зеркало из https://github.com/mozilla/gecko-dev.git
271 строка
9.8 KiB
C
271 строка
9.8 KiB
C
/*
|
|
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <immintrin.h>
|
|
|
|
#include "config/aom_config.h"
|
|
|
|
#include "aom_ports/mem.h"
|
|
#include "aom/aom_integer.h"
|
|
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
#include "aom_dsp/x86/obmc_intrinsic_ssse3.h"
|
|
#include "aom_dsp/x86/synonyms.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// 8 bit
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static INLINE unsigned int obmc_sad_w4_avx2(const uint8_t *pre,
|
|
const int pre_stride,
|
|
const int32_t *wsrc,
|
|
const int32_t *mask,
|
|
const int height) {
|
|
int n = 0;
|
|
__m256i v_sad_d = _mm256_setzero_si256();
|
|
const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1);
|
|
|
|
do {
|
|
const __m128i v_p_b_0 = xx_loadl_32(pre);
|
|
const __m128i v_p_b_1 = xx_loadl_32(pre + pre_stride);
|
|
const __m128i v_p_b = _mm_unpacklo_epi32(v_p_b_0, v_p_b_1);
|
|
const __m256i v_m_d = _mm256_lddqu_si256((__m256i *)(mask + n));
|
|
const __m256i v_w_d = _mm256_lddqu_si256((__m256i *)(wsrc + n));
|
|
|
|
const __m256i v_p_d = _mm256_cvtepu8_epi32(v_p_b);
|
|
|
|
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
|
|
// boundaries. We use pmaddwd, as it has lower latency on Haswell
|
|
// than pmulld but produces the same result with these inputs.
|
|
const __m256i v_pm_d = _mm256_madd_epi16(v_p_d, v_m_d);
|
|
|
|
const __m256i v_diff_d = _mm256_sub_epi32(v_w_d, v_pm_d);
|
|
const __m256i v_absdiff_d = _mm256_abs_epi32(v_diff_d);
|
|
|
|
// Rounded absolute difference
|
|
const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff_d, v_bias_d);
|
|
const __m256i v_rad_d = _mm256_srli_epi32(v_tmp_d, 12);
|
|
|
|
v_sad_d = _mm256_add_epi32(v_sad_d, v_rad_d);
|
|
|
|
n += 8;
|
|
pre += pre_stride << 1;
|
|
} while (n < 8 * (height >> 1));
|
|
|
|
__m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d);
|
|
__m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1);
|
|
v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1);
|
|
return xx_hsum_epi32_si32(v_sad_d_0);
|
|
}
|
|
|
|
static INLINE unsigned int obmc_sad_w8n_avx2(
|
|
const uint8_t *pre, const int pre_stride, const int32_t *wsrc,
|
|
const int32_t *mask, const int width, const int height) {
|
|
const int pre_step = pre_stride - width;
|
|
int n = 0;
|
|
__m256i v_sad_d = _mm256_setzero_si256();
|
|
const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1);
|
|
assert(width >= 8);
|
|
assert(IS_POWER_OF_TWO(width));
|
|
|
|
do {
|
|
const __m128i v_p0_b = xx_loadl_64(pre + n);
|
|
const __m256i v_m0_d = _mm256_lddqu_si256((__m256i *)(mask + n));
|
|
const __m256i v_w0_d = _mm256_lddqu_si256((__m256i *)(wsrc + n));
|
|
|
|
const __m256i v_p0_d = _mm256_cvtepu8_epi32(v_p0_b);
|
|
|
|
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
|
|
// boundaries. We use pmaddwd, as it has lower latency on Haswell
|
|
// than pmulld but produces the same result with these inputs.
