gecko-dev/layout/generic/ReflowInput.cpp

3072 строки
126 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* struct containing the input to nsIFrame::Reflow */
#include "mozilla/ReflowInput.h"
#include "LayoutLogging.h"
#include "nsStyleConsts.h"
#include "nsCSSAnonBoxes.h"
#include "nsFrame.h"
#include "nsIContent.h"
#include "nsGkAtoms.h"
#include "nsPresContext.h"
#include "nsIPresShell.h"
#include "nsFontMetrics.h"
#include "nsBlockFrame.h"
#include "nsLineBox.h"
#include "nsImageFrame.h"
#include "nsTableFrame.h"
#include "nsTableCellFrame.h"
#include "nsIPercentBSizeObserver.h"
#include "nsLayoutUtils.h"
#include "mozilla/Preferences.h"
#include "nsFontInflationData.h"
#include "StickyScrollContainer.h"
#include "nsIFrameInlines.h"
#include "CounterStyleManager.h"
#include <algorithm>
#include "mozilla/dom/HTMLInputElement.h"
#include "nsGridContainerFrame.h"
#ifdef DEBUG
# undef NOISY_VERTICAL_ALIGN
#else
# undef NOISY_VERTICAL_ALIGN
#endif
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::dom;
using namespace mozilla::layout;
enum eNormalLineHeightControl {
eUninitialized = -1,
eNoExternalLeading = 0, // does not include external leading
eIncludeExternalLeading, // use whatever value font vendor provides
eCompensateLeading // compensate leading if leading provided by font vendor
// is not enough
};
static eNormalLineHeightControl sNormalLineHeightControl = eUninitialized;
// Initialize a <b>root</b> reflow state with a rendering context to
// use for measuring things.
ReflowInput::ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame,
gfxContext* aRenderingContext,
const LogicalSize& aAvailableSpace, uint32_t aFlags)
: SizeComputationInput(aFrame, aRenderingContext),
// will be setup properly later in InitCBReflowInput
mCBReflowInput(nullptr),
mBlockDelta(0),
mOrthogonalLimit(NS_UNCONSTRAINEDSIZE),
mAvailableWidth(0),
mAvailableHeight(0),
mContainingBlockSize(mWritingMode),
mReflowDepth(0) {
MOZ_ASSERT(aRenderingContext, "no rendering context");
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
mParentReflowInput = nullptr;
AvailableISize() = aAvailableSpace.ISize(mWritingMode);
AvailableBSize() = aAvailableSpace.BSize(mWritingMode);
mFloatManager = nullptr;
mLineLayout = nullptr;
mDiscoveredClearance = nullptr;
mPercentBSizeObserver = nullptr;
if (aFlags & DUMMY_PARENT_REFLOW_STATE) {
mFlags.mDummyParentReflowInput = true;
}
if (aFlags & COMPUTE_SIZE_SHRINK_WRAP) {
mFlags.mShrinkWrap = true;
}
if (aFlags & COMPUTE_SIZE_USE_AUTO_BSIZE) {
mFlags.mUseAutoBSize = true;
}
if (aFlags & STATIC_POS_IS_CB_ORIGIN) {
mFlags.mStaticPosIsCBOrigin = true;
}
if (aFlags & I_CLAMP_MARGIN_BOX_MIN_SIZE) {
mFlags.mIClampMarginBoxMinSize = true;
}
if (aFlags & B_CLAMP_MARGIN_BOX_MIN_SIZE) {
mFlags.mBClampMarginBoxMinSize = true;
}
if (aFlags & I_APPLY_AUTO_MIN_SIZE) {
mFlags.mApplyAutoMinSize = true;
}
if (!(aFlags & CALLER_WILL_INIT)) {
Init(aPresContext);
}
}
static bool CheckNextInFlowParenthood(nsIFrame* aFrame, nsIFrame* aParent) {
nsIFrame* frameNext = aFrame->GetNextInFlow();
nsIFrame* parentNext = aParent->GetNextInFlow();
return frameNext && parentNext && frameNext->GetParent() == parentNext;
}
/**
* Adjusts the margin for a list (ol, ul), if necessary, depending on
* font inflation settings. Unfortunately, because bullets from a list are
* placed in the margin area, we only have ~40px in which to place the
* bullets. When they are inflated, however, this causes problems, since
* the text takes up more space than is available in the margin.
*
* This method will return a small amount (in app units) by which the
* margin can be adjusted, so that the space is available for list
* bullets to be rendered with font inflation enabled.
*/
static nscoord FontSizeInflationListMarginAdjustment(const nsIFrame* aFrame) {
if (!aFrame->IsFrameOfType(nsIFrame::eBlockFrame)) {
return 0;
}
// We only want to adjust the margins if we're dealing with an ordered list.
const nsBlockFrame* blockFrame = static_cast<const nsBlockFrame*>(aFrame);
if (!blockFrame->HasBullet()) {
return 0;
}
float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
if (inflation > 1.0f) {
auto listStyleType = aFrame->StyleList()->mCounterStyle->GetStyle();
if (listStyleType != NS_STYLE_LIST_STYLE_NONE &&
listStyleType != NS_STYLE_LIST_STYLE_DISC &&
listStyleType != NS_STYLE_LIST_STYLE_CIRCLE &&
listStyleType != NS_STYLE_LIST_STYLE_SQUARE &&
listStyleType != NS_STYLE_LIST_STYLE_DISCLOSURE_CLOSED &&
listStyleType != NS_STYLE_LIST_STYLE_DISCLOSURE_OPEN) {
// The HTML spec states that the default padding for ordered lists
// begins at 40px, indicating that we have 40px of space to place a
// bullet. When performing font inflation calculations, we add space
// equivalent to this, but simply inflated at the same amount as the
// text, in app units.
return nsPresContext::CSSPixelsToAppUnits(40) * (inflation - 1);
}
}
return 0;
}
SizeComputationInput::SizeComputationInput(
nsIFrame* aFrame, gfxContext* aRenderingContext,
WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize)
: mFrame(aFrame),
mRenderingContext(aRenderingContext),
mWritingMode(aFrame->GetWritingMode()) {
ReflowInputFlags flags;
InitOffsets(aContainingBlockWritingMode, aContainingBlockISize,
mFrame->Type(), flags);
}
// Initialize a reflow state for a child frame's reflow. Some state
// is copied from the parent reflow state; the remaining state is
// computed.
ReflowInput::ReflowInput(nsPresContext* aPresContext,
const ReflowInput& aParentReflowInput,
nsIFrame* aFrame, const LogicalSize& aAvailableSpace,
const LogicalSize* aContainingBlockSize,
uint32_t aFlags)
: SizeComputationInput(aFrame, aParentReflowInput.mRenderingContext),
// will be setup properly later in InitCBReflowInput
mCBReflowInput(nullptr),
mBlockDelta(0),
mOrthogonalLimit(NS_UNCONSTRAINEDSIZE),
mAvailableWidth(0),
mAvailableHeight(0),
mContainingBlockSize(mWritingMode),
mFlags(aParentReflowInput.mFlags),
mReflowDepth(aParentReflowInput.mReflowDepth + 1) {
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
MOZ_ASSERT(!mFlags.mSpecialBSizeReflow || !NS_SUBTREE_DIRTY(aFrame),
"frame should be clean when getting special bsize reflow");
mParentReflowInput = &aParentReflowInput;
AvailableISize() = aAvailableSpace.ISize(mWritingMode);
AvailableBSize() = aAvailableSpace.BSize(mWritingMode);
if (mWritingMode.IsOrthogonalTo(aParentReflowInput.GetWritingMode())) {
// If we're setting up for an orthogonal flow, and the parent reflow state
// had a constrained ComputedBSize, we can use that as our AvailableISize
// in preference to leaving it unconstrained.
if (AvailableISize() == NS_UNCONSTRAINEDSIZE &&
aParentReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
AvailableISize() = aParentReflowInput.ComputedBSize();
}
}
mFloatManager = aParentReflowInput.mFloatManager;
if (mFrame->IsFrameOfType(nsIFrame::eLineParticipant))
mLineLayout = aParentReflowInput.mLineLayout;
else
mLineLayout = nullptr;
// Note: mFlags was initialized as a copy of aParentReflowInput.mFlags up in
// this constructor's init list, so the only flags that we need to explicitly
// initialize here are those that may need a value other than our parent's.
mFlags.mNextInFlowUntouched =
aParentReflowInput.mFlags.mNextInFlowUntouched &&
CheckNextInFlowParenthood(aFrame, aParentReflowInput.mFrame);
mFlags.mAssumingHScrollbar = mFlags.mAssumingVScrollbar = false;
mFlags.mIsColumnBalancing = false;
mFlags.mIsFlexContainerMeasuringBSize = false;
mFlags.mDummyParentReflowInput = false;
mFlags.mShrinkWrap = !!(aFlags & COMPUTE_SIZE_SHRINK_WRAP);
mFlags.mUseAutoBSize = !!(aFlags & COMPUTE_SIZE_USE_AUTO_BSIZE);
mFlags.mStaticPosIsCBOrigin = !!(aFlags & STATIC_POS_IS_CB_ORIGIN);
mFlags.mIOffsetsNeedCSSAlign = mFlags.mBOffsetsNeedCSSAlign = false;
mFlags.mIClampMarginBoxMinSize = !!(aFlags & I_CLAMP_MARGIN_BOX_MIN_SIZE);
mFlags.mBClampMarginBoxMinSize = !!(aFlags & B_CLAMP_MARGIN_BOX_MIN_SIZE);
mFlags.mApplyAutoMinSize = !!(aFlags & I_APPLY_AUTO_MIN_SIZE);
mDiscoveredClearance = nullptr;
mPercentBSizeObserver =
(aParentReflowInput.mPercentBSizeObserver &&
aParentReflowInput.mPercentBSizeObserver->NeedsToObserve(*this))
? aParentReflowInput.mPercentBSizeObserver
: nullptr;
if ((aFlags & DUMMY_PARENT_REFLOW_STATE) ||
(mParentReflowInput->mFlags.mDummyParentReflowInput &&
mFrame->IsTableFrame())) {
mFlags.mDummyParentReflowInput = true;
}
if (!(aFlags & CALLER_WILL_INIT)) {
Init(aPresContext, aContainingBlockSize);
}
}
inline nscoord SizeComputationInput::ComputeISizeValue(
nscoord aContainingBlockISize, nscoord aContentEdgeToBoxSizing,
nscoord aBoxSizingToMarginEdge, const nsStyleCoord& aCoord) const {
return mFrame->ComputeISizeValue(mRenderingContext, aContainingBlockISize,
aContentEdgeToBoxSizing,
aBoxSizingToMarginEdge, aCoord);
}
nscoord SizeComputationInput::ComputeISizeValue(
nscoord aContainingBlockISize, StyleBoxSizing aBoxSizing,
const nsStyleCoord& aCoord) const {
WritingMode wm = GetWritingMode();
nscoord inside = 0, outside = ComputedLogicalBorderPadding().IStartEnd(wm) +
ComputedLogicalMargin().IStartEnd(wm);
if (aBoxSizing == StyleBoxSizing::Border) {
inside = ComputedLogicalBorderPadding().IStartEnd(wm);
}
outside -= inside;
return ComputeISizeValue(aContainingBlockISize, inside, outside, aCoord);
}
nscoord SizeComputationInput::ComputeBSizeValue(
nscoord aContainingBlockBSize, StyleBoxSizing aBoxSizing,
const nsStyleCoord& aCoord) const {
WritingMode wm = GetWritingMode();
nscoord inside = 0;
if (aBoxSizing == StyleBoxSizing::Border) {
inside = ComputedLogicalBorderPadding().BStartEnd(wm);
}
return nsLayoutUtils::ComputeBSizeValue(aContainingBlockBSize, inside,
aCoord);
}
void ReflowInput::SetComputedWidth(nscoord aComputedWidth) {
NS_ASSERTION(mFrame, "Must have a frame!");
// It'd be nice to assert that |frame| is not in reflow, but this fails for
// two reasons:
//
// 1) Viewport frames reset the computed width on a copy of their reflow
// state when reflowing fixed-pos kids. In that case we actually don't
// want to mess with the resize flags, because comparing the frame's rect
// to the munged computed width is pointless.
// 2) nsFrame::BoxReflow creates a reflow state for its parent. This reflow
// state is not used to reflow the parent, but just as a parent for the
// frame's own reflow state. So given a nsBoxFrame inside some non-XUL
// (like a text control, for example), we'll end up creating a reflow
// state for the parent while the parent is reflowing.
MOZ_ASSERT(aComputedWidth >= 0, "Invalid computed width");
if (ComputedWidth() != aComputedWidth) {
ComputedWidth() = aComputedWidth;
LayoutFrameType frameType = mFrame->Type();
if (frameType != LayoutFrameType::Viewport || // Or check GetParent()?
mWritingMode.IsVertical()) {
InitResizeFlags(mFrame->PresContext(), frameType);
}
}
}
void ReflowInput::SetComputedHeight(nscoord aComputedHeight) {
NS_ASSERTION(mFrame, "Must have a frame!");
// It'd be nice to assert that |frame| is not in reflow, but this fails
// because:
//
// nsFrame::BoxReflow creates a reflow state for its parent. This reflow
// state is not used to reflow the parent, but just as a parent for the
// frame's own reflow state. So given a nsBoxFrame inside some non-XUL
// (like a text control, for example), we'll end up creating a reflow
// state for the parent while the parent is reflowing.
MOZ_ASSERT(aComputedHeight >= 0, "Invalid computed height");
if (ComputedHeight() != aComputedHeight) {
ComputedHeight() = aComputedHeight;
LayoutFrameType frameType = mFrame->Type();
if (frameType != LayoutFrameType::Viewport || !mWritingMode.IsVertical()) {
InitResizeFlags(mFrame->PresContext(), frameType);
}
}
}
/* static */ void ReflowInput::MarkFrameChildrenDirty(nsIFrame* aFrame) {
if (aFrame->IsXULBoxFrame()) {
return;
}
// Mark all child frames as dirty.
//
// We don't do this for XUL boxes because they handle their child
// reflow separately.
for (nsIFrame::ChildListIterator childLists(aFrame); !childLists.IsDone();
childLists.Next()) {
for (nsIFrame* childFrame : childLists.CurrentList()) {
if (!childFrame->IsTableColGroupFrame()) {
childFrame->AddStateBits(NS_FRAME_IS_DIRTY);
}
}
}
}
void ReflowInput::Init(nsPresContext* aPresContext,
const LogicalSize* aContainingBlockSize,
const nsMargin* aBorder, const nsMargin* aPadding) {
if ((mFrame->GetStateBits() & NS_FRAME_IS_DIRTY)) {
// FIXME (bug 1376530): It would be better for memory locality if we
// did this as we went. However, we need to be careful not to do
// this twice for any particular child if we reflow it twice. The
// easiest way to accomplish that is to do it at the start.
