зеркало из https://github.com/mozilla/gecko-dev.git
496 строки
20 KiB
C
496 строки
20 KiB
C
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
#include "ssl.h"
|
|
#include "sslimpl.h"
|
|
#include "sslproto.h"
|
|
#include "tls13hkdf.h"
|
|
|
|
static const char *
|
|
ssl_GetCompressionMethodName(SSLCompressionMethod compression)
|
|
{
|
|
switch (compression) {
|
|
case ssl_compression_null:
|
|
return "NULL";
|
|
#ifdef NSS_ENABLE_ZLIB
|
|
case ssl_compression_deflate:
|
|
return "DEFLATE";
|
|
#endif
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
SECStatus
|
|
SSL_GetChannelInfo(PRFileDesc *fd, SSLChannelInfo *info, PRUintn len)
|
|
{
|
|
sslSocket *ss;
|
|
SSLChannelInfo inf;
|
|
sslSessionID *sid;
|
|
|
|
/* Check if we can properly return the length of data written and that
|
|
* we're not asked to return more information than we know how to provide.
|
|
*/
|
|
if (!info || len < sizeof inf.length || len > sizeof inf) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
ss = ssl_FindSocket(fd);
|
|
if (!ss) {
|
|
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_GetChannelInfo",
|
|
SSL_GETPID(), fd));
|
|
return SECFailure;
|
|
}
|
|
|
|
memset(&inf, 0, sizeof inf);
|
|
inf.length = PR_MIN(sizeof inf, len);
|
|
|
|
if (ss->opt.useSecurity && ss->enoughFirstHsDone) {
|
|
sid = ss->sec.ci.sid;
|
|
inf.protocolVersion = ss->version;
|
|
inf.authKeyBits = ss->sec.authKeyBits;
|
|
inf.keaKeyBits = ss->sec.keaKeyBits;
|
|
if (ss->ssl3.initialized) {
|
|
SSLCipherSuiteInfo cinfo;
|
|
SECStatus rv;
|
|
|
|
ssl_GetSpecReadLock(ss);
|
|
/* XXX The cipher suite should be in the specs and this
|
|
* function should get it from cwSpec rather than from the "hs".
|
|
* See bug 275744 comment 69 and bug 766137.
|
|
*/
|
|
inf.cipherSuite = ss->ssl3.hs.cipher_suite;
|
|
inf.compressionMethod = ss->ssl3.cwSpec->compression_method;
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
inf.compressionMethodName =
|
|
ssl_GetCompressionMethodName(inf.compressionMethod);
|
|
|
|
/* Fill in the cipher details from the cipher suite. */
|
|
rv = SSL_GetCipherSuiteInfo(inf.cipherSuite,
|
|
&cinfo, sizeof(cinfo));
|
|
if (rv != SECSuccess) {
|
|
return SECFailure; /* Error code already set. */
|
|
}
|
|
inf.symCipher = cinfo.symCipher;
|
|
inf.macAlgorithm = cinfo.macAlgorithm;
|
|
/* Get these fromm |ss->sec| because that is accurate
|
|
* even with TLS 1.3 disaggregated cipher suites. */
|
|
inf.keaType = ss->sec.keaType;
|
|
inf.keaGroup = ss->sec.keaGroup ? ss->sec.keaGroup->name : ssl_grp_none;
|
|
inf.keaKeyBits = ss->sec.keaKeyBits;
|
|
inf.authType = ss->sec.authType;
|
|
inf.authKeyBits = ss->sec.authKeyBits;
|
|
inf.signatureScheme = ss->sec.signatureScheme;
|
|
}
|
|
if (sid) {
|
|
unsigned int sidLen;
|
|
|
|
inf.creationTime = sid->creationTime;
|
|
inf.lastAccessTime = sid->lastAccessTime;
|
|
inf.expirationTime = sid->expirationTime;
|
|
inf.extendedMasterSecretUsed =
|
|
(ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 ||
|
|
sid->u.ssl3.keys.extendedMasterSecretUsed)
|
|
? PR_TRUE
|
|
: PR_FALSE;
|
|
|
|
inf.earlyDataAccepted =
|
|
(ss->ssl3.hs.zeroRttState == ssl_0rtt_accepted ||
|
|
ss->ssl3.hs.zeroRttState == ssl_0rtt_done);
|
|
sidLen = sid->u.ssl3.sessionIDLength;
|
|
sidLen = PR_MIN(sidLen, sizeof inf.sessionID);
|
|
inf.sessionIDLength = sidLen;
|
|
memcpy(inf.sessionID, sid->u.ssl3.sessionID, sidLen);
|
|
}
|
|
}
|
|
|
|
memcpy(info, &inf, inf.length);
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
SSL_GetPreliminaryChannelInfo(PRFileDesc *fd,
|
|
SSLPreliminaryChannelInfo *info,
|
|
PRUintn len)
|
|
{
|
|
sslSocket *ss;
|
|
SSLPreliminaryChannelInfo inf;
|
|
|
|
/* Check if we can properly return the length of data written and that
|
|
* we're not asked to return more information than we know how to provide.