|
|
const __m256i v_pm0_d = _mm256_madd_epi16(v_p0_d, v_m0_d);
|
|
|
|
const __m256i v_diff0_d = _mm256_sub_epi32(v_w0_d, v_pm0_d);
|
|
const __m256i v_absdiff0_d = _mm256_abs_epi32(v_diff0_d);
|
|
|
|
// Rounded absolute difference
|
|
const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff0_d, v_bias_d);
|
|
const __m256i v_rad0_d = _mm256_srli_epi32(v_tmp_d, 12);
|
|
|
|
v_sad_d = _mm256_add_epi32(v_sad_d, v_rad0_d);
|
|
|
|
n += 8;
|
|
|
|
if ((n & (width - 1)) == 0) pre += pre_step;
|
|
} while (n < width * height);
|
|
|
|
__m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d);
|
|
__m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1);
|
|
v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1);
|
|
return xx_hsum_epi32_si32(v_sad_d_0);
|
|
}
|
|
|
|
#define OBMCSADWXH(w, h) \
|
|
unsigned int aom_obmc_sad##w##x##h##_avx2( \
|
|
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
|
|
const int32_t *msk) { \
|
|
if (w == 4) { \
|
|
return obmc_sad_w4_avx2(pre, pre_stride, wsrc, msk, h); \
|
|
} else { \
|
|
return obmc_sad_w8n_avx2(pre, pre_stride, wsrc, msk, w, h); \
|
|
} \
|
|
}
|
|
|
|
OBMCSADWXH(128, 128)
|
|
OBMCSADWXH(128, 64)
|
|
OBMCSADWXH(64, 128)
|
|
OBMCSADWXH(64, 64)
|
|
OBMCSADWXH(64, 32)
|
|
OBMCSADWXH(32, 64)
|
|
OBMCSADWXH(32, 32)
|
|
OBMCSADWXH(32, 16)
|
|
OBMCSADWXH(16, 32)
|
|
OBMCSADWXH(16, 16)
|
|
OBMCSADWXH(16, 8)
|
|
OBMCSADWXH(8, 16)
|
|
OBMCSADWXH(8, 8)
|
|
OBMCSADWXH(8, 4)
|
|
OBMCSADWXH(4, 8)
|
|
OBMCSADWXH(4, 4)
|
|
OBMCSADWXH(4, 16)
|
|
OBMCSADWXH(16, 4)
|
|
OBMCSADWXH(8, 32)
|
|
OBMCSADWXH(32, 8)
|
|
OBMCSADWXH(16, 64)
|
|
OBMCSADWXH(64, 16)
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// High bit-depth
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static INLINE unsigned int hbd_obmc_sad_w4_avx2(const uint8_t *pre8,
|
|
const int pre_stride,
|
|
const int32_t *wsrc,
|
|
const int32_t *mask,
|
|
const int height) {
|
|
const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
|
|
int n = 0;
|
|
__m256i v_sad_d = _mm256_setzero_si256();
|
|
const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1);
|
|
do {
|
|
const __m128i v_p_w_0 = xx_loadl_64(pre);
|
|
const __m128i v_p_w_1 = xx_loadl_64(pre + pre_stride);
|
|
const __m128i v_p_w = _mm_unpacklo_epi64(v_p_w_0, v_p_w_1);
|
|
const __m256i v_m_d = _mm256_lddqu_si256((__m256i *)(mask + n));
|
|
const __m256i v_w_d = _mm256_lddqu_si256((__m256i *)(wsrc + n));
|
|
|
|
const __m256i v_p_d = _mm256_cvtepu16_epi32(v_p_w);
|
|
|
|
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
|
|
// boundaries. We use pmaddwd, as it has lower latency on Haswell
|
|
// than pmulld but produces the same result with these inputs.
