAt(nsINode* aParent,
int32_t aOffset) {
nsCOMPtr<nsINode> resultNode;
if (!aParent) return resultNode;
nsCOMPtr<nsIContent> content = nsIContent::FromNodeOrNull(aParent);
MOZ_ASSERT(content, "null content in nsHTMLCopyEncoder::GetChildAt");
resultNode = content->GetChildAt_Deprecated(aOffset);
return resultNode;
}
bool nsHTMLCopyEncoder::IsMozBR(Element* aElement) {
HTMLBRElement* brElement = HTMLBRElement::FromNodeOrNull(aElement);
return brElement && brElement->IsPaddingForEmptyLastLine();
}
nsresult nsHTMLCopyEncoder::GetNodeLocation(nsINode* inChild,
nsCOMPtr<nsINode>* outParent,
int32_t* outOffset) {
NS_ASSERTION((inChild && outParent && outOffset), "bad args");
if (inChild && outParent && outOffset) {
nsCOMPtr<nsIContent> child = nsIContent::FromNodeOrNull(inChild);
if (!child) {
return NS_ERROR_NULL_POINTER;
}
nsIContent* parent = child->GetParent();
if (!parent) {
return NS_ERROR_NULL_POINTER;
}
*outParent = parent;
*outOffset = parent->ComputeIndexOf_Deprecated(child);
return NS_OK;
}
return NS_ERROR_NULL_POINTER;
}
bool nsHTMLCopyEncoder::IsRoot(nsINode* aNode) {
nsCOMPtr<nsIContent> content = nsIContent::FromNodeOrNull(aNode);
if (!content) {
return false;
}
if (mIsTextWidget) {
return content->IsHTMLElement(nsGkAtoms::div);
}
return content->IsAnyOfHTMLElements(nsGkAtoms::body, nsGkAtoms::td,
nsGkAtoms::th);
}
bool nsHTMLCopyEncoder::IsFirstNode(nsINode* aNode) {
// need to check if any nodes before us are really visible.
// Mike wrote something for me along these lines in nsSelectionController,
// but I don't think it's ready for use yet - revisit.
// HACK: for now, simply consider all whitespace text nodes to be
// invisible formatting nodes.
for (nsIContent* sibling = aNode->GetPreviousSibling(); sibling;
sibling = sibling->GetPreviousSibling()) {
if (!sibling->TextIsOnlyWhitespace()) {
return false;
}
}
return true;
}
bool nsHTMLCopyEncoder::IsLastNode(nsINode* aNode) {
// need to check if any nodes after us are really visible.
// Mike wrote something for me along these lines in nsSelectionController,
// but I don't think it's ready for use yet - revisit.
// HACK: for now, simply consider all whitespace text nodes to be
// invisible formatting nodes.
for (nsIContent* sibling = aNode->GetNextSibling(); sibling;
sibling = sibling->GetNextSibling()) {
if (sibling->IsElement() && IsMozBR(sibling->AsElement())) {
// we ignore trailing moz BRs.
continue;
}
if (!sibling->TextIsOnlyWhitespace()) {
return false;
}
}
return true;
}
already_AddRefed<nsIDocumentEncoder> do_createHTMLCopyEncoder() {
return do_AddRef(new nsHTMLCopyEncoder);
}
int32_t nsHTMLCopyEncoder::RangeNodeContext::GetImmediateContextCount(
const nsTArray<nsINode*>& aAncestorArray) const {
int32_t i = aAncestorArray.Length(), j = 0;
while (j < i) {
nsINode* node = aAncestorArray.ElementAt(j);
if (!node) {
break;
}
nsCOMPtr<nsIContent> content(nsIContent::FromNodeOrNull(node));
if (!content || !content->IsAnyOfHTMLElements(
nsGkAtoms::tr, nsGkAtoms::thead, nsGkAtoms::tbody,
nsGkAtoms::tfoot, nsGkAtoms::table)) {
break;
}
++j;
}
return j;
}