|
|
*/
|
|
if (!info || len < sizeof inf.length || len > sizeof inf) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
ss = ssl_FindSocket(fd);
|
|
if (!ss) {
|
|
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_GetPreliminaryChannelInfo",
|
|
SSL_GETPID(), fd));
|
|
return SECFailure;
|
|
}
|
|
|
|
memset(&inf, 0, sizeof(inf));
|
|
inf.length = PR_MIN(sizeof(inf), len);
|
|
|
|
inf.valuesSet = ss->ssl3.hs.preliminaryInfo;
|
|
inf.protocolVersion = ss->version;
|
|
inf.cipherSuite = ss->ssl3.hs.cipher_suite;
|
|
inf.canSendEarlyData = !ss->sec.isServer &&
|
|
(ss->ssl3.hs.zeroRttState == ssl_0rtt_sent) &&
|
|
!ss->firstHsDone;
|
|
|
|
memcpy(info, &inf, inf.length);
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* name */
|
|
#define CS_(x) x, #x
|
|
#define CS(x) CS_(TLS_##x)
|
|
|
|
/* legacy values for authAlgorithm */
|
|
#define S_DSA "DSA", ssl_auth_dsa
|
|
/* S_RSA is incorrect for signature-based suites */
|
|
/* ECDH suites incorrectly report S_RSA or S_ECDSA */
|
|
#define S_RSA "RSA", ssl_auth_rsa_decrypt
|
|
#define S_ECDSA "ECDSA", ssl_auth_ecdsa
|
|
#define S_PSK "PSK", ssl_auth_psk
|
|
#define S_ANY "TLS 1.3", ssl_auth_tls13_any
|
|
|
|
/* real authentication algorithm */
|
|
#define A_DSA ssl_auth_dsa
|
|
#define A_RSAD ssl_auth_rsa_decrypt
|
|
#define A_RSAS ssl_auth_rsa_sign
|
|
#define A_ECDSA ssl_auth_ecdsa
|
|
#define A_ECDH_R ssl_auth_ecdh_rsa
|
|
#define A_ECDH_E ssl_auth_ecdh_ecdsa
|
|
#define A_PSK ssl_auth_psk
|
|
/* Report ssl_auth_null for export suites that can't decide between
|
|
* ssl_auth_rsa_sign and ssl_auth_rsa_decrypt. */
|
|
#define A_EXP ssl_auth_null
|
|
#define A_ANY ssl_auth_tls13_any
|
|
|
|
/* key exchange */
|
|
#define K_DHE "DHE", ssl_kea_dh
|
|
#define K_RSA "RSA", ssl_kea_rsa
|
|
#define K_KEA "KEA", ssl_kea_kea
|
|
#define K_ECDH "ECDH", ssl_kea_ecdh
|
|
#define K_ECDHE "ECDHE", ssl_kea_ecdh
|
|
#define K_ECDHE_PSK "ECDHE-PSK", ssl_kea_ecdh_psk
|
|
#define K_DHE_PSK "DHE-PSK", ssl_kea_dh_psk
|
|
#define K_ANY "TLS 1.3", ssl_kea_tls13_any
|
|
|
|
/* record protection cipher */
|
|
#define C_SEED "SEED", calg_seed
|
|
#define C_CAMELLIA "CAMELLIA", calg_camellia
|
|
#define C_AES "AES", calg_aes
|
|
#define C_RC4 "RC4", calg_rc4
|
|
#define C_RC2 "RC2", calg_rc2
|
|
#define C_DES "DES", calg_des
|
|
#define C_3DES "3DES", calg_3des
|
|
#define C_NULL "NULL", calg_null
|
|
#define C_SJ "SKIPJACK", calg_sj
|
|
#define C_AESGCM "AES-GCM", calg_aes_gcm
|
|
#define C_CHACHA20 "CHACHA20POLY1305", calg_chacha20
|
|
|
|
/* "block cipher" sizes */
|
|
#define B_256 256, 256, 256
|
|
#define B_128 128, 128, 128
|
|
#define B_3DES 192, 156, 112
|
|
#define B_SJ 96, 80, 80
|
|
#define B_DES 64, 56, 56
|
|
#define B_56 128, 56, 56