MarkFrameChildrenDirty(mFrame);
}
if (AvailableISize() == NS_UNCONSTRAINEDSIZE) {
// Look up the parent chain for an orthogonal inline limit,
// and reset AvailableISize() if found.
for (const ReflowInput* parent = mParentReflowInput; parent != nullptr;
parent = parent->mParentReflowInput) {
if (parent->GetWritingMode().IsOrthogonalTo(mWritingMode) &&
parent->mOrthogonalLimit != NS_UNCONSTRAINEDSIZE) {
AvailableISize() = parent->mOrthogonalLimit;
break;
}
}
}
LAYOUT_WARN_IF_FALSE(AvailableISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
mStylePosition = mFrame->StylePosition();
mStyleDisplay = mFrame->StyleDisplay();
mStyleVisibility = mFrame->StyleVisibility();
mStyleBorder = mFrame->StyleBorder();
mStyleMargin = mFrame->StyleMargin();
mStylePadding = mFrame->StylePadding();
mStyleText = mFrame->StyleText();
InitCBReflowInput();
LayoutFrameType type = mFrame->Type();
if (type == mozilla::LayoutFrameType::Placeholder) {
// Placeholders have a no-op Reflow method that doesn't need the rest of
// this initialization, so we bail out early.
ComputedBSize() = ComputedISize() = 0;
return;
}
InitFrameType(type);
LogicalSize cbSize(mWritingMode, -1, -1);
if (aContainingBlockSize) {
cbSize = *aContainingBlockSize;
}
InitConstraints(aPresContext, cbSize, aBorder, aPadding, type);
InitResizeFlags(aPresContext, type);
InitDynamicReflowRoot();
nsIFrame* parent = mFrame->GetParent();
if (parent && (parent->GetStateBits() & NS_FRAME_IN_CONSTRAINED_BSIZE) &&
!(parent->IsScrollFrame() &&
parent->StyleDisplay()->mOverflowY != StyleOverflow::Hidden)) {
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else if (type == LayoutFrameType::SVGForeignObject) {
// An SVG foreignObject frame is inherently constrained block-size.
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else {
const nsStyleCoord& bSizeCoord = mStylePosition->BSize(mWritingMode);
const nsStyleCoord& maxBSizeCoord = mStylePosition->MaxBSize(mWritingMode);
if ((!bSizeCoord.IsAutoOrEnum() || !maxBSizeCoord.IsAutoOrEnum()) &&
// Don't set NS_FRAME_IN_CONSTRAINED_BSIZE on body or html elements.
(mFrame->GetContent() && !(mFrame->GetContent()->IsAnyOfHTMLElements(
nsGkAtoms::body, nsGkAtoms::html)))) {
// If our block-size was specified as a percentage, then this could
// actually resolve to 'auto', based on:
// http://www.w3.org/TR/CSS21/visudet.html#the-height-property
nsIFrame* containingBlk = mFrame;
while (containingBlk) {
const nsStylePosition* stylePos = containingBlk->StylePosition();
const nsStyleCoord& bSizeCoord = stylePos->BSize(mWritingMode);
const nsStyleCoord& maxBSizeCoord = stylePos->MaxBSize(mWritingMode);
if ((bSizeCoord.IsCoordPercentCalcUnit() && !bSizeCoord.HasPercent()) ||
(maxBSizeCoord.IsCoordPercentCalcUnit() &&
!maxBSizeCoord.HasPercent())) {
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
} else if ((bSizeCoord.IsCoordPercentCalcUnit() &&
bSizeCoord.HasPercent()) ||
(maxBSizeCoord.IsCoordPercentCalcUnit() &&
maxBSizeCoord.HasPercent())) {
if (!(containingBlk = containingBlk->GetContainingBlock())) {
// If we've reached the top of the tree, then we don't have
// a constrained block-size.
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
continue;
} else {
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
}
} else {
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
}
}
if (mParentReflowInput &&
mParentReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
// Orthogonal frames are always reflowed with an unconstrained
// dimension to avoid incomplete reflow across an orthogonal
// boundary. Normally this is the block-size, but for column sets
// with auto-height it's the inline-size, so that they can add
// columns in the container's block direction
if (type == LayoutFrameType::ColumnSet &&
eStyleUnit_Auto == mStylePosition->ISize(mWritingMode).GetUnit()) {
ComputedISize() = NS_UNCONSTRAINEDSIZE;
} else {
AvailableBSize() = NS_UNCONSTRAINEDSIZE;
}
}
if (mStyleDisplay->IsContainSize()) {
// In the case that a box is size contained, we want to ensure
// that it is also monolithic. We do this by unsetting
// AvailableBSize() to avoid fragmentaiton.
AvailableBSize() = NS_UNCONSTRAINEDSIZE;
}
LAYOUT_WARN_IF_FALSE((mFrameType == NS_CSS_FRAME_TYPE_INLINE &&
!mFrame->IsFrameOfType(nsIFrame::eReplaced)) ||
type == LayoutFrameType::Text ||
ComputedISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
}
void ReflowInput::InitCBReflowInput() {
if (!mParentReflowInput) {
mCBReflowInput = nullptr;
return;
}
if (mParentReflowInput->mFlags.mDummyParentReflowInput) {
mCBReflowInput = mParentReflowInput;
return;
}
if (mParentReflowInput->mFrame ==
mFrame->GetContainingBlock(0, mStyleDisplay)) {
// Inner table frames need to use the containing block of the outer
// table frame.
if (mFrame->IsTableFrame()) {
mCBReflowInput = mParentReflowInput->mCBReflowInput;
} else {
mCBReflowInput = mParentReflowInput;
}
} else {
mCBReflowInput = mParentReflowInput->mCBReflowInput;
}
}
/* Check whether CalcQuirkContainingBlockHeight would stop on the
* given reflow state, using its block as a height. (essentially
* returns false for any case in which CalcQuirkContainingBlockHeight
* has a "continue" in its main loop.)
*
* XXX Maybe refactor CalcQuirkContainingBlockHeight so it uses
* this function as well
*/
static bool IsQuirkContainingBlockHeight(const ReflowInput* rs,
LayoutFrameType aFrameType) {
if (LayoutFrameType::Block == aFrameType ||
#ifdef MOZ_XUL
LayoutFrameType::XULLabel == aFrameType ||
#endif
LayoutFrameType::Scroll == aFrameType) {
// Note: This next condition could change due to a style change,
// but that would cause a style reflow anyway, which means we're ok.
if (NS_AUTOHEIGHT == rs->ComputedHeight()) {
if (!rs->mFrame->IsAbsolutelyPositioned(rs->mStyleDisplay)) {
return false;
}
}
}
return true;
}
void ReflowInput::InitResizeFlags(nsPresContext* aPresContext,
LayoutFrameType aFrameType) {
SetBResize(false);
SetIResize(false);
const WritingMode wm = mWritingMode; // just a shorthand
// We should report that we have a resize in the inline dimension if
// *either* the border-box size or the content-box size in that
// dimension has changed. It might not actually be necessary to do
// this if the border-box size has changed and the content-box size
// has not changed, but since we've historically used the flag to mean
// border-box size change, continue to do that. (It's possible for
// the content-box size to change without a border-box size change or
// a style change given (1) a fixed width (possibly fixed by max-width
// or min-width), (2) box-sizing:border-box or padding-box, and
// (3) percentage padding.)
//
// However, we don't actually have the information at this point to
// tell whether the content-box size has changed, since both style
// data and the UsedPaddingProperty() have already been updated. So,
// instead, we explicitly check for the case where it's possible for
// the content-box size to have changed without either (a) a change in
// the border-box size or (b) an nsChangeHint_NeedDirtyReflow change
// hint due to change in border or padding. Thus we test using the
// conditions from the previous paragraph, except without testing (1)
// since it's complicated to test properly and less likely to help
// with optimizing cases away.
bool isIResize =
// is the border-box resizing?
mFrame->ISize(wm) !=
ComputedISize() + ComputedLogicalBorderPadding().IStartEnd(wm) ||
// or is the content-box resizing? (see comment above)
(mStylePosition->mBoxSizing != StyleBoxSizing::Content &&
mStylePadding->IsWidthDependent());
if ((mFrame->GetStateBits() & NS_FRAME_FONT_INFLATION_FLOW_ROOT) &&
nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
// Create our font inflation data if we don't have it already, and
// give it our current width information.
bool dirty = nsFontInflationData::UpdateFontInflationDataISizeFor(*this) &&
// Avoid running this at the box-to-block interface
// (where we shouldn't be inflating anyway, and where
// reflow state construction is probably to construct a
// dummy parent reflow state anyway).
!mFlags.mDummyParentReflowInput;
if (dirty || (!mFrame->GetParent() && isIResize)) {
// When font size inflation is enabled, a change in either:
// * the effective width of a font inflation flow root
// * the width of the frame
// needs to cause a dirty reflow since they change the font size
// inflation calculations, which in turn change the size of text,
// line-heights, etc. This is relatively similar to a classic
// case of style change reflow, except that because inflation
// doesn't affect the intrinsic sizing codepath, there's no need
// to invalidate intrinsic sizes.
//
// Note that this makes horizontal resizing a good bit more
// expensive. However, font size inflation is targeted at a set of
// devices (zoom-and-pan devices) where the main use case for
// horizontal resizing needing to be efficient (window resizing) is
// not present. It does still increase the cost of dynamic changes
// caused by script where a style or content change in one place
// causes a resize in another (e.g., rebalancing a table).
// FIXME: This isn't so great for the cases where
// ReflowInput::SetComputedWidth is called, if the first time
// we go through InitResizeFlags we set IsHResize() to true, and then
// the second time we'd set it to false even without the
// NS_FRAME_IS_DIRTY bit already set.
if (mFrame->IsSVGForeignObjectFrame()) {
// Foreign object frames use dirty bits in a special way.
mFrame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
nsIFrame* kid = mFrame->PrincipalChildList().FirstChild();
if (kid) {
kid->AddStateBits(NS_FRAME_IS_DIRTY);
MarkFrameChildrenDirty(kid);
}
} else {
mFrame->AddStateBits(NS_FRAME_IS_DIRTY);
MarkFrameChildrenDirty(mFrame);
}
// Mark intrinsic widths on all descendants dirty. We need to do
// this (1) since we're changing the size of text and need to
// clear text runs on text frames and (2) since we actually are
// changing some intrinsic widths, but only those that live inside
// of containers.
// It makes sense to do this for descendants but not ancestors
// (which is unusual) because we're only changing the unusual
// inflation-dependent intrinsic widths (i.e., ones computed with
// nsPresContext::mInflationDisabledForShrinkWrap set to false),
// which should never affect anything outside of their inflation
// flow root (or, for that matter, even their inflation
// container).
// This is also different from what PresShell::FrameNeedsReflow
// does because it doesn't go through placeholders. It doesn't
// need to because we're actually doing something that cares about
// frame tree geometry (the width on an ancestor) rather than
// style.
AutoTArray<nsIFrame*, 32> stack;
stack.AppendElement(mFrame);
do {
nsIFrame* f = stack.PopLastElement();
nsIFrame::ChildListIterator lists(f);
for (; !lists.IsDone(); lists.Next()) {
nsFrameList::Enumerator childFrames(lists.CurrentList());
for (; !childFrames.AtEnd(); childFrames.Next()) {
nsIFrame* kid = childFrames.get();
kid->MarkIntrinsicISizesDirty();
stack.AppendElement(kid);
}
}
} while (stack.Length() != 0);
}
}
SetIResize(!(mFrame->GetStateBits() & NS_FRAME_IS_DIRTY) && isIResize);
// XXX Should we really need to null check mCBReflowInput? (We do for
// at least nsBoxFrame).
if (IsTableCell(aFrameType) &&
(mFlags.mSpecialBSizeReflow || (mFrame->FirstInFlow()->GetStateBits() &
NS_TABLE_CELL_HAD_SPECIAL_REFLOW)) &&
(mFrame->GetStateBits() & NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
// Need to set the bit on the cell so that
// mCBReflowInput->IsBResize() is set correctly below when
// reflowing descendant.
SetBResize(true);
} else if (mCBReflowInput && mFrame->IsBlockWrapper()) {
// XXX Is this problematic for relatively positioned inlines acting
// as containing block for absolutely positioned elements?
// Possibly; in that case we should at least be checking
// NS_SUBTREE_DIRTY, I'd think.
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
} else if (mCBReflowInput && !nsLayoutUtils::GetAsBlock(mFrame)) {
// Some non-block frames (e.g. table frames) aggressively optimize out their
// BSize recomputation when they don't have the BResize flag set. This
// means that if they go from having a computed non-auto height to having an
// auto height and don't have that flag set, they will not actually compute
// their auto height and will just remain at whatever size they already
// were. We can end up in that situation if the child has a percentage
// specified height and the parent changes from non-auto height to auto
// height. When that happens, the parent will typically have the BResize
// flag set, and we want to propagate that flag to the kid.
//
// Ideally it seems like we'd do this for blocks too, of course... but we'd
// really want to restrict it to the percentage height case or something, to
// avoid extra reflows in common cases. Maybe we should be examining
// mStylePosition->BSize(wm).GetUnit() for that purpose?
//
// Note that we _also_ need to set the BResize flag if we have auto
// ComputedBSize() and a dirty subtree, since that might require us to
// change BSize due to kids having been added or removed.
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
if (ComputedBSize() == NS_AUTOHEIGHT) {
SetBResize(IsBResize() || NS_SUBTREE_DIRTY(mFrame));
}
} else if (ComputedBSize() == NS_AUTOHEIGHT) {
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
mCBReflowInput) {
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
} else {
SetBResize(IsIResize());
}
SetBResize(IsBResize() || NS_SUBTREE_DIRTY(mFrame));
} else {
// not 'auto' block-size
SetBResize(mFrame->BSize(wm) !=
ComputedBSize() + ComputedLogicalBorderPadding().BStartEnd(wm));
}
bool dependsOnCBBSize =
(mStylePosition->BSizeDependsOnContainer(wm) &&
// FIXME: condition this on not-abspos?
mStylePosition->BSize(wm).GetUnit() != eStyleUnit_Auto) ||
mStylePosition->MinBSizeDependsOnContainer(wm) ||
mStylePosition->MaxBSizeDependsOnContainer(wm) ||
mStylePosition->OffsetHasPercent(wm.PhysicalSide(eLogicalSideBStart)) ||
mStylePosition->mOffset.GetBEndUnit(wm) != eStyleUnit_Auto ||
mFrame->IsXULBoxFrame();
if (mStyleText->mLineHeight.GetUnit() == eStyleUnit_Enumerated) {
NS_ASSERTION(mStyleText->mLineHeight.GetIntValue() ==
NS_STYLE_LINE_HEIGHT_BLOCK_HEIGHT,
"bad line-height value");
// line-height depends on block bsize
mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// but only on containing blocks if this frame is not a suitable block
dependsOnCBBSize |= !nsLayoutUtils::IsNonWrapperBlock(mFrame);
}
// If we're the descendant of a table cell that performs special bsize
// reflows and we could be the child that requires them, always set
// the block-axis resize in case this is the first pass before the
// special bsize reflow. However, don't do this if it actually is
// the special bsize reflow, since in that case it will already be
// set correctly above if we need it set.
if (!IsBResize() && mCBReflowInput &&
(IsTableCell(mCBReflowInput->mFrame->Type()) ||
mCBReflowInput->mFlags.mHeightDependsOnAncestorCell) &&
!mCBReflowInput->mFlags.mSpecialBSizeReflow && dependsOnCBBSize) {
SetBResize(true);
mFlags.mHeightDependsOnAncestorCell = true;
}
// Set NS_FRAME_CONTAINS_RELATIVE_BSIZE if it's needed.