|
|
const __m256i v_pm_d = _mm256_madd_epi16(v_p_d, v_m_d);
|
|
|
|
const __m256i v_diff_d = _mm256_sub_epi32(v_w_d, v_pm_d);
|
|
const __m256i v_absdiff_d = _mm256_abs_epi32(v_diff_d);
|
|
|
|
// Rounded absolute difference
|
|
|
|
const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff_d, v_bias_d);
|
|
const __m256i v_rad_d = _mm256_srli_epi32(v_tmp_d, 12);
|
|
|
|
v_sad_d = _mm256_add_epi32(v_sad_d, v_rad_d);
|
|
|
|
n += 8;
|
|
|
|
pre += pre_stride << 1;
|
|
} while (n < 8 * (height >> 1));
|
|
|
|
__m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d);
|
|
__m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1);
|
|
v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1);
|
|
return xx_hsum_epi32_si32(v_sad_d_0);
|
|
}
|
|
|
|
static INLINE unsigned int hbd_obmc_sad_w8n_avx2(
|
|
const uint8_t *pre8, const int pre_stride, const int32_t *wsrc,
|
|
const int32_t *mask, const int width, const int height) {
|
|
const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
|
|
const int pre_step = pre_stride - width;
|
|
int n = 0;
|
|
__m256i v_sad_d = _mm256_setzero_si256();
|
|
const __m256i v_bias_d = _mm256_set1_epi32((1 << 12) >> 1);
|
|
|
|
assert(width >= 8);
|
|
assert(IS_POWER_OF_TWO(width));
|
|
|
|
do {
|
|
const __m128i v_p0_w = _mm_lddqu_si128((__m128i *)(pre + n));
|
|
const __m256i v_m0_d = _mm256_lddqu_si256((__m256i *)(mask + n));
|
|
const __m256i v_w0_d = _mm256_lddqu_si256((__m256i *)(wsrc + n));
|
|
|
|
const __m256i v_p0_d = _mm256_cvtepu16_epi32(v_p0_w);
|
|
|
|
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
|
|
// boundaries. We use pmaddwd, as it has lower latency on Haswell
|
|
// than pmulld but produces the same result with these inputs.
|
|
const __m256i v_pm0_d = _mm256_madd_epi16(v_p0_d, v_m0_d);
|
|
|
|
const __m256i v_diff0_d = _mm256_sub_epi32(v_w0_d, v_pm0_d);
|
|
const __m256i v_absdiff0_d = _mm256_abs_epi32(v_diff0_d);
|
|
|
|
// Rounded absolute difference
|
|
const __m256i v_tmp_d = _mm256_add_epi32(v_absdiff0_d, v_bias_d);
|
|
const __m256i v_rad0_d = _mm256_srli_epi32(v_tmp_d, 12);
|
|
|
|
v_sad_d = _mm256_add_epi32(v_sad_d, v_rad0_d);
|
|
|
|
n += 8;
|
|
|
|
if (n % width == 0) pre += pre_step;
|
|
} while (n < width * height);
|
|
|
|
__m128i v_sad_d_0 = _mm256_castsi256_si128(v_sad_d);
|
|
__m128i v_sad_d_1 = _mm256_extracti128_si256(v_sad_d, 1);
|
|
v_sad_d_0 = _mm_add_epi32(v_sad_d_0, v_sad_d_1);
|
|
return xx_hsum_epi32_si32(v_sad_d_0);
|
|
}
|
|
|
|
#define HBD_OBMCSADWXH(w, h) \
|
|
unsigned int aom_highbd_obmc_sad##w##x##h##_avx2( \
|
|
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
|
|
const int32_t *mask) { \
|
|
if (w == 4) { \
|
|
return hbd_obmc_sad_w4_avx2(pre, pre_stride, wsrc, mask, h); \
|
|
} else { \
|
|
return hbd_obmc_sad_w8n_avx2(pre, pre_stride, wsrc, mask, w, h); \
|
|
} \
|
|
}
|
|
|
|
HBD_OBMCSADWXH(128, 128)
|
|
HBD_OBMCSADWXH(128, 64)
|
|
HBD_OBMCSADWXH(64, 128)
|
|
HBD_OBMCSADWXH(64, 64)
|
|
HBD_OBMCSADWXH(64, 32)
|
|
HBD_OBMCSADWXH(32, 64)
|
|
HBD_OBMCSADWXH(32, 32)
|
|
HBD_OBMCSADWXH(32, 16)
|
|
HBD_OBMCSADWXH(16, 32)
|
|
HBD_OBMCSADWXH(16, 16)
|
|
HBD_OBMCSADWXH(16, 8)
|
|
HBD_OBMCSADWXH(8, 16)
|
|
HBD_OBMCSADWXH(8, 8)
|
|
HBD_OBMCSADWXH(8, 4)
|
|
HBD_OBMCSADWXH(4, 8)
|
|
HBD_OBMCSADWXH(4, 4)
|
|
HBD_OBMCSADWXH(4, 16)
|
|
HBD_OBMCSADWXH(16, 4)
|
|
HBD_OBMCSADWXH(8, 32)
|
|
HBD_OBMCSADWXH(32, 8)
|
|
HBD_OBMCSADWXH(16, 64)
|
|
HBD_OBMCSADWXH(64, 16)
|