|
|
#define B_40 128, 40, 40
|
|
#define B_0 0, 0, 0
|
|
|
|
/* "mac algorithm" and size */
|
|
#define M_AEAD_128 "AEAD", ssl_mac_aead, 128
|
|
#define M_SHA384 "SHA384", ssl_hmac_sha384, 384
|
|
#define M_SHA256 "SHA256", ssl_hmac_sha256, 256
|
|
#define M_SHA "SHA1", ssl_mac_sha, 160
|
|
#define M_MD5 "MD5", ssl_mac_md5, 128
|
|
#define M_NULL "NULL", ssl_mac_null, 0
|
|
|
|
/* flags: FIPS, exportable, nonstandard, reserved */
|
|
#define F_FIPS_STD 1, 0, 0, 0
|
|
#define F_FIPS_NSTD 1, 0, 1, 0
|
|
#define F_NFIPS_STD 0, 0, 0, 0
|
|
#define F_NFIPS_NSTD 0, 0, 1, 0 /* i.e., trash */
|
|
#define F_EXPORT 0, 1, 0, 0 /* i.e., trash */
|
|
|
|
static const SSLCipherSuiteInfo suiteInfo[] = {
|
|
/* <------ Cipher suite --------------------> <auth> <KEA> <bulk cipher> <MAC> <FIPS> */
|
|
{ 0, CS_(TLS_AES_128_GCM_SHA256), S_ANY, K_ANY, C_AESGCM, B_128, M_AEAD_128, F_FIPS_STD, A_ANY },
|
|
{ 0, CS_(TLS_CHACHA20_POLY1305_SHA256), S_ANY, K_ANY, C_CHACHA20, B_256, M_AEAD_128, F_NFIPS_STD, A_ANY },
|
|
{ 0, CS_(TLS_AES_256_GCM_SHA384), S_ANY, K_ANY, C_AESGCM, B_256, M_AEAD_128, F_NFIPS_STD, A_ANY },
|
|
|
|
{ 0, CS(RSA_WITH_AES_128_GCM_SHA256), S_RSA, K_RSA, C_AESGCM, B_128, M_AEAD_128, F_FIPS_STD, A_RSAD },
|
|
{ 0, CS(DHE_RSA_WITH_CHACHA20_POLY1305_SHA256), S_RSA, K_DHE, C_CHACHA20, B_256, M_AEAD_128, F_NFIPS_STD, A_RSAS },
|
|
|
|
{ 0, CS(DHE_RSA_WITH_CAMELLIA_256_CBC_SHA), S_RSA, K_DHE, C_CAMELLIA, B_256, M_SHA, F_NFIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_DSS_WITH_CAMELLIA_256_CBC_SHA), S_DSA, K_DHE, C_CAMELLIA, B_256, M_SHA, F_NFIPS_STD, A_DSA },
|
|
{ 0, CS(DHE_RSA_WITH_AES_256_CBC_SHA256), S_RSA, K_DHE, C_AES, B_256, M_SHA256, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_RSA_WITH_AES_256_CBC_SHA), S_RSA, K_DHE, C_AES, B_256, M_SHA, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_DSS_WITH_AES_256_CBC_SHA), S_DSA, K_DHE, C_AES, B_256, M_SHA, F_FIPS_STD, A_DSA },
|
|
{ 0, CS(DHE_DSS_WITH_AES_256_CBC_SHA256), S_DSA, K_DHE, C_AES, B_256, M_SHA256, F_FIPS_STD, A_DSA },
|
|
{ 0, CS(RSA_WITH_CAMELLIA_256_CBC_SHA), S_RSA, K_RSA, C_CAMELLIA, B_256, M_SHA, F_NFIPS_STD, A_RSAD },
|
|
{ 0, CS(RSA_WITH_AES_256_CBC_SHA256), S_RSA, K_RSA, C_AES, B_256, M_SHA256, F_FIPS_STD, A_RSAD },
|
|
{ 0, CS(RSA_WITH_AES_256_CBC_SHA), S_RSA, K_RSA, C_AES, B_256, M_SHA, F_FIPS_STD, A_RSAD },
|
|
|
|
{ 0, CS(DHE_RSA_WITH_CAMELLIA_128_CBC_SHA), S_RSA, K_DHE, C_CAMELLIA, B_128, M_SHA, F_NFIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_DSS_WITH_CAMELLIA_128_CBC_SHA), S_DSA, K_DHE, C_CAMELLIA, B_128, M_SHA, F_NFIPS_STD, A_DSA },
|
|
{ 0, CS(DHE_DSS_WITH_RC4_128_SHA), S_DSA, K_DHE, C_RC4, B_128, M_SHA, F_NFIPS_STD, A_DSA },
|
|