// It would be nice to check that |ComputedBSize != NS_AUTOHEIGHT|
// &&ed with the percentage bsize check. However, this doesn't get
// along with table special bsize reflows, since a special bsize
// reflow (a quirk that makes such percentage height work on children
// of table cells) can cause not just a single percentage height to
// become fixed, but an entire descendant chain of percentage height
// to become fixed.
if (dependsOnCBBSize && mCBReflowInput) {
const ReflowInput* rs = this;
bool hitCBReflowInput = false;
do {
rs = rs->mParentReflowInput;
if (!rs) {
break;
}
if (rs->mFrame->GetStateBits() & NS_FRAME_CONTAINS_RELATIVE_BSIZE) {
break; // no need to go further
}
rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// Keep track of whether we've hit the containing block, because
// we need to go at least that far.
if (rs == mCBReflowInput) {
hitCBReflowInput = true;
}
// XXX What about orthogonal flows? It doesn't make sense to
// keep propagating this bit across an orthogonal boundary,
// where the meaning of BSize changes. Bug 1175517.
} while (!hitCBReflowInput ||
(eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
!IsQuirkContainingBlockHeight(rs, rs->mFrame->Type())));
// Note: We actually don't need to set the
// NS_FRAME_CONTAINS_RELATIVE_BSIZE bit for the cases
// where we hit the early break statements in
// CalcQuirkContainingBlockHeight. But it doesn't hurt
// us to set the bit in these cases.
}
if (mFrame->GetStateBits() & NS_FRAME_IS_DIRTY) {
// If we're reflowing everything, then we'll find out if we need
// to re-set this.
mFrame->RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
}
static inline bool IsIntrinsicKeyword(const nsStyleCoord& aCoord) {
if (aCoord.GetUnit() != eStyleUnit_Enumerated) {
return false;
}
// All of the keywords except for '-moz-available' depend on intrinsic sizes.
return aCoord.GetIntValue() != NS_STYLE_WIDTH_AVAILABLE;
}
static bool AreDynamicReflowRootsEnabled() {
static bool sAreDynamicReflowRootsEnabled;
static bool sIsPrefCached = false;
if (!sIsPrefCached) {
sIsPrefCached = true;
Preferences::AddBoolVarCache(&sAreDynamicReflowRootsEnabled,
"layout.dynamic-reflow-roots.enabled");
}
return sAreDynamicReflowRootsEnabled;
}
void ReflowInput::InitDynamicReflowRoot() {
auto display = mStyleDisplay->mDisplay;
if (mFrame->IsFrameOfType(nsIFrame::eLineParticipant) ||
nsStyleDisplay::IsRubyDisplayType(display) ||
mFrameType == NS_CSS_FRAME_TYPE_INTERNAL_TABLE ||
display == StyleDisplay::Table || display == StyleDisplay::InlineTable ||
(mFrame->GetParent() && mFrame->GetParent()->IsXULBoxFrame())) {
// We have a display type where 'width' and 'height' don't actually
// set the width or height (i.e., the size depends on content).
NS_ASSERTION(!(mFrame->GetStateBits() & NS_FRAME_DYNAMIC_REFLOW_ROOT),
"should not have dynamic reflow root bit");
return;
}
bool canBeDynamicReflowRoot = AreDynamicReflowRootsEnabled();
// We can't do this if our used 'width' and 'height' might be influenced by
// content.
// FIXME: For display:block, we should probably optimize inline-size
// being auto.
// FIXME: Other flex and grid cases?
const nsStyleCoord& width = mStylePosition->mWidth;
const nsStyleCoord& height = mStylePosition->mHeight;
if (canBeDynamicReflowRoot &&
(!width.IsCoordPercentCalcUnit() || width.HasPercent() ||
!height.IsCoordPercentCalcUnit() || height.HasPercent() ||
IsIntrinsicKeyword(mStylePosition->mMinWidth) ||
IsIntrinsicKeyword(mStylePosition->mMaxWidth) ||
IsIntrinsicKeyword(mStylePosition->mMinHeight) ||
IsIntrinsicKeyword(mStylePosition->mMaxHeight) ||
((mStylePosition->mMinWidth.GetUnit() == eStyleUnit_Auto ||
mStylePosition->mMinHeight.GetUnit() == eStyleUnit_Auto) &&
mFrame->IsFlexOrGridItem()))) {
canBeDynamicReflowRoot = false;
}
if (canBeDynamicReflowRoot && mFrame->IsFlexItem()) {
// If our flex-basis is 'auto', it'll defer to 'width' (or 'height') which
// we've already checked. Otherwise, it preempts them, so we need to
// perform the same "could-this-value-be-influenced-by-content" checks that
// we performed for 'width' and 'height' above.
const nsStyleCoord& flexBasis = mStylePosition->mFlexBasis;
if (flexBasis.GetUnit() != eStyleUnit_Auto &&
(!flexBasis.IsCoordPercentCalcUnit() || flexBasis.HasPercent())) {
canBeDynamicReflowRoot = false;
}
}
if (canBeDynamicReflowRoot && !mFrame->IsFixedPosContainingBlock()) {
// We can't treat this frame as a reflow root, since dynamic changes
// to absolutely-positioned frames inside of it require that we
// reflow the placeholder before we reflow the absolutely positioned
// frame.
// FIXME: Alternatively, we could sort the reflow roots in
// PresShell::ProcessReflowCommands by depth in the tree, from
// deepest to least deep. However, for performance (FIXME) we
// should really be sorting them in the opposite order!
canBeDynamicReflowRoot = false;
}
// If we participate in a container's block reflow context, or margins
// can collapse through us, we can't be a dynamic reflow root.
if (canBeDynamicReflowRoot && mFrame->IsFrameOfType(nsIFrame::eBlockFrame) &&
!mFrame->HasAllStateBits(NS_BLOCK_FLOAT_MGR | NS_BLOCK_MARGIN_ROOT)) {
canBeDynamicReflowRoot = false;
}
if (canBeDynamicReflowRoot) {
mFrame->AddStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
} else {
mFrame->RemoveStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
}
}
nscoord ReflowInput::GetContainingBlockContentISize(
WritingMode aWritingMode) const {
if (!mCBReflowInput) {
return 0;
}
return mCBReflowInput->GetWritingMode().IsOrthogonalTo(aWritingMode)
? mCBReflowInput->ComputedBSize()
: mCBReflowInput->ComputedISize();
}
void ReflowInput::InitFrameType(LayoutFrameType aFrameType) {
const nsStyleDisplay* disp = mStyleDisplay;
nsCSSFrameType frameType;
DISPLAY_INIT_TYPE(mFrame, this);
if (aFrameType == LayoutFrameType::Table) {
mFrameType = NS_CSS_FRAME_TYPE_BLOCK;
return;
}
NS_ASSERTION(mFrame->StyleDisplay()->IsAbsolutelyPositionedStyle() ==
disp->IsAbsolutelyPositionedStyle(),
"Unexpected position style");
NS_ASSERTION(
mFrame->StyleDisplay()->IsFloatingStyle() == disp->IsFloatingStyle(),
"Unexpected float style");
if (mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW) {
if (disp->IsAbsolutelyPositioned(mFrame)) {
frameType = NS_CSS_FRAME_TYPE_ABSOLUTE;
// XXXfr hack for making frames behave properly when in overflow container
// lists
// see bug 154892; need to revisit later
if (mFrame->GetPrevInFlow()) frameType = NS_CSS_FRAME_TYPE_BLOCK;
} else if (disp->IsFloating(mFrame)) {
frameType = NS_CSS_FRAME_TYPE_FLOATING;
} else {
NS_ASSERTION(disp->mDisplay == StyleDisplay::MozPopup,
"unknown out of flow frame type");
frameType = NS_CSS_FRAME_TYPE_UNKNOWN;
}
} else {
switch (GetDisplay()) {
case StyleDisplay::Block:
case StyleDisplay::ListItem:
case StyleDisplay::Table:
case StyleDisplay::TableCaption:
case StyleDisplay::Flex:
case StyleDisplay::WebkitBox:
case StyleDisplay::Grid:
case StyleDisplay::FlowRoot:
case StyleDisplay::RubyTextContainer:
frameType = NS_CSS_FRAME_TYPE_BLOCK;
break;
case StyleDisplay::Inline:
case StyleDisplay::InlineBlock:
case StyleDisplay::InlineTable:
case StyleDisplay::MozInlineBox:
case StyleDisplay::MozInlineGrid:
case StyleDisplay::MozInlineStack:
case StyleDisplay::InlineFlex:
case StyleDisplay::WebkitInlineBox:
case StyleDisplay::InlineGrid:
case StyleDisplay::Ruby:
case StyleDisplay::RubyBase:
case StyleDisplay::RubyText:
case StyleDisplay::RubyBaseContainer:
frameType = NS_CSS_FRAME_TYPE_INLINE;
break;
case StyleDisplay::TableCell:
case StyleDisplay::TableRowGroup:
case StyleDisplay::TableColumn:
case StyleDisplay::TableColumnGroup:
case StyleDisplay::TableHeaderGroup:
case StyleDisplay::TableFooterGroup:
case StyleDisplay::TableRow:
frameType = NS_CSS_FRAME_TYPE_INTERNAL_TABLE;
break;
case StyleDisplay::None:
default:
frameType = NS_CSS_FRAME_TYPE_UNKNOWN;
break;
}
}
// See if the frame is replaced
if (mFrame->IsFrameOfType(nsIFrame::eReplacedContainsBlock)) {
frameType = NS_FRAME_REPLACED_CONTAINS_BLOCK(frameType);
} else if (mFrame->IsFrameOfType(nsIFrame::eReplaced)) {
frameType = NS_FRAME_REPLACED(frameType);
}
mFrameType = frameType;
}
/* static */ void ReflowInput::ComputeRelativeOffsets(
WritingMode aWM, nsIFrame* aFrame, const LogicalSize& aCBSize,
nsMargin& aComputedOffsets) {
LogicalMargin offsets(aWM);
mozilla::Side inlineStart = aWM.PhysicalSide(eLogicalSideIStart);
mozilla::Side inlineEnd = aWM.PhysicalSide(eLogicalSideIEnd);
mozilla::Side blockStart = aWM.PhysicalSide(eLogicalSideBStart);
mozilla::Side blockEnd = aWM.PhysicalSide(eLogicalSideBEnd);
const nsStylePosition* position = aFrame->StylePosition();
// Compute the 'inlineStart' and 'inlineEnd' values. 'inlineStart'
// moves the boxes to the end of the line, and 'inlineEnd' moves the
// boxes to the start of the line. The computed values are always:
// inlineStart=-inlineEnd
bool inlineStartIsAuto =
eStyleUnit_Auto == position->mOffset.GetUnit(inlineStart);
bool inlineEndIsAuto =
eStyleUnit_Auto == position->mOffset.GetUnit(inlineEnd);
// If neither 'inlineStart' nor 'inlineEnd' is auto, then we're
// over-constrained and we ignore one of them
if (!inlineStartIsAuto && !inlineEndIsAuto) {
inlineEndIsAuto = true;
}
if (inlineStartIsAuto) {
if (inlineEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.IStart(aWM) = offsets.IEnd(aWM) = 0;
} else {
// 'inlineEnd' isn't 'auto' so compute its value
offsets.IEnd(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aCBSize.ISize(aWM), position->mOffset.Get(inlineEnd));
// Computed value for 'inlineStart' is minus the value of 'inlineEnd'
offsets.IStart(aWM) = -offsets.IEnd(aWM);
}
} else {
NS_ASSERTION(inlineEndIsAuto, "unexpected specified constraint");
// 'InlineStart' isn't 'auto' so compute its value
offsets.IStart(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aCBSize.ISize(aWM), position->mOffset.Get(inlineStart));
// Computed value for 'inlineEnd' is minus the value of 'inlineStart'
offsets.IEnd(aWM) = -offsets.IStart(aWM);
}
// Compute the 'blockStart' and 'blockEnd' values. The 'blockStart'
// and 'blockEnd' properties move relatively positioned elements in
// the block progression direction. They also must be each other's
// negative
bool blockStartIsAuto =
eStyleUnit_Auto == position->mOffset.GetUnit(blockStart);
bool blockEndIsAuto = eStyleUnit_Auto == position->mOffset.GetUnit(blockEnd);
// Check for percentage based values and a containing block block-size
// that depends on the content block-size. Treat them like 'auto'
if (NS_AUTOHEIGHT == aCBSize.BSize(aWM)) {
if (position->OffsetHasPercent(blockStart)) {
blockStartIsAuto = true;
}
if (position->OffsetHasPercent(blockEnd)) {
blockEndIsAuto = true;
}
}
// If neither is 'auto', 'block-end' is ignored
if (!blockStartIsAuto && !blockEndIsAuto) {
blockEndIsAuto = true;
}
if (blockStartIsAuto) {
if (blockEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.BStart(aWM) = offsets.BEnd(aWM) = 0;
} else {
// 'blockEnd' isn't 'auto' so compute its value
offsets.BEnd(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
aCBSize.BSize(aWM), position->mOffset.Get(blockEnd));
// Computed value for 'blockStart' is minus the value of 'blockEnd'
offsets.BStart(aWM) = -offsets.BEnd(aWM);
}
} else {
NS_ASSERTION(blockEndIsAuto, "unexpected specified constraint");
// 'blockStart' isn't 'auto' so compute its value
offsets.BStart(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
aCBSize.BSize(aWM), position->mOffset.Get(blockStart));
// Computed value for 'blockEnd' is minus the value of 'blockStart'
offsets.BEnd(aWM) = -offsets.BStart(aWM);
}
// Convert the offsets to physical coordinates and store them on the frame
aComputedOffsets = offsets.GetPhysicalMargin(aWM);
nsMargin* physicalOffsets =
aFrame->GetProperty(nsIFrame::ComputedOffsetProperty());
if (physicalOffsets) {
*physicalOffsets = aComputedOffsets;
} else {
aFrame->AddProperty(nsIFrame::ComputedOffsetProperty(),
new nsMargin(aComputedOffsets));
}
}
/* static */ void ReflowInput::ApplyRelativePositioning(
nsIFrame* aFrame, const nsMargin& aComputedOffsets, nsPoint* aPosition) {
if (!aFrame->IsRelativelyPositioned()) {
NS_ASSERTION(!aFrame->GetProperty(nsIFrame::NormalPositionProperty()),
"We assume that changing the 'position' property causes "
"frame reconstruction. If that ever changes, this code "
"should call "
"aFrame->DeleteProperty(nsIFrame::NormalPositionProperty())");
return;
}
// Store the normal position
nsPoint* normalPosition =
aFrame->GetProperty(nsIFrame::NormalPositionProperty());
if (normalPosition) {
*normalPosition = *aPosition;
} else {
aFrame->AddProperty(nsIFrame::NormalPositionProperty(),
new nsPoint(*aPosition));
}
const nsStyleDisplay* display = aFrame->StyleDisplay();
if (NS_STYLE_POSITION_RELATIVE == display->mPosition) {
*aPosition += nsPoint(aComputedOffsets.left, aComputedOffsets.top);
} else if (NS_STYLE_POSITION_STICKY == display->mPosition &&
!aFrame->GetNextContinuation() && !aFrame->GetPrevContinuation() &&
!(aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT)) {
// Sticky positioning for elements with multiple frames needs to be
// computed all at once. We can't safely do that here because we might be
// partway through (re)positioning the frames, so leave it until the scroll
// container reflows and calls StickyScrollContainer::UpdatePositions.
// For single-frame sticky positioned elements, though, go ahead and apply
// it now to avoid unnecessary overflow updates later.
