зеркало из https://github.com/mozilla/gecko-dev.git
242 строки
5.4 KiB
C++
242 строки
5.4 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef MOZILLA_GFX_MATRIX_H_
|
|
#define MOZILLA_GFX_MATRIX_H_
|
|
|
|
#include "Types.h"
|
|
#include "Rect.h"
|
|
#include "Point.h"
|
|
#include <math.h>
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
class Matrix
|
|
{
|
|
public:
|
|
Matrix()
|
|
: _11(1.0f), _12(0)
|
|
, _21(0), _22(1.0f)
|
|
, _31(0), _32(0)
|
|
{}
|
|
Matrix(Float a11, Float a12, Float a21, Float a22, Float a31, Float a32)
|
|
: _11(a11), _12(a12)
|
|
, _21(a21), _22(a22)
|
|
, _31(a31), _32(a32)
|
|
{}
|
|
Float _11, _12;
|
|
Float _21, _22;
|
|
Float _31, _32;
|
|
|
|
Point operator *(const Point &aPoint) const
|
|
{
|
|
Point retPoint;
|
|
|
|
retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
|
|
retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;
|
|
|
|
return retPoint;
|
|
}
|
|
|
|
Size operator *(const Size &aSize) const
|
|
{
|
|
Size retSize;
|
|
|
|
retSize.width = aSize.width * _11 + aSize.height * _21;
|
|
retSize.height = aSize.width * _12 + aSize.height * _22;
|
|
|
|
return retSize;
|
|
}
|
|
|
|
GFX2D_API Rect TransformBounds(const Rect& rect) const;
|
|
|
|
// Apply a scale to this matrix. This scale will be applied -before- the
|
|
// existing transformation of the matrix.
|
|
Matrix &Scale(Float aX, Float aY)
|
|
{
|
|
_11 *= aX;
|
|
_12 *= aX;
|
|
_21 *= aY;
|
|
_22 *= aY;
|
|
|
|
return *this;
|
|
}
|
|
|
|
Matrix &Translate(Float aX, Float aY)
|
|
{
|
|
_31 += _11 * aX + _21 * aY;
|
|
_32 += _12 * aX + _22 * aY;
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool Invert()
|
|
{
|
|
// Compute co-factors.
|
|
Float A = _22;
|
|
Float B = -_21;
|
|
Float C = _21 * _32 - _22 * _31;
|
|
Float D = -_12;
|
|
Float E = _11;
|
|
Float F = _31 * _12 - _11 * _32;
|
|
|
|
Float det = Determinant();
|
|
|
|
if (!det) {
|
|
return false;
|
|
}
|
|
|
|
Float inv_det = 1 / det;
|
|
|
|
_11 = inv_det * A;
|
|
_12 = inv_det * D;
|
|
_21 = inv_det * B;
|
|
_22 = inv_det * E;
|
|
_31 = inv_det * C;
|
|
_32 = inv_det * F;
|
|
|
|
return true;
|
|
}
|
|
|
|
Float Determinant() const
|
|
{
|
|
return _11 * _22 - _12 * _21;
|
|
}
|
|
|
|
GFX2D_API static Matrix Rotation(Float aAngle);
|
|
|
|
Matrix operator*(const Matrix &aMatrix) const
|
|
{
|
|
Matrix resultMatrix;
|
|
|
|
resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
|
|
resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
|
|
resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
|
|
resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
|
|
resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
|
|
resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;
|
|
|
|
return resultMatrix;
|
|
}
|
|
|
|
Matrix& operator*=(const Matrix &aMatrix)
|
|
{
|
|
Matrix resultMatrix = *this * aMatrix;
|
|
return *this = resultMatrix;
|
|
}
|
|
|
|
/* Returns true if the other matrix is fuzzy-equal to this matrix.
|
|
* Note that this isn't a cheap comparison!
|
|
*/
|
|
bool operator==(const Matrix& other) const
|
|
{
|
|
return FuzzyEqual(_11, other._11) && FuzzyEqual(_12, other._12) &&
|
|
FuzzyEqual(_21, other._21) && FuzzyEqual(_22, other._22) &&
|
|
FuzzyEqual(_31, other._31) && FuzzyEqual(_32, other._32);
|
|
}
|
|
|
|
bool operator!=(const Matrix& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
/* Returns true if the matrix is a rectilinear transformation (i.e.
|
|
* grid-aligned rectangles are transformed to grid-aligned rectangles)
|
|
*/
|
|
bool IsRectilinear() const {
|
|
if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
|
|
return true;
|
|
} else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if the matrix is an identity matrix.
|
|
*/
|
|
bool IsIdentity() const
|
|
{
|
|
return _11 == 1.0f && _12 == 0.0f &&
|
|
_21 == 0.0f && _22 == 1.0f &&
|
|
_31 == 0.0f && _32 == 0.0f;
|
|
}
|
|
|
|
/* Returns true if the matrix is singular.
|
|
*/
|
|
bool IsSingular() const
|
|
{
|
|
return Determinant() == 0;
|
|
}
|
|
|
|
GFX2D_API void NudgeToIntegers();
|
|
|
|
private:
|
|
static bool FuzzyEqual(Float aV1, Float aV2) {
|
|
// XXX - Check if fabs does the smart thing and just negates the sign bit.
|
|
return fabs(aV2 - aV1) < 1e-6;
|
|
}
|
|
};
|
|
|
|
class Matrix4x4
|
|
{
|
|
public:
|
|
Matrix4x4()
|
|
: _11(1.0f), _12(0.0f), _13(0.0f), _14(0.0f)
|
|
, _21(0.0f), _22(1.0f), _23(0.0f), _24(0.0f)
|
|
, _31(0.0f), _32(0.0f), _33(1.0f), _34(0.0f)
|
|
, _41(0.0f), _42(0.0f), _43(0.0f), _44(1.0f)
|
|
{}
|
|
|
|
Float _11, _12, _13, _14;
|
|
Float _21, _22, _23, _24;
|
|
Float _31, _32, _33, _34;
|
|
Float _41, _42, _43, _44;
|
|
|
|
/**
|
|
* Returns true if the matrix is isomorphic to a 2D affine transformation.
|
|
*/
|
|
bool Is2D() const
|
|
{
|
|
if (_13 != 0.0f || _14 != 0.0f ||
|
|
_23 != 0.0f || _24 != 0.0f ||
|
|
_31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
|
|
_43 != 0.0f || _44 != 1.0f) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Matrix As2D() const
|
|
{
|
|
MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");
|
|
|
|
return Matrix(_11, _12, _21, _22, _41, _42);
|
|
}
|
|
|
|
// Apply a scale to this matrix. This scale will be applied -before- the
|
|
// existing transformation of the matrix.
|
|
Matrix4x4 &Scale(Float aX, Float aY, Float aZ)
|
|
{
|
|
_11 *= aX;
|
|
_12 *= aX;
|
|
_13 *= aX;
|
|
_21 *= aY;
|
|
_22 *= aY;
|
|
_23 *= aY;
|
|
_31 *= aZ;
|
|
_32 *= aZ;
|
|
_33 *= aZ;
|
|
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
}
|
|
}
|
|
|
|
#endif /* MOZILLA_GFX_MATRIX_H_ */
|