{ 0, CS(DHE_RSA_WITH_AES_128_CBC_SHA256), S_RSA, K_DHE, C_AES, B_128, M_SHA256, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_RSA_WITH_AES_128_GCM_SHA256), S_RSA, K_DHE, C_AESGCM, B_128, M_AEAD_128, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_RSA_WITH_AES_128_CBC_SHA), S_RSA, K_DHE, C_AES, B_128, M_SHA, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_DSS_WITH_AES_128_GCM_SHA256), S_DSA, K_DHE, C_AESGCM, B_128, M_AEAD_128, F_FIPS_STD, A_DSA },
|
|
{ 0, CS(DHE_DSS_WITH_AES_128_CBC_SHA), S_DSA, K_DHE, C_AES, B_128, M_SHA, F_FIPS_STD, A_DSA },
|
|
{ 0, CS(DHE_DSS_WITH_AES_128_CBC_SHA256), S_DSA, K_DHE, C_AES, B_128, M_SHA256, F_FIPS_STD, A_DSA },
|
|
{ 0, CS(RSA_WITH_SEED_CBC_SHA), S_RSA, K_RSA, C_SEED, B_128, M_SHA, F_FIPS_STD, A_RSAD },
|
|
{ 0, CS(RSA_WITH_CAMELLIA_128_CBC_SHA), S_RSA, K_RSA, C_CAMELLIA, B_128, M_SHA, F_NFIPS_STD, A_RSAD },
|
|
{ 0, CS(RSA_WITH_RC4_128_SHA), S_RSA, K_RSA, C_RC4, B_128, M_SHA, F_NFIPS_STD, A_RSAD },
|
|
{ 0, CS(RSA_WITH_RC4_128_MD5), S_RSA, K_RSA, C_RC4, B_128, M_MD5, F_NFIPS_STD, A_RSAD },
|
|
{ 0, CS(RSA_WITH_AES_128_CBC_SHA256), S_RSA, K_RSA, C_AES, B_128, M_SHA256, F_FIPS_STD, A_RSAD },
|
|
{ 0, CS(RSA_WITH_AES_128_CBC_SHA), S_RSA, K_RSA, C_AES, B_128, M_SHA, F_FIPS_STD, A_RSAD },
|
|
|
|
{ 0, CS(DHE_RSA_WITH_3DES_EDE_CBC_SHA), S_RSA, K_DHE, C_3DES, B_3DES, M_SHA, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_DSS_WITH_3DES_EDE_CBC_SHA), S_DSA, K_DHE, C_3DES, B_3DES, M_SHA, F_FIPS_STD, A_DSA },
|
|
{ 0, CS(RSA_WITH_3DES_EDE_CBC_SHA), S_RSA, K_RSA, C_3DES, B_3DES, M_SHA, F_FIPS_STD, A_RSAD },
|
|
|
|
{ 0, CS(DHE_RSA_WITH_DES_CBC_SHA), S_RSA, K_DHE, C_DES, B_DES, M_SHA, F_NFIPS_STD, A_RSAS },
|
|
{ 0, CS(DHE_DSS_WITH_DES_CBC_SHA), S_DSA, K_DHE, C_DES, B_DES, M_SHA, F_NFIPS_STD, A_DSA },
|
|
{ 0, CS(RSA_WITH_DES_CBC_SHA), S_RSA, K_RSA, C_DES, B_DES, M_SHA, F_NFIPS_STD, A_RSAD },
|
|
|
|
{ 0, CS(RSA_WITH_NULL_SHA256), S_RSA, K_RSA, C_NULL, B_0, M_SHA256, F_EXPORT, A_RSAD },
|
|
{ 0, CS(RSA_WITH_NULL_SHA), S_RSA, K_RSA, C_NULL, B_0, M_SHA, F_EXPORT, A_RSAD },
|
|
{ 0, CS(RSA_WITH_NULL_MD5), S_RSA, K_RSA, C_NULL, B_0, M_MD5, F_EXPORT, A_RSAD },
|
|
|
|
/* ECC cipher suites */
|
|
{ 0, CS(ECDHE_RSA_WITH_AES_128_GCM_SHA256), S_RSA, K_ECDHE, C_AESGCM, B_128, M_AEAD_128, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_AES_128_GCM_SHA256), S_ECDSA, K_ECDHE, C_AESGCM, B_128, M_AEAD_128, F_FIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDH_ECDSA_WITH_NULL_SHA), S_ECDSA, K_ECDH, C_NULL, B_0, M_SHA, F_NFIPS_STD, A_ECDH_E },
|
|
{ 0, CS(ECDH_ECDSA_WITH_RC4_128_SHA), S_ECDSA, K_ECDH, C_RC4, B_128, M_SHA, F_NFIPS_STD, A_ECDH_E },
|
|
{ 0, CS(ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA), S_ECDSA, K_ECDH, C_3DES, B_3DES, M_SHA, F_FIPS_STD, A_ECDH_E },