StickyScrollContainer* ssc =
StickyScrollContainer::GetStickyScrollContainerForFrame(aFrame);
if (ssc) {
*aPosition = ssc->ComputePosition(aFrame);
}
}
}
// Returns true if aFrame is non-null, a XUL frame, and "XUL-collapsed" (which
// only becomes a valid question to ask if we know it's a XUL frame).
static bool IsXULCollapsedXULFrame(nsIFrame* aFrame) {
return aFrame && aFrame->IsXULBoxFrame() && aFrame->IsXULCollapsed();
}
nsIFrame* ReflowInput::GetHypotheticalBoxContainer(nsIFrame* aFrame,
nscoord& aCBIStartEdge,
LogicalSize& aCBSize) const {
aFrame = aFrame->GetContainingBlock();
NS_ASSERTION(aFrame != mFrame, "How did that happen?");
/* Now aFrame is the containing block we want */
/* Check whether the containing block is currently being reflowed.
If so, use the info from the reflow input. */
const ReflowInput* reflowInput;
if (aFrame->GetStateBits() & NS_FRAME_IN_REFLOW) {
for (reflowInput = mParentReflowInput;
reflowInput && reflowInput->mFrame != aFrame;
reflowInput = reflowInput->mParentReflowInput) {
/* do nothing */
}
} else {
reflowInput = nullptr;
}
if (reflowInput) {
WritingMode wm = reflowInput->GetWritingMode();
NS_ASSERTION(wm == aFrame->GetWritingMode(), "unexpected writing mode");
aCBIStartEdge = reflowInput->ComputedLogicalBorderPadding().IStart(wm);
aCBSize = reflowInput->ComputedSize(wm);
} else {
/* Didn't find a reflow reflowInput for aFrame. Just compute the
information we want, on the assumption that aFrame already knows its
size. This really ought to be true by now. */
NS_ASSERTION(!(aFrame->GetStateBits() & NS_FRAME_IN_REFLOW),
"aFrame shouldn't be in reflow; we'll lie if it is");
WritingMode wm = aFrame->GetWritingMode();
// Compute CB's offset & content-box size by subtracting borderpadding from
// frame size. Exception: if the CB is 0-sized, it *might* be a child of a
// XUL-collapsed frame and might have nonzero borderpadding that was simply
// discarded during its layout. (See the child-zero-sizing in
// nsSprocketLayout::XULLayout()). In that case, we ignore the
// borderpadding here (just like we did when laying it out), or else we'd
// produce a bogus negative content-box size.
aCBIStartEdge = 0;
aCBSize = aFrame->GetLogicalSize(wm);
if (!aCBSize.IsAllZero() ||
(!IsXULCollapsedXULFrame(aFrame->GetParent()))) {
// aFrame is not XUL-collapsed (nor is it a child of a XUL-collapsed
// frame), so we can go ahead and subtract out border padding.
LogicalMargin borderPadding = aFrame->GetLogicalUsedBorderAndPadding(wm);
aCBIStartEdge += borderPadding.IStart(wm);
aCBSize -= borderPadding.Size(wm);
}
}
return aFrame;
}
struct nsHypotheticalPosition {
// offset from inline-start edge of containing block (which is a padding edge)
nscoord mIStart;
// offset from block-start edge of containing block (which is a padding edge)
nscoord mBStart;
WritingMode mWritingMode;
};
static bool GetIntrinsicSizeFor(nsIFrame* aFrame, nsSize& aIntrinsicSize,
LayoutFrameType aFrameType) {
// See if it is an image frame
bool success = false;
// Currently the only type of replaced frame that we can get the intrinsic
// size for is an image frame
// XXX We should add back the GetReflowOutput() function and one of the
// things should be the intrinsic size...
if (aFrameType == LayoutFrameType::Image) {
nsImageFrame* imageFrame = (nsImageFrame*)aFrame;
if (NS_SUCCEEDED(imageFrame->GetIntrinsicImageSize(aIntrinsicSize))) {
success = (aIntrinsicSize != nsSize(0, 0));
}
}
return success;
}
/**
* aInsideBoxSizing returns the part of the padding, border, and margin
* in the aAxis dimension that goes inside the edge given by box-sizing;
* aOutsideBoxSizing returns the rest.
*/
void ReflowInput::CalculateBorderPaddingMargin(
LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing,
nscoord* aOutsideBoxSizing) const {
WritingMode wm = GetWritingMode();
mozilla::Side startSide =
wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeStart));
mozilla::Side endSide =
wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeEnd));
nsMargin styleBorder = mStyleBorder->GetComputedBorder();
nscoord borderStartEnd =
styleBorder.Side(startSide) + styleBorder.Side(endSide);
nscoord paddingStartEnd, marginStartEnd;
// See if the style system can provide us the padding directly
nsMargin stylePadding;
if (mStylePadding->GetPadding(stylePadding)) {
paddingStartEnd = stylePadding.Side(startSide) + stylePadding.Side(endSide);
} else {
// We have to compute the start and end values
nscoord start, end;
start = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStylePadding->mPadding.Get(startSide));
end = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStylePadding->mPadding.Get(endSide));
paddingStartEnd = start + end;
}
// See if the style system can provide us the margin directly
nsMargin styleMargin;
if (mStyleMargin->GetMargin(styleMargin)) {
marginStartEnd = styleMargin.Side(startSide) + styleMargin.Side(endSide);
} else {
nscoord start, end;
// We have to compute the start and end values
if (eStyleUnit_Auto == mStyleMargin->mMargin.GetUnit(startSide)) {
// We set this to 0 for now, and fix it up later in
// InitAbsoluteConstraints (which is caller of this function, via
// CalculateHypotheticalPosition).
start = 0;
} else {
start = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStyleMargin->mMargin.Get(startSide));
}
if (eStyleUnit_Auto == mStyleMargin->mMargin.GetUnit(endSide)) {
// We set this to 0 for now, and fix it up later in
// InitAbsoluteConstraints (which is caller of this function, via
// CalculateHypotheticalPosition).
end = 0;
} else {
end = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStyleMargin->mMargin.Get(endSide));
}
marginStartEnd = start + end;
}
nscoord outside = paddingStartEnd + borderStartEnd + marginStartEnd;
nscoord inside = 0;
if (mStylePosition->mBoxSizing == StyleBoxSizing::Border) {
inside = borderStartEnd + paddingStartEnd;
}
outside -= inside;
*aInsideBoxSizing = inside;
*aOutsideBoxSizing = outside;
}
/**
* Returns true iff a pre-order traversal of the normal child
* frames rooted at aFrame finds no non-empty frame before aDescendant.
*/
static bool AreAllEarlierInFlowFramesEmpty(nsIFrame* aFrame,
nsIFrame* aDescendant,
bool* aFound) {
if (aFrame == aDescendant) {
*aFound = true;
return true;
}
if (aFrame->IsPlaceholderFrame()) {
auto ph = static_cast<nsPlaceholderFrame*>(aFrame);
MOZ_ASSERT(ph->IsSelfEmpty() && ph->PrincipalChildList().IsEmpty());
ph->SetLineIsEmptySoFar(true);
} else {
if (!aFrame->IsSelfEmpty()) {
*aFound = false;
return false;
}
for (nsIFrame* f : aFrame->PrincipalChildList()) {
bool allEmpty = AreAllEarlierInFlowFramesEmpty(f, aDescendant, aFound);
if (*aFound || !allEmpty) {
return allEmpty;
}
}
}
*aFound = false;
return true;
}
// Calculate the position of the hypothetical box that the element would have
// if it were in the flow.
// The values returned are relative to the padding edge of the absolute
// containing block. The writing-mode of the hypothetical box position will
// have the same block direction as the absolute containing block, but may
// differ in inline-bidi direction.
// In the code below, |aCBReflowInput->frame| is the absolute containing block,
// while |containingBlock| is the nearest block container of the placeholder
// frame, which may be different from the absolute containing block.
void ReflowInput::CalculateHypotheticalPosition(
nsPresContext* aPresContext, nsPlaceholderFrame* aPlaceholderFrame,
const ReflowInput* aCBReflowInput, nsHypotheticalPosition& aHypotheticalPos,
LayoutFrameType aFrameType) const {
NS_ASSERTION(mStyleDisplay->mOriginalDisplay != StyleDisplay::None,
"mOriginalDisplay has not been properly initialized");
// Find the nearest containing block frame to the placeholder frame,
// and its inline-start edge and width.
nscoord blockIStartContentEdge;
// Dummy writing mode for blockContentSize, will be changed as needed by
// GetHypotheticalBoxContainer.
WritingMode cbwm = aCBReflowInput->GetWritingMode();
LogicalSize blockContentSize(cbwm);
nsIFrame* containingBlock = GetHypotheticalBoxContainer(
aPlaceholderFrame, blockIStartContentEdge, blockContentSize);
// Now blockContentSize is in containingBlock's writing mode.
// If it's a replaced element and it has a 'auto' value for
//'inline size', see if we can get the intrinsic size. This will allow
// us to exactly determine both the inline edges
WritingMode wm = containingBlock->GetWritingMode();
nsStyleCoord styleISize = mStylePosition->ISize(wm);
bool isAutoISize = styleISize.GetUnit() == eStyleUnit_Auto;
nsSize intrinsicSize;
bool knowIntrinsicSize = false;
if (NS_FRAME_IS_REPLACED(mFrameType) && isAutoISize) {
// See if we can get the intrinsic size of the element
knowIntrinsicSize = GetIntrinsicSizeFor(mFrame, intrinsicSize, aFrameType);
}
// See if we can calculate what the box inline size would have been if
// the element had been in the flow
nscoord boxISize;
bool knowBoxISize = false;
if ((StyleDisplay::Inline == mStyleDisplay->mOriginalDisplay) &&
!NS_FRAME_IS_REPLACED(mFrameType)) {
// For non-replaced inline-level elements the 'inline size' property
// doesn't apply, so we don't know what the inline size would have
// been without reflowing it
} else {
// It's either a replaced inline-level element or a block-level element
// Determine the total amount of inline direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values
nscoord insideBoxSizing, outsideBoxSizing;
CalculateBorderPaddingMargin(eLogicalAxisInline, blockContentSize.ISize(wm),
&insideBoxSizing, &outsideBoxSizing);
if (NS_FRAME_IS_REPLACED(mFrameType) && isAutoISize) {
// It's a replaced element with an 'auto' inline size so the box
// inline size is its intrinsic size plus any border/padding/margin
if (knowIntrinsicSize) {
boxISize = LogicalSize(wm, intrinsicSize).ISize(wm) + outsideBoxSizing +
insideBoxSizing;
knowBoxISize = true;
}
} else if (isAutoISize) {
// The box inline size is the containing block inline size
boxISize = blockContentSize.ISize(wm);
knowBoxISize = true;
} else {
// We need to compute it. It's important we do this, because if it's
// percentage based this computed value may be different from the computed
// value calculated using the absolute containing block width
boxISize = ComputeISizeValue(blockContentSize.ISize(wm), insideBoxSizing,
outsideBoxSizing, styleISize) +
insideBoxSizing + outsideBoxSizing;
knowBoxISize = true;
}
}
// Get the placeholder x-offset and y-offset in the coordinate
// space of its containing block
// XXXbz the placeholder is not fully reflowed yet if our containing block is
// relatively positioned...
nsSize containerSize =
containingBlock->GetStateBits() & NS_FRAME_IN_REFLOW
? aCBReflowInput->ComputedSizeAsContainerIfConstrained()
: containingBlock->GetSize();
LogicalPoint placeholderOffset(
wm, aPlaceholderFrame->GetOffsetToIgnoringScrolling(containingBlock),
containerSize);
// First, determine the hypothetical box's mBStart. We want to check the
// content insertion frame of containingBlock for block-ness, but make
// sure to compute all coordinates in the coordinate system of
// containingBlock.
nsBlockFrame* blockFrame =
nsLayoutUtils::GetAsBlock(containingBlock->GetContentInsertionFrame());
if (blockFrame) {
// Use a null containerSize to convert a LogicalPoint functioning as a
// vector into a physical nsPoint vector.
const nsSize nullContainerSize;
LogicalPoint blockOffset(
wm, blockFrame->GetOffsetToIgnoringScrolling(containingBlock),
nullContainerSize);
bool isValid;
nsBlockInFlowLineIterator iter(blockFrame, aPlaceholderFrame, &isValid);
if (!isValid) {
// Give up. We're probably dealing with somebody using
// position:absolute inside native-anonymous content anyway.
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
} else {
NS_ASSERTION(iter.GetContainer() == blockFrame,
"Found placeholder in wrong block!");
nsBlockFrame::LineIterator lineBox = iter.GetLine();
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
LogicalRect lineBounds = lineBox->GetBounds().ConvertTo(
wm, lineBox->mWritingMode, lineBox->mContainerSize);
if (mStyleDisplay->IsOriginalDisplayInlineOutsideStyle()) {
// Use the block-start of the inline box which the placeholder lives in
// as the hypothetical box's block-start.
aHypotheticalPos.mBStart = lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The element would have been block-level which means it would
// be below the line containing the placeholder frame, unless
// all the frames before it are empty. In that case, it would
// have been just before this line.
// XXXbz the line box is not fully reflowed yet if our
// containing block is relatively positioned...
if (lineBox != iter.End()) {
nsIFrame* firstFrame = lineBox->mFirstChild;
bool allEmpty = false;
if (firstFrame == aPlaceholderFrame) {
aPlaceholderFrame->SetLineIsEmptySoFar(true);
allEmpty = true;
} else {
auto prev = aPlaceholderFrame->GetPrevSibling();
if (prev && prev->IsPlaceholderFrame()) {
auto ph = static_cast<nsPlaceholderFrame*>(prev);
if (ph->GetLineIsEmptySoFar(&allEmpty)) {
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
}
}
}
if (!allEmpty) {
bool found = false;
while (firstFrame) { // See bug 223064
allEmpty = AreAllEarlierInFlowFramesEmpty(
firstFrame, aPlaceholderFrame, &found);
if (found || !allEmpty) {
break;
}
firstFrame = firstFrame->GetNextSibling();
}
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
}
NS_ASSERTION(firstFrame, "Couldn't find placeholder!");
if (allEmpty) {
// The top of the hypothetical box is the top of the line
// containing the placeholder, since there is nothing in the
// line before our placeholder except empty frames.
aHypotheticalPos.mBStart =
lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The top of the hypothetical box is just below the line
// containing the placeholder.
aHypotheticalPos.mBStart = lineBounds.BEnd(wm) + blockOffset.B(wm);
}
} else {
// Just use the placeholder's block-offset wrt the containing block
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
}
}
} else {
// The containing block is not a block, so it's probably something
// like a XUL box, etc.
// Just use the placeholder's block-offset
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
// Second, determine the hypothetical box's mIStart.
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
if (mStyleDisplay->IsOriginalDisplayInlineOutsideStyle() ||
mFlags.mIOffsetsNeedCSSAlign) {
// The placeholder represents the IStart edge of the hypothetical box.
// (Or if mFlags.mIOffsetsNeedCSSAlign is set, it represents the IStart
// edge of the Alignment Container.)
aHypotheticalPos.mIStart = placeholderOffset.I(wm);
} else {
aHypotheticalPos.mIStart = blockIStartContentEdge;
}
// The current coordinate space is that of the nearest block to the
// placeholder. Convert to the coordinate space of the absolute containing
// block.
nsPoint cbOffset =
containingBlock->GetOffsetToIgnoringScrolling(aCBReflowInput->mFrame);
nsSize reflowSize = aCBReflowInput->ComputedSizeAsContainerIfConstrained();
LogicalPoint logCBOffs(wm, cbOffset, reflowSize - containerSize);
aHypotheticalPos.mIStart += logCBOffs.I(wm);
aHypotheticalPos.mBStart += logCBOffs.B(wm);
// The specified offsets are relative to the absolute containing block's
// padding edge and our current values are relative to the border edge, so
// translate.