|
|
{ 0, CS(ECDH_ECDSA_WITH_AES_128_CBC_SHA), S_ECDSA, K_ECDH, C_AES, B_128, M_SHA, F_FIPS_STD, A_ECDH_E },
|
|
{ 0, CS(ECDH_ECDSA_WITH_AES_256_CBC_SHA), S_ECDSA, K_ECDH, C_AES, B_256, M_SHA, F_FIPS_STD, A_ECDH_E },
|
|
|
|
{ 0, CS(ECDHE_ECDSA_WITH_NULL_SHA), S_ECDSA, K_ECDHE, C_NULL, B_0, M_SHA, F_NFIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_RC4_128_SHA), S_ECDSA, K_ECDHE, C_RC4, B_128, M_SHA, F_NFIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA), S_ECDSA, K_ECDHE, C_3DES, B_3DES, M_SHA, F_FIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_AES_128_CBC_SHA), S_ECDSA, K_ECDHE, C_AES, B_128, M_SHA, F_FIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_AES_128_CBC_SHA256), S_ECDSA, K_ECDHE, C_AES, B_128, M_SHA256, F_FIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_AES_256_CBC_SHA), S_ECDSA, K_ECDHE, C_AES, B_256, M_SHA, F_FIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256), S_ECDSA, K_ECDHE, C_CHACHA20, B_256, M_AEAD_128, F_NFIPS_STD, A_ECDSA },
|
|
|
|
{ 0, CS(ECDH_RSA_WITH_NULL_SHA), S_RSA, K_ECDH, C_NULL, B_0, M_SHA, F_NFIPS_STD, A_ECDH_R },
|
|
{ 0, CS(ECDH_RSA_WITH_RC4_128_SHA), S_RSA, K_ECDH, C_RC4, B_128, M_SHA, F_NFIPS_STD, A_ECDH_R },
|
|
{ 0, CS(ECDH_RSA_WITH_3DES_EDE_CBC_SHA), S_RSA, K_ECDH, C_3DES, B_3DES, M_SHA, F_FIPS_STD, A_ECDH_R },
|
|
{ 0, CS(ECDH_RSA_WITH_AES_128_CBC_SHA), S_RSA, K_ECDH, C_AES, B_128, M_SHA, F_FIPS_STD, A_ECDH_R },
|
|
{ 0, CS(ECDH_RSA_WITH_AES_256_CBC_SHA), S_RSA, K_ECDH, C_AES, B_256, M_SHA, F_FIPS_STD, A_ECDH_R },
|
|
|
|
{ 0, CS(ECDHE_RSA_WITH_NULL_SHA), S_RSA, K_ECDHE, C_NULL, B_0, M_SHA, F_NFIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_RSA_WITH_RC4_128_SHA), S_RSA, K_ECDHE, C_RC4, B_128, M_SHA, F_NFIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_RSA_WITH_3DES_EDE_CBC_SHA), S_RSA, K_ECDHE, C_3DES, B_3DES, M_SHA, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_RSA_WITH_AES_128_CBC_SHA), S_RSA, K_ECDHE, C_AES, B_128, M_SHA, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_RSA_WITH_AES_128_CBC_SHA256), S_RSA, K_ECDHE, C_AES, B_128, M_SHA256, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_RSA_WITH_AES_256_CBC_SHA), S_RSA, K_ECDHE, C_AES, B_256, M_SHA, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256), S_RSA, K_ECDHE, C_CHACHA20, B_256, M_AEAD_128, F_NFIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_RSA_WITH_AES_256_CBC_SHA384), S_RSA, K_ECDHE, C_AES, B_256, M_SHA384, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_AES_256_CBC_SHA384), S_ECDSA, K_ECDHE, C_AES, B_256, M_SHA384, F_FIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_ECDSA_WITH_AES_256_GCM_SHA384), S_ECDSA, K_ECDHE, C_AESGCM, B_256, M_AEAD_128, F_FIPS_STD, A_ECDSA },