LogicalMargin border = aCBReflowInput->ComputedLogicalBorderPadding() -
aCBReflowInput->ComputedLogicalPadding();
border = border.ConvertTo(wm, aCBReflowInput->GetWritingMode());
aHypotheticalPos.mIStart -= border.IStart(wm);
aHypotheticalPos.mBStart -= border.BStart(wm);
// At this point, we have computed aHypotheticalPos using the writing mode
// of the placeholder's containing block.
if (cbwm.GetBlockDir() != wm.GetBlockDir()) {
// If the block direction we used in calculating aHypotheticalPos does not
// match the absolute containing block's, we need to convert here so that
// aHypotheticalPos is usable in relation to the absolute containing block.
// This requires computing or measuring the abspos frame's block-size,
// which is not otherwise required/used here (as aHypotheticalPos
// records only the block-start coordinate).
// This is similar to the inline-size calculation for a replaced
// inline-level element or a block-level element (above), except that
// 'auto' sizing is handled differently in the block direction for non-
// replaced elements and replaced elements lacking an intrinsic size.
// Determine the total amount of block direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values.
nscoord insideBoxSizing, outsideBoxSizing;
CalculateBorderPaddingMargin(eLogicalAxisBlock, blockContentSize.BSize(wm),
&insideBoxSizing, &outsideBoxSizing);
nscoord boxBSize;
nsStyleCoord styleBSize = mStylePosition->BSize(wm);
if (styleBSize.IsAutoOrEnum()) {
if (NS_FRAME_IS_REPLACED(mFrameType) && knowIntrinsicSize) {
// It's a replaced element with an 'auto' block size so the box
// block size is its intrinsic size plus any border/padding/margin
boxBSize = LogicalSize(wm, intrinsicSize).BSize(wm) + outsideBoxSizing +
insideBoxSizing;
} else {
// XXX Bug 1191801
// Figure out how to get the correct boxBSize here (need to reflow the
// positioned frame?)
boxBSize = 0;
}
} else {
// We need to compute it. It's important we do this, because if it's
// percentage-based this computed value may be different from the
// computed value calculated using the absolute containing block height.
boxBSize = nsLayoutUtils::ComputeBSizeValue(blockContentSize.BSize(wm),
insideBoxSizing, styleBSize) +
insideBoxSizing + outsideBoxSizing;
}
LogicalSize boxSize(wm, knowBoxISize ? boxISize : 0, boxBSize);
LogicalPoint origin(wm, aHypotheticalPos.mIStart, aHypotheticalPos.mBStart);
origin =
origin.ConvertTo(cbwm, wm, reflowSize - boxSize.GetPhysicalSize(wm));
aHypotheticalPos.mIStart = origin.I(cbwm);
aHypotheticalPos.mBStart = origin.B(cbwm);
aHypotheticalPos.mWritingMode = cbwm;
} else {
aHypotheticalPos.mWritingMode = wm;
}
}
void ReflowInput::InitAbsoluteConstraints(nsPresContext* aPresContext,
const ReflowInput* aCBReflowInput,
const LogicalSize& aCBSize,
LayoutFrameType aFrameType) {
WritingMode wm = GetWritingMode();
WritingMode cbwm = aCBReflowInput->GetWritingMode();
NS_WARNING_ASSERTION(aCBSize.BSize(cbwm) != NS_AUTOHEIGHT,
"containing block bsize must be constrained");
NS_ASSERTION(aFrameType != LayoutFrameType::Table,
"InitAbsoluteConstraints should not be called on table frames");
NS_ASSERTION(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW,
"Why are we here?");
const auto& styleOffset = mStylePosition->mOffset;
bool iStartIsAuto = styleOffset.GetIStartUnit(cbwm) == eStyleUnit_Auto;
bool iEndIsAuto = styleOffset.GetIEndUnit(cbwm) == eStyleUnit_Auto;
bool bStartIsAuto = styleOffset.GetBStartUnit(cbwm) == eStyleUnit_Auto;
bool bEndIsAuto = styleOffset.GetBEndUnit(cbwm) == eStyleUnit_Auto;
// If both 'left' and 'right' are 'auto' or both 'top' and 'bottom' are
// 'auto', then compute the hypothetical box position where the element would
// have been if it had been in the flow
nsHypotheticalPosition hypotheticalPos;
if ((iStartIsAuto && iEndIsAuto) || (bStartIsAuto && bEndIsAuto)) {
nsPlaceholderFrame* placeholderFrame = mFrame->GetPlaceholderFrame();
MOZ_ASSERT(placeholderFrame, "no placeholder frame");
if (placeholderFrame->HasAnyStateBits(
PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN)) {
DebugOnly<nsIFrame*> placeholderParent = placeholderFrame->GetParent();
MOZ_ASSERT(placeholderParent, "shouldn't have unparented placeholders");
MOZ_ASSERT(placeholderParent->IsFlexOrGridContainer(),
"This flag should only be set on grid/flex children");
// If the (as-yet unknown) static position will determine the inline
// and/or block offsets, set flags to note those offsets aren't valid
// until we can do CSS Box Alignment on the OOF frame.
mFlags.mIOffsetsNeedCSSAlign = (iStartIsAuto && iEndIsAuto);
mFlags.mBOffsetsNeedCSSAlign = (bStartIsAuto && bEndIsAuto);
}
if (mFlags.mStaticPosIsCBOrigin) {
hypotheticalPos.mWritingMode = cbwm;
hypotheticalPos.mIStart = nscoord(0);
hypotheticalPos.mBStart = nscoord(0);
} else {
// XXXmats all this is broken for orthogonal writing-modes: bug 1521988.
CalculateHypotheticalPosition(aPresContext, placeholderFrame,
aCBReflowInput, hypotheticalPos,
aFrameType);
if (aCBReflowInput->mFrame->IsGridContainerFrame()) {
// 'hypotheticalPos' is relative to the padding rect of the CB *frame*.
// In grid layout the CB is the grid area rectangle, so we translate
// 'hypotheticalPos' to be relative that rectangle here.
nsRect cb = nsGridContainerFrame::GridItemCB(mFrame);
nscoord left(0);
nscoord right(0);
if (cbwm.IsBidiLTR()) {
left = cb.X();
} else {
right = aCBReflowInput->ComputedWidth() +
aCBReflowInput->ComputedPhysicalPadding().LeftRight() -
cb.XMost();
}
LogicalMargin offsets(cbwm, nsMargin(cb.Y(), right, nscoord(0), left));
hypotheticalPos.mIStart -= offsets.IStart(cbwm);
hypotheticalPos.mBStart -= offsets.BStart(cbwm);
}
}
}
// Initialize the 'left' and 'right' computed offsets
// XXX Handle new 'static-position' value...
// Size of the containing block in its writing mode
LogicalSize cbSize = aCBSize;
LogicalMargin offsets = ComputedLogicalOffsets().ConvertTo(cbwm, wm);
if (iStartIsAuto) {
offsets.IStart(cbwm) = 0;
} else {
offsets.IStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
cbSize.ISize(cbwm), styleOffset.GetIStart(cbwm));
}
if (iEndIsAuto) {
offsets.IEnd(cbwm) = 0;
} else {
offsets.IEnd(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
cbSize.ISize(cbwm), styleOffset.GetIEnd(cbwm));
}
if (iStartIsAuto && iEndIsAuto) {
if (cbwm.IsBidiLTR() != hypotheticalPos.mWritingMode.IsBidiLTR()) {
offsets.IEnd(cbwm) = hypotheticalPos.mIStart;
iEndIsAuto = false;
} else {
offsets.IStart(cbwm) = hypotheticalPos.mIStart;
iStartIsAuto = false;
}
}
if (bStartIsAuto) {
offsets.BStart(cbwm) = 0;
} else {
offsets.BStart(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
cbSize.BSize(cbwm), styleOffset.GetBStart(cbwm));
}
if (bEndIsAuto) {
offsets.BEnd(cbwm) = 0;
} else {
offsets.BEnd(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
cbSize.BSize(cbwm), styleOffset.GetBEnd(cbwm));
}
if (bStartIsAuto && bEndIsAuto) {
// Treat 'top' like 'static-position'
offsets.BStart(cbwm) = hypotheticalPos.mBStart;
bStartIsAuto = false;
}
SetComputedLogicalOffsets(offsets.ConvertTo(wm, cbwm));
typedef nsIFrame::ComputeSizeFlags ComputeSizeFlags;
ComputeSizeFlags computeSizeFlags = ComputeSizeFlags::eDefault;
if (mFlags.mIClampMarginBoxMinSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eIClampMarginBoxMinSize);
}
if (mFlags.mBClampMarginBoxMinSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eBClampMarginBoxMinSize);
}
if (mFlags.mApplyAutoMinSize) {
computeSizeFlags = ComputeSizeFlags(computeSizeFlags |
ComputeSizeFlags::eIApplyAutoMinSize);
}
if (mFlags.mShrinkWrap) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
if (mFlags.mUseAutoBSize) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eUseAutoBSize);
}
if (wm.IsOrthogonalTo(cbwm)) {
if (bStartIsAuto || bEndIsAuto) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
} else {
if (iStartIsAuto || iEndIsAuto) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
}
LogicalSize computedSize(wm);
{
AutoMaybeDisableFontInflation an(mFrame);
computedSize = mFrame->ComputeSize(
mRenderingContext, wm, cbSize.ConvertTo(wm, cbwm),
cbSize.ConvertTo(wm, cbwm).ISize(wm), // XXX or AvailableISize()?
ComputedLogicalMargin().Size(wm) + ComputedLogicalOffsets().Size(wm),
ComputedLogicalBorderPadding().Size(wm) -
ComputedLogicalPadding().Size(wm),
ComputedLogicalPadding().Size(wm), computeSizeFlags);
ComputedISize() = computedSize.ISize(wm);
ComputedBSize() = computedSize.BSize(wm);
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
NS_ASSERTION(
ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
"Bogus block-size");
}
computedSize = computedSize.ConvertTo(cbwm, wm);
// XXX Now that we have ComputeSize, can we condense many of the
// branches off of widthIsAuto?
LogicalMargin margin = ComputedLogicalMargin().ConvertTo(cbwm, wm);
const LogicalMargin borderPadding =
ComputedLogicalBorderPadding().ConvertTo(cbwm, wm);
bool iSizeIsAuto = eStyleUnit_Auto == mStylePosition->ISize(cbwm).GetUnit();
bool marginIStartIsAuto = false;
bool marginIEndIsAuto = false;
bool marginBStartIsAuto = false;
bool marginBEndIsAuto = false;
if (iStartIsAuto) {
// We know 'right' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'left'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IStart(cbwm) = cbSize.ISize(cbwm) - offsets.IEnd(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else if (iEndIsAuto) {
// We know 'left' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'right'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IEnd(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IEnd(cbwm) = cbSize.ISize(cbwm) - offsets.IStart(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else {
// Neither 'inline-start' nor 'inline-end' is 'auto'.
if (wm.IsOrthogonalTo(cbwm)) {
// For orthogonal blocks, we need to handle the case where the block had
// unconstrained block-size, which mapped to unconstrained inline-size
// in the containing block's writing mode.
nscoord autoISize = cbSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm) -
offsets.IStartEnd(cbwm);
if (autoISize < 0) {
autoISize = 0;
}
if (computedSize.ISize(cbwm) == NS_UNCONSTRAINEDSIZE) {
// For non-replaced elements with block-size auto, the block-size
// fills the remaining space.
computedSize.ISize(cbwm) = autoISize;
// XXX Do these need box-sizing adjustments?
LogicalSize maxSize = ComputedMaxSize(cbwm);
LogicalSize minSize = ComputedMinSize(cbwm);
if (computedSize.ISize(cbwm) > maxSize.ISize(cbwm)) {
computedSize.ISize(cbwm) = maxSize.ISize(cbwm);
}
if (computedSize.ISize(cbwm) < minSize.ISize(cbwm)) {
computedSize.ISize(cbwm) = minSize.ISize(cbwm);
}
}
}
// However, the inline-size might
// still not fill all the available space (even though we didn't
// shrink-wrap) in case:
// * inline-size was specified
// * we're dealing with a replaced element
// * width was constrained by min- or max-inline-size.
nscoord availMarginSpace =
aCBSize.ISize(cbwm) - offsets.IStartEnd(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm) - computedSize.ISize(cbwm);
marginIStartIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetIStartUnit(cbwm);
marginIEndIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetIEndUnit(cbwm);
if (marginIStartIsAuto) {
if (marginIEndIsAuto) {
if (availMarginSpace < 0) {
// Note that this case is different from the neither-'auto'
// case below, where the spec says to ignore 'left'/'right'.
// Ignore the specified value for 'margin-right'.
margin.IEnd(cbwm) = availMarginSpace;
} else {
// Both 'margin-left' and 'margin-right' are 'auto', so they get
// equal values
margin.IStart(cbwm) = availMarginSpace / 2;
margin.IEnd(cbwm) = availMarginSpace - margin.IStart(cbwm);
}
} else {
// Just 'margin-left' is 'auto'
margin.IStart(cbwm) = availMarginSpace;
}
} else {
if (marginIEndIsAuto) {
// Just 'margin-right' is 'auto'
margin.IEnd(cbwm) = availMarginSpace;
} else {
// We're over-constrained so use the direction of the containing
// block to dictate which value to ignore. (And note that the
// spec says to ignore 'left' or 'right' rather than
// 'margin-left' or 'margin-right'.)
// Note that this case is different from the both-'auto' case
// above, where the spec says to ignore
// 'margin-left'/'margin-right'.
// Ignore the specified value for 'right'.
offsets.IEnd(cbwm) += availMarginSpace;
}
}
}
bool bSizeIsAuto = mStylePosition->BSize(cbwm).IsAutoOrEnum();
if (bStartIsAuto) {
// solve for block-start
if (bSizeIsAuto) {
offsets.BStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.BStart(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) -
computedSize.BSize(cbwm) - offsets.BEnd(cbwm);
}
} else if (bEndIsAuto) {
// solve for block-end
if (bSizeIsAuto) {
offsets.BEnd(cbwm) = NS_AUTOOFFSET;
} else {
offsets.BEnd(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) -
computedSize.BSize(cbwm) - offsets.BStart(cbwm);
}
} else {
// Neither block-start nor -end is 'auto'.
nscoord autoBSize = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) - offsets.BStartEnd(cbwm);
if (autoBSize < 0) {
autoBSize = 0;
}
if (computedSize.BSize(cbwm) == NS_UNCONSTRAINEDSIZE) {
// For non-replaced elements with block-size auto, the block-size
// fills the remaining space.
computedSize.BSize(cbwm) = autoBSize;
// XXX Do these need box-sizing adjustments?