|
|
{ 0, CS(ECDHE_RSA_WITH_AES_256_GCM_SHA384), S_RSA, K_ECDHE, C_AESGCM, B_256, M_AEAD_128, F_FIPS_STD, A_RSAS },
|
|
|
|
{ 0, CS(DHE_DSS_WITH_AES_256_GCM_SHA384), S_DSA, K_DHE, C_AESGCM, B_256, M_AEAD_128, F_FIPS_STD, A_DSA },
|
|
{ 0, CS(DHE_RSA_WITH_AES_256_GCM_SHA384), S_RSA, K_DHE, C_AESGCM, B_256, M_AEAD_128, F_FIPS_STD, A_RSAS },
|
|
{ 0, CS(RSA_WITH_AES_256_GCM_SHA384), S_RSA, K_RSA, C_AESGCM, B_256, M_AEAD_128, F_FIPS_STD, A_RSAD },
|
|
};
|
|
|
|
#define NUM_SUITEINFOS ((sizeof suiteInfo) / (sizeof suiteInfo[0]))
|
|
|
|
SECStatus
|
|
SSL_GetCipherSuiteInfo(PRUint16 cipherSuite,
|
|
SSLCipherSuiteInfo *info, PRUintn len)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Check if we can properly return the length of data written and that
|
|
* we're not asked to return more information than we know how to provide.
|
|
*/
|
|
if (!info || len < sizeof suiteInfo[0].length ||
|
|
len > sizeof suiteInfo[0]) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
len = PR_MIN(len, sizeof suiteInfo[0]);
|
|
for (i = 0; i < NUM_SUITEINFOS; i++) {
|
|
if (suiteInfo[i].cipherSuite == cipherSuite) {
|
|
memcpy(info, &suiteInfo[i], len);
|
|
info->length = len;
|
|
return SECSuccess;
|
|
}
|
|
}
|
|
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECItem *
|
|
SSL_GetNegotiatedHostInfo(PRFileDesc *fd)
|
|
{
|
|
SECItem *sniName = NULL;
|
|
sslSocket *ss;
|
|
char *name = NULL;
|
|
|
|
ss = ssl_FindSocket(fd);
|
|
if (!ss) {
|
|
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_GetNegotiatedHostInfo",
|
|
SSL_GETPID(), fd));
|
|
return NULL;
|
|
}
|
|
|
|
if (ss->sec.isServer) {
|
|
if (ss->version > SSL_LIBRARY_VERSION_3_0 &&
|
|
ss->ssl3.initialized) { /* TLS */
|
|
SECItem *crsName;
|
|
ssl_GetSpecReadLock(ss); /*********************************/
|
|
crsName = &ss->ssl3.hs.srvVirtName;
|
|
if (crsName->data) {
|
|
sniName = SECITEM_DupItem(crsName);
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss); /*----------------------------*/
|
|
}
|
|
return sniName;
|
|
}
|
|
name = SSL_RevealURL(fd);
|
|
if (name) {
|
|
sniName = PORT_ZNew(SECItem);
|
|
if (!sniName) {
|
|
PORT_Free(name);
|
|
return NULL;
|
|
}
|
|
sniName->data = (void *)name;
|
|
sniName->len = PORT_Strlen(name);
|
|
}
|
|
return sniName;
|
|
}
|
|
|
|
static SECStatus
|
|
tls13_Exporter(sslSocket *ss, PK11SymKey *secret,
|
|
const char *label, unsigned int labelLen,
|
|
const unsigned char *context, unsigned int contextLen,
|
|
unsigned char *out, unsigned int outLen)
|
|
{
|
|
if (!secret) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
return tls13_HkdfExpandLabelRaw(secret,
|
|
tls13_GetHash(ss),
|
|
context, contextLen,
|
|
label, labelLen,
|
|
out, outLen);
|
|
}
|
|
|
|
SECStatus