LogicalSize maxSize = ComputedMaxSize(cbwm);
LogicalSize minSize = ComputedMinSize(cbwm);
if (computedSize.BSize(cbwm) > maxSize.BSize(cbwm)) {
computedSize.BSize(cbwm) = maxSize.BSize(cbwm);
}
if (computedSize.BSize(cbwm) < minSize.BSize(cbwm)) {
computedSize.BSize(cbwm) = minSize.BSize(cbwm);
}
}
// The block-size might still not fill all the available space in case:
// * bsize was specified
// * we're dealing with a replaced element
// * bsize was constrained by min- or max-bsize.
nscoord availMarginSpace = autoBSize - computedSize.BSize(cbwm);
marginBStartIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetBStartUnit(cbwm);
marginBEndIsAuto =
eStyleUnit_Auto == mStyleMargin->mMargin.GetBEndUnit(cbwm);
if (marginBStartIsAuto) {
if (marginBEndIsAuto) {
// Both 'margin-top' and 'margin-bottom' are 'auto', so they get
// equal values
margin.BStart(cbwm) = availMarginSpace / 2;
margin.BEnd(cbwm) = availMarginSpace - margin.BStart(cbwm);
} else {
// Just margin-block-start is 'auto'
margin.BStart(cbwm) = availMarginSpace;
}
} else {
if (marginBEndIsAuto) {
// Just margin-block-end is 'auto'
margin.BEnd(cbwm) = availMarginSpace;
} else {
// We're over-constrained so ignore the specified value for
// block-end. (And note that the spec says to ignore 'bottom'
// rather than 'margin-bottom'.)
offsets.BEnd(cbwm) += availMarginSpace;
}
}
}
ComputedBSize() = computedSize.ConvertTo(wm, cbwm).BSize(wm);
ComputedISize() = computedSize.ConvertTo(wm, cbwm).ISize(wm);
SetComputedLogicalOffsets(offsets.ConvertTo(wm, cbwm));
LogicalMargin marginInOurWM = margin.ConvertTo(wm, cbwm);
SetComputedLogicalMargin(marginInOurWM);
// If we have auto margins, update our UsedMarginProperty. The property
// will have already been created by InitOffsets if it is needed.
if (marginIStartIsAuto || marginIEndIsAuto || marginBStartIsAuto ||
marginBEndIsAuto) {
nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
MOZ_ASSERT(propValue,
"UsedMarginProperty should have been created "
"by InitOffsets.");
*propValue = marginInOurWM.GetPhysicalMargin(wm);
}
}
// This will not be converted to abstract coordinates because it's only
// used in CalcQuirkContainingBlockHeight
static nscoord GetBlockMarginBorderPadding(const ReflowInput* aReflowInput) {
nscoord result = 0;
if (!aReflowInput) return result;
// zero auto margins
nsMargin margin = aReflowInput->ComputedPhysicalMargin();
if (NS_AUTOMARGIN == margin.top) margin.top = 0;
if (NS_AUTOMARGIN == margin.bottom) margin.bottom = 0;
result += margin.top + margin.bottom;
result += aReflowInput->ComputedPhysicalBorderPadding().top +
aReflowInput->ComputedPhysicalBorderPadding().bottom;
return result;
}
/* Get the height based on the viewport of the containing block specified
* in aReflowInput when the containing block has mComputedHeight ==
* NS_AUTOHEIGHT This will walk up the chain of containing blocks looking for a
* computed height until it finds the canvas frame, or it encounters a frame
* that is not a block, area, or scroll frame. This handles compatibility with
* IE (see bug 85016 and bug 219693)
*
* When we encounter scrolledContent block frames, we skip over them,
* since they are guaranteed to not be useful for computing the containing
* block.
*
* See also IsQuirkContainingBlockHeight.
*/
static nscoord CalcQuirkContainingBlockHeight(
const ReflowInput* aCBReflowInput) {
const ReflowInput* firstAncestorRI = nullptr; // a candidate for html frame
const ReflowInput* secondAncestorRI = nullptr; // a candidate for body frame
// initialize the default to NS_AUTOHEIGHT as this is the containings block
// computed height when this function is called. It is possible that we
// don't alter this height especially if we are restricted to one level
nscoord result = NS_AUTOHEIGHT;
const ReflowInput* ri = aCBReflowInput;
for (; ri; ri = ri->mParentReflowInput) {
LayoutFrameType frameType = ri->mFrame->Type();
// if the ancestor is auto height then skip it and continue up if it
// is the first block frame and possibly the body/html
if (LayoutFrameType::Block == frameType ||
#ifdef MOZ_XUL
LayoutFrameType::XULLabel == frameType ||
#endif
LayoutFrameType::Scroll == frameType) {
secondAncestorRI = firstAncestorRI;
firstAncestorRI = ri;
// If the current frame we're looking at is positioned, we don't want to
// go any further (see bug 221784). The behavior we want here is: 1) If
// not auto-height, use this as the percentage base. 2) If auto-height,
// keep looking, unless the frame is positioned.
if (NS_AUTOHEIGHT == ri->ComputedHeight()) {
if (ri->mFrame->IsAbsolutelyPositioned(ri->mStyleDisplay)) {
break;
} else {
continue;
}
}
} else if (LayoutFrameType::Canvas == frameType) {
// Always continue on to the height calculation
} else if (LayoutFrameType::PageContent == frameType) {
nsIFrame* prevInFlow = ri->mFrame->GetPrevInFlow();
// only use the page content frame for a height basis if it is the first
// in flow
if (prevInFlow) break;
} else {
break;
}
// if the ancestor is the page content frame then the percent base is
// the avail height, otherwise it is the computed height
result = (LayoutFrameType::PageContent == frameType) ? ri->AvailableHeight()
: ri->ComputedHeight();
// if unconstrained - don't sutract borders - would result in huge height
if (NS_AUTOHEIGHT == result) return result;
// if we got to the canvas or page content frame, then subtract out
// margin/border/padding for the BODY and HTML elements
if ((LayoutFrameType::Canvas == frameType) ||
(LayoutFrameType::PageContent == frameType)) {
result -= GetBlockMarginBorderPadding(firstAncestorRI);
result -= GetBlockMarginBorderPadding(secondAncestorRI);
#ifdef DEBUG
// make sure the first ancestor is the HTML and the second is the BODY
if (firstAncestorRI) {
nsIContent* frameContent = firstAncestorRI->mFrame->GetContent();
if (frameContent) {
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::html),
"First ancestor is not HTML");
}
}
if (secondAncestorRI) {
nsIContent* frameContent = secondAncestorRI->mFrame->GetContent();
if (frameContent) {
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::body),
"Second ancestor is not BODY");
}
}
#endif
}
// if we got to the html frame (a block child of the canvas) ...
else if (LayoutFrameType::Block == frameType && ri->mParentReflowInput &&
ri->mParentReflowInput->mFrame->IsCanvasFrame()) {
// ... then subtract out margin/border/padding for the BODY element
result -= GetBlockMarginBorderPadding(secondAncestorRI);
}
break;
}
// Make sure not to return a negative height here!
return std::max(result, 0);
}
// Called by InitConstraints() to compute the containing block rectangle for
// the element. Handles the special logic for absolutely positioned elements
LogicalSize ReflowInput::ComputeContainingBlockRectangle(
nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const {
// Unless the element is absolutely positioned, the containing block is
// formed by the content edge of the nearest block-level ancestor
LogicalSize cbSize = aContainingBlockRI->ComputedSize();
WritingMode wm = aContainingBlockRI->GetWritingMode();
// mFrameType for abs-pos tables is NS_CSS_FRAME_TYPE_BLOCK, so we need to
// special case them here.
if (NS_FRAME_GET_TYPE(mFrameType) == NS_CSS_FRAME_TYPE_ABSOLUTE ||
(mFrame->IsTableFrame() &&
mFrame->IsAbsolutelyPositioned(mStyleDisplay) &&
(mFrame->GetParent()->GetStateBits() & NS_FRAME_OUT_OF_FLOW))) {
// See if the ancestor is block-level or inline-level
if (NS_FRAME_GET_TYPE(aContainingBlockRI->mFrameType) ==
NS_CSS_FRAME_TYPE_INLINE) {
// Base our size on the actual size of the frame. In cases when this is
// completely bogus (eg initial reflow), this code shouldn't even be
// called, since the code in nsInlineFrame::Reflow will pass in
// the containing block dimensions to our constructor.
// XXXbz we should be taking the in-flows into account too, but
// that's very hard.
LogicalMargin computedBorder =
aContainingBlockRI->ComputedLogicalBorderPadding() -
aContainingBlockRI->ComputedLogicalPadding();
cbSize.ISize(wm) =
aContainingBlockRI->mFrame->ISize(wm) - computedBorder.IStartEnd(wm);
NS_ASSERTION(cbSize.ISize(wm) >= 0, "Negative containing block isize!");
cbSize.BSize(wm) =
aContainingBlockRI->mFrame->BSize(wm) - computedBorder.BStartEnd(wm);
NS_ASSERTION(cbSize.BSize(wm) >= 0, "Negative containing block bsize!");
} else {
// If the ancestor is block-level, the containing block is formed by the
// padding edge of the ancestor
cbSize.ISize(wm) +=
aContainingBlockRI->ComputedLogicalPadding().IStartEnd(wm);
cbSize.BSize(wm) +=
aContainingBlockRI->ComputedLogicalPadding().BStartEnd(wm);
}
} else {
// an element in quirks mode gets a containing block based on looking for a
// parent with a non-auto height if the element has a percent height
// Note: We don't emulate this quirk for percents in calc() or in
// vertical writing modes.
if (!wm.IsVertical() && NS_AUTOHEIGHT == cbSize.BSize(wm)) {
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
(mStylePosition->mHeight.GetUnit() == eStyleUnit_Percent ||
(mFrame->IsTableWrapperFrame() &&
mFrame->PrincipalChildList()
.FirstChild()
->StylePosition()
->mHeight.GetUnit() == eStyleUnit_Percent))) {
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(aContainingBlockRI);
}
}
}
return cbSize.ConvertTo(GetWritingMode(), wm);
}
static eNormalLineHeightControl GetNormalLineHeightCalcControl(void) {
if (sNormalLineHeightControl == eUninitialized) {
// browser.display.normal_lineheight_calc_control is not user
// changeable, so no need to register callback for it.
int32_t val = Preferences::GetInt(
"browser.display.normal_lineheight_calc_control", eNoExternalLeading);
sNormalLineHeightControl = static_cast<eNormalLineHeightControl>(val);
}
return sNormalLineHeightControl;
}
static inline bool IsSideCaption(nsIFrame* aFrame,
const nsStyleDisplay* aStyleDisplay,
WritingMode aWM) {
if (aStyleDisplay->mDisplay != StyleDisplay::TableCaption) {
return false;
}
uint8_t captionSide = aFrame->StyleTableBorder()->mCaptionSide;
return captionSide == NS_STYLE_CAPTION_SIDE_LEFT ||
captionSide == NS_STYLE_CAPTION_SIDE_RIGHT;
}
// XXX refactor this code to have methods for each set of properties
// we are computing: width,height,line-height; margin; offsets
void ReflowInput::InitConstraints(nsPresContext* aPresContext,
const LogicalSize& aContainingBlockSize,
const nsMargin* aBorder,
const nsMargin* aPadding,
LayoutFrameType aFrameType) {
WritingMode wm = GetWritingMode();
DISPLAY_INIT_CONSTRAINTS(mFrame, this, aContainingBlockSize.ISize(wm),
aContainingBlockSize.BSize(wm), aBorder, aPadding);
// If this is a reflow root, then set the computed width and
// height equal to the available space
if (nullptr == mParentReflowInput || mFlags.mDummyParentReflowInput) {
// XXXldb This doesn't mean what it used to!
InitOffsets(wm, aContainingBlockSize.ISize(wm), aFrameType, mFlags, aBorder,
aPadding, mStyleDisplay);
// Override mComputedMargin since reflow roots start from the
// frame's boundary, which is inside the margin.
ComputedPhysicalMargin().SizeTo(0, 0, 0, 0);
ComputedPhysicalOffsets().SizeTo(0, 0, 0, 0);
ComputedISize() =
AvailableISize() - ComputedLogicalBorderPadding().IStartEnd(wm);
if (ComputedISize() < 0) {
ComputedISize() = 0;
}
if (AvailableBSize() != NS_UNCONSTRAINEDSIZE) {
ComputedBSize() =
AvailableBSize() - ComputedLogicalBorderPadding().BStartEnd(wm);
if (ComputedBSize() < 0) {
ComputedBSize() = 0;
}
} else {
ComputedBSize() = NS_UNCONSTRAINEDSIZE;
}
ComputedMinWidth() = ComputedMinHeight() = 0;
ComputedMaxWidth() = ComputedMaxHeight() = NS_UNCONSTRAINEDSIZE;
} else {
// Get the containing block reflow state
const ReflowInput* cbri = mCBReflowInput;
MOZ_ASSERT(cbri, "no containing block");
MOZ_ASSERT(mFrame->GetParent());
// If we weren't given a containing block width and height, then
// compute one
LogicalSize cbSize =
(aContainingBlockSize == LogicalSize(wm, -1, -1))
? ComputeContainingBlockRectangle(aPresContext, cbri)
: aContainingBlockSize;
// See if the containing block height is based on the size of its
// content
if (NS_AUTOHEIGHT == cbSize.BSize(wm)) {
// See if the containing block is a cell frame which needs
// to use the mComputedHeight of the cell instead of what the cell block
// passed in.
// XXX It seems like this could lead to bugs with min-height and friends
if (cbri->mParentReflowInput) {
if (IsTableCell(cbri->mFrame->Type())) {
// use the cell's computed block size
cbSize.BSize(wm) = cbri->ComputedSize(wm).BSize(wm);
}
}
}
// XXX Might need to also pass the CB height (not width) for page boxes,
// too, if we implement them.
// For calculating positioning offsets, margins, borders and
// padding, we use the writing mode of the containing block
WritingMode cbwm = cbri->GetWritingMode();
InitOffsets(cbwm, cbSize.ConvertTo(cbwm, wm).ISize(cbwm), aFrameType,
mFlags, aBorder, aPadding, mStyleDisplay);
// For calculating the size of this box, we use its own writing mode
const nsStyleCoord& blockSize = mStylePosition->BSize(wm);
nsStyleUnit blockSizeUnit =
blockSize.IsAutoOrEnum() ? eStyleUnit_Auto : blockSize.GetUnit();
// Check for a percentage based block size and a containing block
// block size that depends on the content block size
// XXX twiddling blockSizeUnit doesn't help anymore
// FIXME Shouldn't we fix that?
if (blockSize.HasPercent()) {
if (NS_AUTOHEIGHT == cbSize.BSize(wm)) {
// this if clause enables %-blockSize on replaced inline frames,
// such as images. See bug 54119. The else clause "blockSizeUnit =
// eStyleUnit_Auto;" used to be called exclusively.
if (NS_FRAME_REPLACED(NS_CSS_FRAME_TYPE_INLINE) == mFrameType ||
NS_FRAME_REPLACED_CONTAINS_BLOCK(NS_CSS_FRAME_TYPE_INLINE) ==
mFrameType) {
// Get the containing block reflow state
NS_ASSERTION(nullptr != cbri, "no containing block");
// in quirks mode, get the cb height using the special quirk method
if (!wm.IsVertical() &&
eCompatibility_NavQuirks == aPresContext->CompatibilityMode()) {
if (!IsTableCell(cbri->mFrame->Type())) {
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(cbri);
if (cbSize.BSize(wm) == NS_AUTOHEIGHT) {
blockSizeUnit = eStyleUnit_Auto;
}
} else {
blockSizeUnit = eStyleUnit_Auto;
}
}
// in standard mode, use the cb block size. if it's "auto",
// as will be the case by default in BODY, use auto block size
// as per CSS2 spec.
else {
nscoord computedBSize = cbri->ComputedSize(wm).BSize(wm);
if (NS_AUTOHEIGHT != computedBSize) {
cbSize.BSize(wm) = computedBSize;
} else {
blockSizeUnit = eStyleUnit_Auto;
}
}
} else {
// default to interpreting the blockSize like 'auto'
blockSizeUnit = eStyleUnit_Auto;
}
}
}
// Compute our offsets if the element is relatively positioned. We
// need the correct containing block inline-size and block-size
// here, which is why we need to do it after all the quirks-n-such
// above. (If the element is sticky positioned, we need to wait
// until the scroll container knows its size, so we compute offsets
// from StickyScrollContainer::UpdatePositions.)
if (mStyleDisplay->IsRelativelyPositioned(mFrame) &&
NS_STYLE_POSITION_RELATIVE == mStyleDisplay->mPosition) {
ComputeRelativeOffsets(cbwm, mFrame, cbSize.ConvertTo(cbwm, wm),
ComputedPhysicalOffsets());
} else {
// Initialize offsets to 0
ComputedPhysicalOffsets().SizeTo(0, 0, 0, 0);
}
// Calculate the computed values for min and max properties. Note that
// this MUST come after we've computed our border and padding.