|
|
SSL_ExportKeyingMaterial(PRFileDesc *fd,
|
|
const char *label, unsigned int labelLen,
|
|
PRBool hasContext,
|
|
const unsigned char *context, unsigned int contextLen,
|
|
unsigned char *out, unsigned int outLen)
|
|
{
|
|
sslSocket *ss;
|
|
unsigned char *val = NULL;
|
|
unsigned int valLen, i;
|
|
SECStatus rv = SECFailure;
|
|
|
|
ss = ssl_FindSocket(fd);
|
|
if (!ss) {
|
|
SSL_DBG(("%d: SSL[%d]: bad socket in ExportKeyingMaterial",
|
|
SSL_GETPID(), fd));
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!label || !labelLen || !out || !outLen ||
|
|
(hasContext && (!context || !contextLen))) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
|
|
return tls13_Exporter(ss, ss->ssl3.hs.exporterSecret,
|
|
label, labelLen,
|
|
context, hasContext ? contextLen : 0,
|
|
out, outLen);
|
|
}
|
|
|
|
/* construct PRF arguments */
|
|
valLen = SSL3_RANDOM_LENGTH * 2;
|
|
if (hasContext) {
|
|
valLen += 2 /* PRUint16 length */ + contextLen;
|
|
}
|
|
val = PORT_Alloc(valLen);
|
|
if (!val) {
|
|
return SECFailure;
|
|
}
|
|
i = 0;
|
|
PORT_Memcpy(val + i, &ss->ssl3.hs.client_random.rand, SSL3_RANDOM_LENGTH);
|
|
i += SSL3_RANDOM_LENGTH;
|
|
PORT_Memcpy(val + i, &ss->ssl3.hs.server_random.rand, SSL3_RANDOM_LENGTH);
|
|
i += SSL3_RANDOM_LENGTH;
|
|
if (hasContext) {
|
|
val[i++] = contextLen >> 8;
|
|
val[i++] = contextLen;
|
|
PORT_Memcpy(val + i, context, contextLen);
|
|
i += contextLen;
|
|
}
|
|
PORT_Assert(i == valLen);
|
|
|
|
/* Allow TLS keying material to be exported sooner, when the master
|
|
* secret is available and we have sent ChangeCipherSpec.
|
|
*/
|
|
ssl_GetSpecReadLock(ss);
|
|
if (!ss->ssl3.cwSpec->master_secret && !ss->ssl3.cwSpec->msItem.len) {
|
|
PORT_SetError(SSL_ERROR_HANDSHAKE_NOT_COMPLETED);
|
|
rv = SECFailure;
|
|
} else {
|
|
rv = ssl3_TLSPRFWithMasterSecret(ss, ss->ssl3.cwSpec, label, labelLen,
|
|
val, valLen, out, outLen);
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
|
|
PORT_ZFree(val, valLen);
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
SSL_ExportEarlyKeyingMaterial(PRFileDesc *fd,
|
|
const char *label, unsigned int labelLen,
|
|
const unsigned char *context,
|
|
unsigned int contextLen,
|
|
unsigned char *out, unsigned int outLen)
|
|
{
|
|
sslSocket *ss;
|
|
|
|
ss = ssl_FindSocket(fd);
|
|
if (!ss) {
|
|
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_ExportEarlyKeyingMaterial",
|
|
SSL_GETPID(), fd));
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!label || !labelLen || !out || !outLen ||
|
|
(!context && contextLen)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
return tls13_Exporter(ss, ss->ssl3.hs.earlyExporterSecret,
|
|
label, labelLen, context, contextLen,
|
|
out, outLen);
|
|
}
|