ComputeMinMaxValues(cbSize);
// Calculate the computed inlineSize and blockSize.
// This varies by frame type.
if (NS_CSS_FRAME_TYPE_INTERNAL_TABLE == mFrameType) {
// Internal table elements. The rules vary depending on the type.
// Calculate the computed isize
bool rowOrRowGroup = false;
const nsStyleCoord& inlineSize = mStylePosition->ISize(wm);
nsStyleUnit inlineSizeUnit = inlineSize.GetUnit();
if ((StyleDisplay::TableRow == mStyleDisplay->mDisplay) ||
(StyleDisplay::TableRowGroup == mStyleDisplay->mDisplay)) {
// 'inlineSize' property doesn't apply to table rows and row groups
inlineSizeUnit = eStyleUnit_Auto;
rowOrRowGroup = true;
}
// calc() with percentages acts like auto on internal table elements
if (eStyleUnit_Auto == inlineSizeUnit ||
(inlineSize.IsCalcUnit() && inlineSize.CalcHasPercent())) {
ComputedISize() = AvailableISize();
if ((ComputedISize() != NS_UNCONSTRAINEDSIZE) && !rowOrRowGroup) {
// Internal table elements don't have margins. Only tables and
// cells have border and padding
ComputedISize() -= ComputedLogicalBorderPadding().IStartEnd(wm);
if (ComputedISize() < 0) ComputedISize() = 0;
}
NS_ASSERTION(ComputedISize() >= 0, "Bogus computed isize");
} else {
NS_ASSERTION(inlineSizeUnit == inlineSize.GetUnit(),
"unexpected inline size unit change");
ComputedISize() = ComputeISizeValue(
cbSize.ISize(wm), mStylePosition->mBoxSizing, inlineSize);
}
// Calculate the computed block size
if ((StyleDisplay::TableColumn == mStyleDisplay->mDisplay) ||
(StyleDisplay::TableColumnGroup == mStyleDisplay->mDisplay)) {
// 'blockSize' property doesn't apply to table columns and column groups
blockSizeUnit = eStyleUnit_Auto;
}
// calc() with percentages acts like 'auto' on internal table elements
if (eStyleUnit_Auto == blockSizeUnit ||
(blockSize.IsCalcUnit() && blockSize.CalcHasPercent())) {
ComputedBSize() = NS_AUTOHEIGHT;
} else {
NS_ASSERTION(blockSizeUnit == blockSize.GetUnit(),
"unexpected block size unit change");
ComputedBSize() = ComputeBSizeValue(
cbSize.BSize(wm), mStylePosition->mBoxSizing, blockSize);
}
// Doesn't apply to table elements
ComputedMinWidth() = ComputedMinHeight() = 0;
ComputedMaxWidth() = ComputedMaxHeight() = NS_UNCONSTRAINEDSIZE;
} else if (NS_FRAME_GET_TYPE(mFrameType) == NS_CSS_FRAME_TYPE_ABSOLUTE) {
// XXX not sure if this belongs here or somewhere else - cwk
InitAbsoluteConstraints(aPresContext, cbri,
cbSize.ConvertTo(cbri->GetWritingMode(), wm),
aFrameType);
} else {
AutoMaybeDisableFontInflation an(mFrame);
bool isBlock = NS_CSS_FRAME_TYPE_BLOCK == NS_FRAME_GET_TYPE(mFrameType);
typedef nsIFrame::ComputeSizeFlags ComputeSizeFlags;
ComputeSizeFlags computeSizeFlags =
isBlock ? ComputeSizeFlags::eDefault : ComputeSizeFlags::eShrinkWrap;
if (mFlags.mIClampMarginBoxMinSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eIClampMarginBoxMinSize);
}
if (mFlags.mBClampMarginBoxMinSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eBClampMarginBoxMinSize);
}
if (mFlags.mApplyAutoMinSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eIApplyAutoMinSize);
}
if (mFlags.mShrinkWrap) {
computeSizeFlags =
ComputeSizeFlags(computeSizeFlags | ComputeSizeFlags::eShrinkWrap);
}
if (mFlags.mUseAutoBSize) {
computeSizeFlags = ComputeSizeFlags(computeSizeFlags |
ComputeSizeFlags::eUseAutoBSize);
}
nsIFrame* alignCB = mFrame->GetParent();
if (alignCB->IsTableWrapperFrame() && alignCB->GetParent()) {
// XXX grid-specific for now; maybe remove this check after we address
// bug 799725
if (alignCB->GetParent()->IsGridContainerFrame()) {
alignCB = alignCB->GetParent();
}
}
if (alignCB->IsGridContainerFrame()) {
// Shrink-wrap grid items that will be aligned (rather than stretched)
// in its inline axis.
auto inlineAxisAlignment =
wm.IsOrthogonalTo(cbwm)
? mStylePosition->UsedAlignSelf(alignCB->Style())
: mStylePosition->UsedJustifySelf(alignCB->Style());
if ((inlineAxisAlignment != NS_STYLE_ALIGN_STRETCH &&
inlineAxisAlignment != NS_STYLE_ALIGN_NORMAL) ||
mStyleMargin->mMargin.GetIStartUnit(wm) == eStyleUnit_Auto ||
mStyleMargin->mMargin.GetIEndUnit(wm) == eStyleUnit_Auto) {
computeSizeFlags = ComputeSizeFlags(computeSizeFlags |
ComputeSizeFlags::eShrinkWrap);
}
} else {
// Make sure legend frames with display:block and width:auto still
// shrink-wrap.
// Also shrink-wrap blocks that are orthogonal to their container.
if (isBlock &&
((aFrameType == LayoutFrameType::Legend &&
mFrame->Style()->GetPseudo() !=
nsCSSAnonBoxes::scrolledContent()) ||
(aFrameType == LayoutFrameType::Scroll &&
mFrame->GetContentInsertionFrame()->IsLegendFrame()) ||
(mCBReflowInput &&
mCBReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)))) {
computeSizeFlags = ComputeSizeFlags(computeSizeFlags |
ComputeSizeFlags::eShrinkWrap);
}
if (alignCB->IsFlexContainerFrame()) {
computeSizeFlags = ComputeSizeFlags(computeSizeFlags |
ComputeSizeFlags::eShrinkWrap);
// If we're inside of a flex container that needs to measure our
// auto BSize, pass that information along to ComputeSize().
if (mFlags.mIsFlexContainerMeasuringBSize) {
computeSizeFlags = ComputeSizeFlags(
computeSizeFlags | ComputeSizeFlags::eUseAutoBSize);
}
} else {
MOZ_ASSERT(!mFlags.mIsFlexContainerMeasuringBSize,
"We're not in a flex container, so the flag "
"'mIsFlexContainerMeasuringBSize' shouldn't be set");
}
}
if (cbSize.ISize(wm) == NS_UNCONSTRAINEDSIZE) {
// For orthogonal flows, where we found a parent orthogonal-limit
// for AvailableISize() in Init(), we'll use the same here as well.
cbSize.ISize(wm) = AvailableISize();
}
LogicalSize size = mFrame->ComputeSize(
mRenderingContext, wm, cbSize, AvailableISize(),
ComputedLogicalMargin().Size(wm),
ComputedLogicalBorderPadding().Size(wm) -
ComputedLogicalPadding().Size(wm),
ComputedLogicalPadding().Size(wm), computeSizeFlags);
ComputedISize() = size.ISize(wm);
ComputedBSize() = size.BSize(wm);
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
NS_ASSERTION(
ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
"Bogus block-size");
// Exclude inline tables, side captions, flex and grid items from block
// margin calculations.
if (isBlock && !IsSideCaption(mFrame, mStyleDisplay, cbwm) &&
mStyleDisplay->mDisplay != StyleDisplay::InlineTable &&
!alignCB->IsFlexOrGridContainer()) {
CalculateBlockSideMargins(aFrameType);
}
}
}
// Save our containing block dimensions
mContainingBlockSize = aContainingBlockSize;
}
static void UpdateProp(nsIFrame* aFrame,
const FramePropertyDescriptor<nsMargin>* aProperty,
bool aNeeded, const nsMargin& aNewValue) {
if (aNeeded) {
nsMargin* propValue = aFrame->GetProperty(aProperty);
if (propValue) {
*propValue = aNewValue;
} else {
aFrame->AddProperty(aProperty, new nsMargin(aNewValue));
}
} else {
aFrame->DeleteProperty(aProperty);
}
}
void SizeComputationInput::InitOffsets(WritingMode aWM, nscoord aPercentBasis,
LayoutFrameType aFrameType,
ReflowInputFlags aFlags,
const nsMargin* aBorder,
const nsMargin* aPadding,
const nsStyleDisplay* aDisplay) {
DISPLAY_INIT_OFFSETS(mFrame, this, aPercentBasis, aWM, aBorder, aPadding);
// Since we are in reflow, we don't need to store these properties anymore
// unless they are dependent on width, in which case we store the new value.
nsPresContext* presContext = mFrame->PresContext();
mFrame->DeleteProperty(nsIFrame::UsedBorderProperty());
// Compute margins from the specified margin style information. These
// become the default computed values, and may be adjusted below
// XXX fix to provide 0,0 for the top&bottom margins for
// inline-non-replaced elements
bool needMarginProp = ComputeMargin(aWM, aPercentBasis);
// Note that ComputeMargin() simplistically resolves 'auto' margins to 0.
// In formatting contexts where this isn't correct, some later code will
// need to update the UsedMargin() property with the actual resolved value.
// One example of this is ::CalculateBlockSideMargins().
::UpdateProp(mFrame, nsIFrame::UsedMarginProperty(), needMarginProp,
ComputedPhysicalMargin());
const nsStyleDisplay* disp = mFrame->StyleDisplayWithOptionalParam(aDisplay);
bool isThemed = mFrame->IsThemed(disp);
bool needPaddingProp;
LayoutDeviceIntMargin widgetPadding;
if (isThemed && presContext->GetTheme()->GetWidgetPadding(
presContext->DeviceContext(), mFrame, disp->mAppearance,
&widgetPadding)) {
ComputedPhysicalPadding() = LayoutDevicePixel::ToAppUnits(
widgetPadding, presContext->AppUnitsPerDevPixel());
needPaddingProp = false;
} else if (nsSVGUtils::IsInSVGTextSubtree(mFrame)) {
ComputedPhysicalPadding().SizeTo(0, 0, 0, 0);
needPaddingProp = false;
} else if (aPadding) { // padding is an input arg
ComputedPhysicalPadding() = *aPadding;
needPaddingProp = mFrame->StylePadding()->IsWidthDependent() ||
mFrame->HasAnyStateBits(NS_FRAME_REFLOW_ROOT |
NS_FRAME_DYNAMIC_REFLOW_ROOT);
} else {
needPaddingProp = ComputePadding(aWM, aPercentBasis, aFrameType);
}
// Add [align|justify]-content:baseline padding contribution.
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
auto ApplyBaselinePadding = [this, &needPaddingProp](LogicalAxis aAxis,
Prop aProp) {
bool found;
nscoord val = mFrame->GetProperty(aProp, &found);
if (found) {
NS_ASSERTION(val != nscoord(0), "zero in this property is useless");
WritingMode wm = GetWritingMode();
LogicalSide side;
if (val > 0) {
side = MakeLogicalSide(aAxis, eLogicalEdgeStart);
} else {
side = MakeLogicalSide(aAxis, eLogicalEdgeEnd);
val = -val;
}
mComputedPadding.Side(wm.PhysicalSide(side)) += val;
needPaddingProp = true;
}
};
if (!aFlags.mUseAutoBSize) {
ApplyBaselinePadding(eLogicalAxisBlock, nsIFrame::BBaselinePadProperty());
}
if (!aFlags.mShrinkWrap) {
ApplyBaselinePadding(eLogicalAxisInline, nsIFrame::IBaselinePadProperty());
}
if (isThemed) {
LayoutDeviceIntMargin border = presContext->GetTheme()->GetWidgetBorder(
presContext->DeviceContext(), mFrame, disp->mAppearance);
ComputedPhysicalBorderPadding() = LayoutDevicePixel::ToAppUnits(
border, presContext->AppUnitsPerDevPixel());
} else if (nsSVGUtils::IsInSVGTextSubtree(mFrame)) {
ComputedPhysicalBorderPadding().SizeTo(0, 0, 0, 0);
} else if (aBorder) { // border is an input arg
ComputedPhysicalBorderPadding() = *aBorder;
} else {
ComputedPhysicalBorderPadding() =
mFrame->StyleBorder()->GetComputedBorder();
}
ComputedPhysicalBorderPadding() += ComputedPhysicalPadding();
if (aFrameType == LayoutFrameType::Table) {
nsTableFrame* tableFrame = static_cast<nsTableFrame*>(mFrame);
if (tableFrame->IsBorderCollapse()) {
// border-collapsed tables don't use any of their padding, and
// only part of their border. We need to do this here before we
// try to do anything like handling 'auto' widths,
// 'box-sizing', or 'auto' margins.
ComputedPhysicalPadding().SizeTo(0, 0, 0, 0);
SetComputedLogicalBorderPadding(
tableFrame->GetIncludedOuterBCBorder(mWritingMode));
}
// The margin is inherited to the table wrapper frame via
// the ::-moz-table-wrapper rule in ua.css.
ComputedPhysicalMargin().SizeTo(0, 0, 0, 0);
} else if (aFrameType == LayoutFrameType::Scrollbar) {
// scrollbars may have had their width or height smashed to zero
// by the associated scrollframe, in which case we must not report
// any padding or border.
nsSize size(mFrame->GetSize());
if (size.width == 0 || size.height == 0) {
ComputedPhysicalPadding().SizeTo(0, 0, 0, 0);
ComputedPhysicalBorderPadding().SizeTo(0, 0, 0, 0);
}
}
::UpdateProp(mFrame, nsIFrame::UsedPaddingProperty(), needPaddingProp,
ComputedPhysicalPadding());
}
// This code enforces section 10.3.3 of the CSS2 spec for this formula:
//
// 'margin-left' + 'border-left-width' + 'padding-left' + 'width' +
// 'padding-right' + 'border-right-width' + 'margin-right'
// = width of containing block
//
// Note: the width unit is not auto when this is called
void ReflowInput::CalculateBlockSideMargins(LayoutFrameType aFrameType) {
// Calculations here are done in the containing block's writing mode,
// which is where margins will eventually be applied: we're calculating
// margins that will be used by the container in its inline direction,
// which in the case of an orthogonal contained block will correspond to
// the block direction of this reflow state. So in the orthogonal-flow
// case, "CalculateBlock*Side*Margins" will actually end up adjusting
// the BStart/BEnd margins; those are the "sides" of the block from its
// container's point of view.
WritingMode cbWM =
mCBReflowInput ? mCBReflowInput->GetWritingMode() : GetWritingMode();
nscoord availISizeCBWM = AvailableSize(cbWM).ISize(cbWM);
nscoord computedISizeCBWM = ComputedSize(cbWM).ISize(cbWM);
if (computedISizeCBWM == NS_UNCONSTRAINEDSIZE) {
// For orthogonal flows, where we found a parent orthogonal-limit
// for AvailableISize() in Init(), we'll use the same here as well.
computedISizeCBWM = availISizeCBWM;
}
LAYOUT_WARN_IF_FALSE(NS_UNCONSTRAINEDSIZE != computedISizeCBWM &&
NS_UNCONSTRAINEDSIZE != availISizeCBWM,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
LogicalMargin margin = ComputedLogicalMargin().ConvertTo(cbWM, mWritingMode);
LogicalMargin borderPadding =
ComputedLogicalBorderPadding().ConvertTo(cbWM, mWritingMode);
nscoord sum = margin.IStartEnd(cbWM) + borderPadding.IStartEnd(cbWM) +
computedISizeCBWM;
if (sum == availISizeCBWM) {
// The sum is already correct
return;
}
// Determine the start and end margin values. The isize value
// remains constant while we do this.
// Calculate how much space is available for margins
nscoord availMarginSpace = availISizeCBWM - sum;
// If the available margin space is negative, then don't follow the
// usual overconstraint rules.
if (availMarginSpace < 0) {
margin.IEnd(cbWM) += availMarginSpace;
SetComputedLogicalMargin(margin.ConvertTo(mWritingMode, cbWM));
return;
}
// The css2 spec clearly defines how block elements should behave
// in section 10.3.3.
const nsStyleSides& styleSides = mStyleMargin->mMargin;
bool isAutoStartMargin = eStyleUnit_Auto == styleSides.GetIStartUnit(cbWM);
bool isAutoEndMargin = eStyleUnit_Auto == styleSides.GetIEndUnit(cbWM);
if (!isAutoStartMargin && !isAutoEndMargin) {
// Neither margin is 'auto' so we're over constrained. Use the
// 'direction' property of the parent to tell which margin to
// ignore
// First check if there is an HTML alignment that we should honor
const ReflowInput* pri = mParentReflowInput;
if (aFrameType == LayoutFrameType::Table) {
NS_ASSERTION(pri->mFrame->IsTableWrapperFrame(),
"table not inside table wrapper");
// Center the table within the table wrapper based on the alignment
// of the table wrapper's parent.
pri = pri->mParentReflowInput;
}
if (pri && (pri->mStyleText->mTextAlign == NS_STYLE_TEXT_ALIGN_MOZ_LEFT ||
pri->mStyleText->mTextAlign == NS_STYLE_TEXT_ALIGN_MOZ_CENTER ||
pri->mStyleText->mTextAlign == NS_STYLE_TEXT_ALIGN_MOZ_RIGHT)) {
if (pri->mWritingMode.IsBidiLTR()) {
isAutoStartMargin =
pri->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_LEFT;
isAutoEndMargin =
pri->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_RIGHT;
} else {
isAutoStartMargin =
pri->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_RIGHT;
isAutoEndMargin =
pri->mStyleText->mTextAlign != NS_STYLE_TEXT_ALIGN_MOZ_LEFT;
}
}
// Otherwise apply the CSS rules, and ignore one margin by forcing
// it to 'auto', depending on 'direction'.
else {
isAutoEndMargin = true;
}
}
// Logic which is common to blocks and tables
// The computed margins need not be zero because the 'auto' could come from
// overconstraint or from HTML alignment so values need to be accumulated
if (isAutoStartMargin) {
if (isAutoEndMargin) {
// Both margins are 'auto' so the computed addition should be equal
nscoord forStart = availMarginSpace / 2;
margin.IStart(cbWM) += forStart;
margin.IEnd(cbWM) += availMarginSpace - forStart;
} else {
margin.IStart(cbWM) += availMarginSpace;
}
} else if (isAutoEndMargin) {
margin.IEnd(cbWM) += availMarginSpace;
}
LogicalMargin marginInOurWM = margin.ConvertTo(mWritingMode, cbWM);
SetComputedLogicalMargin(marginInOurWM);
if (isAutoStartMargin || isAutoEndMargin) {
// Update the UsedMargin property if we were tracking it already.
nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
if (propValue) {
*propValue = marginInOurWM.GetPhysicalMargin(mWritingMode);
}
}
}
#define NORMAL_LINE_HEIGHT_FACTOR 1.2f // in term of emHeight
// For "normal" we use the font's normal line height (em height + leading).
// If both internal leading and external leading specified by font itself
// are zeros, we should compensate this by creating extra (external) leading
// in eCompensateLeading mode. This is necessary because without this
// compensation, normal line height might looks too tight.
// For risk management, we use preference to control the behavior, and
// eNoExternalLeading is the old behavior.
static nscoord GetNormalLineHeight(nsFontMetrics* aFontMetrics) {
MOZ_ASSERT(nullptr != aFontMetrics, "no font metrics");
nscoord normalLineHeight;
nscoord externalLeading = aFontMetrics->ExternalLeading();
nscoord internalLeading = aFontMetrics->InternalLeading();
nscoord emHeight = aFontMetrics->EmHeight();
switch (GetNormalLineHeightCalcControl()) {
case eIncludeExternalLeading:
normalLineHeight = emHeight + internalLeading + externalLeading;
break;
case eCompensateLeading:
if (!internalLeading && !externalLeading)
normalLineHeight = NSToCoordRound(emHeight * NORMAL_LINE_HEIGHT_FACTOR);
else
normalLineHeight = emHeight + internalLeading + externalLeading;
break;
default:
// case eNoExternalLeading:
normalLineHeight = emHeight + internalLeading;
}
return normalLineHeight;
}
static inline nscoord ComputeLineHeight(ComputedStyle* aComputedStyle,
nsPresContext* aPresContext,
nscoord aBlockBSize,
float aFontSizeInflation) {
const nsStyleCoord& lhCoord = aComputedStyle->StyleText()->mLineHeight;
if (lhCoord.GetUnit() == eStyleUnit_Coord) {
nscoord result = lhCoord.GetCoordValue();
if (aFontSizeInflation != 1.0f) {
result = NSToCoordRound(result * aFontSizeInflation);
}
return result;
}
if (lhCoord.GetUnit() == eStyleUnit_Factor)
// For factor units the computed value of the line-height property
// is found by multiplying the factor by the font's computed size
// (adjusted for min-size prefs and text zoom).
return NSToCoordRound(lhCoord.GetFactorValue() * aFontSizeInflation *
aComputedStyle->StyleFont()->mFont.size);
NS_ASSERTION(lhCoord.GetUnit() == eStyleUnit_Normal ||
lhCoord.GetUnit() == eStyleUnit_Enumerated,
"bad line-height unit");
if (lhCoord.GetUnit() == eStyleUnit_Enumerated) {
NS_ASSERTION(lhCoord.GetIntValue() == NS_STYLE_LINE_HEIGHT_BLOCK_HEIGHT,
"bad line-height value");
if (aBlockBSize != NS_AUTOHEIGHT) {
return aBlockBSize;
}
}
RefPtr<nsFontMetrics> fm = nsLayoutUtils::GetFontMetricsForComputedStyle(
aComputedStyle, aPresContext, aFontSizeInflation);
return GetNormalLineHeight(fm);
}
nscoord ReflowInput::CalcLineHeight() const {
nscoord blockBSize =
nsLayoutUtils::IsNonWrapperBlock(mFrame)
? ComputedBSize()
: (mCBReflowInput ? mCBReflowInput->ComputedBSize() : NS_AUTOHEIGHT);
return CalcLineHeight(mFrame->GetContent(), mFrame->Style(),
mFrame->PresContext(), blockBSize,
nsLayoutUtils::FontSizeInflationFor(mFrame));
}
/* static */ nscoord ReflowInput::CalcLineHeight(nsIContent* aContent,
ComputedStyle* aComputedStyle,
nsPresContext* aPresContext,
nscoord aBlockBSize,
float aFontSizeInflation) {
MOZ_ASSERT(aComputedStyle, "Must have a ComputedStyle");
nscoord lineHeight = ComputeLineHeight(aComputedStyle, aPresContext,
aBlockBSize, aFontSizeInflation);
NS_ASSERTION(lineHeight >= 0, "ComputeLineHeight screwed up");
HTMLInputElement* input = HTMLInputElement::FromNodeOrNull(aContent);
if (input && input->IsSingleLineTextControl()) {
// For Web-compatibility, single-line text input elements cannot
// have a line-height smaller than one.
nscoord lineHeightOne =
aFontSizeInflation * aComputedStyle->StyleFont()->mFont.size;
if (lineHeight < lineHeightOne) {
lineHeight = lineHeightOne;
}
}
return lineHeight;
}
bool SizeComputationInput::ComputeMargin(WritingMode aWM,
nscoord aPercentBasis) {
// SVG text frames have no margin.
if (nsSVGUtils::IsInSVGTextSubtree(mFrame)) {
return false;
}
// If style style can provide us the margin directly, then use it.
const nsStyleMargin* styleMargin = mFrame->StyleMargin();
bool isCBDependent = !styleMargin->GetMargin(ComputedPhysicalMargin());
if (isCBDependent) {
// We have to compute the value. Note that this calculation is
// performed according to the writing mode of the containing block
// (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
LogicalMargin m(aWM);
m.IStart(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, styleMargin->mMargin.GetIStart(aWM));
m.IEnd(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, styleMargin->mMargin.GetIEnd(aWM));
m.BStart(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, styleMargin->mMargin.GetBStart(aWM));
m.BEnd(aWM) = nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, styleMargin->mMargin.GetBEnd(aWM));
SetComputedLogicalMargin(aWM, m);
}
// ... but font-size-inflation-based margin adjustment uses the
// frame's writing mode
nscoord marginAdjustment = FontSizeInflationListMarginAdjustment(mFrame);
if (marginAdjustment > 0) {
LogicalMargin m = ComputedLogicalMargin();
m.IStart(mWritingMode) += marginAdjustment;
SetComputedLogicalMargin(m);
}
return isCBDependent;
}
bool SizeComputationInput::ComputePadding(WritingMode aWM,
nscoord aPercentBasis,
LayoutFrameType aFrameType) {
// If style can provide us the padding directly, then use it.
const nsStylePadding* stylePadding = mFrame->StylePadding();
bool isCBDependent = !stylePadding->GetPadding(ComputedPhysicalPadding());
// a table row/col group, row/col doesn't have padding
// XXXldb Neither do border-collapse tables.
if (LayoutFrameType::TableRowGroup == aFrameType ||
LayoutFrameType::TableColGroup == aFrameType ||
LayoutFrameType::TableRow == aFrameType ||
LayoutFrameType::TableCol == aFrameType) {
ComputedPhysicalPadding().SizeTo(0, 0, 0, 0);
} else if (isCBDependent) {
// We have to compute the value. This calculation is performed
// according to the writing mode of the containing block
// (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
// clamp negative calc() results to 0
LogicalMargin p(aWM);
p.IStart(aWM) =
std::max(0, nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, stylePadding->mPadding.GetIStart(aWM)));
p.IEnd(aWM) =
std::max(0, nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, stylePadding->mPadding.GetIEnd(aWM)));
p.BStart(aWM) =
std::max(0, nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, stylePadding->mPadding.GetBStart(aWM)));
p.BEnd(aWM) =
std::max(0, nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, stylePadding->mPadding.GetBEnd(aWM)));
SetComputedLogicalPadding(aWM, p);
}
return isCBDependent;
}
void ReflowInput::ComputeMinMaxValues(const LogicalSize& aCBSize) {
WritingMode wm = GetWritingMode();
const nsStyleCoord& minISize = mStylePosition->MinISize(wm);
const nsStyleCoord& maxISize = mStylePosition->MaxISize(wm);
const nsStyleCoord& minBSize = mStylePosition->MinBSize(wm);
const nsStyleCoord& maxBSize = mStylePosition->MaxBSize(wm);
// NOTE: min-width:auto resolves to 0, except on a flex item. (But
// even there, it's supposed to be ignored (i.e. treated as 0) until
// the flex container explicitly resolves & considers it.)
if (eStyleUnit_Auto == minISize.GetUnit()) {
ComputedMinISize() = 0;
} else {
ComputedMinISize() = ComputeISizeValue(
aCBSize.ISize(wm), mStylePosition->mBoxSizing, minISize);
}
if (eStyleUnit_None == maxISize.GetUnit()) {
// Specified value of 'none'
ComputedMaxISize() = NS_UNCONSTRAINEDSIZE; // no limit
} else {
ComputedMaxISize() = ComputeISizeValue(
aCBSize.ISize(wm), mStylePosition->mBoxSizing, maxISize);
}
// If the computed value of 'min-width' is greater than the value of
// 'max-width', 'max-width' is set to the value of 'min-width'
if (ComputedMinISize() > ComputedMaxISize()) {
ComputedMaxISize() = ComputedMinISize();
}
// Check for percentage based values and a containing block height that
// depends on the content height. Treat them like the initial value.
// Likewise, check for calc() with percentages on internal table elements;
// that's treated as the initial value too.
// Likewise, if we're a child of a flex container who's measuring our
// intrinsic height, then we want to disregard our min-height/max-height.
const nscoord& bPercentageBasis = aCBSize.BSize(wm);
auto BSizeBehavesAsInitialValue = [&](const nsStyleCoord& aBSize) {
return nsLayoutUtils::IsAutoBSize(aBSize, bPercentageBasis) ||
(mFrameType == NS_CSS_FRAME_TYPE_INTERNAL_TABLE &&
aBSize.IsCalcUnit() && aBSize.CalcHasPercent()) ||
mFlags.mIsFlexContainerMeasuringBSize;
};
// NOTE: min-height:auto resolves to 0, except on a flex item. (But
// even there, it's supposed to be ignored (i.e. treated as 0) until
// the flex container explicitly resolves & considers it.)
if (BSizeBehavesAsInitialValue(minBSize)) {
ComputedMinBSize() = 0;
} else {
ComputedMinBSize() = ComputeBSizeValue(
bPercentageBasis, mStylePosition->mBoxSizing, minBSize);
}
if (BSizeBehavesAsInitialValue(maxBSize)) {
// Specified value of 'none'
ComputedMaxBSize() = NS_UNCONSTRAINEDSIZE; // no limit
} else {
ComputedMaxBSize() = ComputeBSizeValue(
bPercentageBasis, mStylePosition->mBoxSizing, maxBSize);
}
// If the computed value of 'min-height' is greater than the value of
// 'max-height', 'max-height' is set to the value of 'min-height'
if (ComputedMinBSize() > ComputedMaxBSize()) {
ComputedMaxBSize() = ComputedMinBSize();
}
}
bool ReflowInput::IsFloating() const {
return mStyleDisplay->IsFloating(mFrame);
}
mozilla::StyleDisplay ReflowInput::GetDisplay() const {
return mStyleDisplay->GetDisplay(mFrame);
}