gecko-dev/netwerk/cache2/CacheFile.cpp

2590 строки
74 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "CacheFile.h"
#include <algorithm>
#include <utility>
#include "CacheFileChunk.h"
#include "CacheFileInputStream.h"
#include "CacheFileOutputStream.h"
#include "CacheFileUtils.h"
#include "CacheIndex.h"
#include "CacheLog.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TelemetryHistogramEnums.h"
#include "nsComponentManagerUtils.h"
#include "nsICacheEntry.h"
#include "nsProxyRelease.h"
#include "nsThreadUtils.h"
// When CACHE_CHUNKS is defined we always cache unused chunks in mCacheChunks.
// When it is not defined, we always release the chunks ASAP, i.e. we cache
// unused chunks only when:
// - CacheFile is memory-only
// - CacheFile is still waiting for the handle
// - the chunk is preloaded
// #define CACHE_CHUNKS
namespace mozilla::net {
using CacheFileUtils::CacheFileLock;
class NotifyCacheFileListenerEvent : public Runnable {
public:
NotifyCacheFileListenerEvent(CacheFileListener* aCallback, nsresult aResult,
bool aIsNew)
: Runnable("net::NotifyCacheFileListenerEvent"),
mCallback(aCallback),
mRV(aResult),
mIsNew(aIsNew) {
LOG(
("NotifyCacheFileListenerEvent::NotifyCacheFileListenerEvent() "
"[this=%p]",
this));
}
protected:
~NotifyCacheFileListenerEvent() {
LOG(
("NotifyCacheFileListenerEvent::~NotifyCacheFileListenerEvent() "
"[this=%p]",
this));
}
public:
NS_IMETHOD Run() override {
LOG(("NotifyCacheFileListenerEvent::Run() [this=%p]", this));
mCallback->OnFileReady(mRV, mIsNew);
return NS_OK;
}
protected:
nsCOMPtr<CacheFileListener> mCallback;
nsresult mRV;
bool mIsNew;
};
class NotifyChunkListenerEvent : public Runnable {
public:
NotifyChunkListenerEvent(CacheFileChunkListener* aCallback, nsresult aResult,
uint32_t aChunkIdx, CacheFileChunk* aChunk)
: Runnable("net::NotifyChunkListenerEvent"),
mCallback(aCallback),
mRV(aResult),
mChunkIdx(aChunkIdx),
mChunk(aChunk) {
LOG(("NotifyChunkListenerEvent::NotifyChunkListenerEvent() [this=%p]",
this));
}
protected:
~NotifyChunkListenerEvent() {
LOG(("NotifyChunkListenerEvent::~NotifyChunkListenerEvent() [this=%p]",
this));
}
public:
NS_IMETHOD Run() override {
LOG(("NotifyChunkListenerEvent::Run() [this=%p]", this));
mCallback->OnChunkAvailable(mRV, mChunkIdx, mChunk);
return NS_OK;
}
protected:
nsCOMPtr<CacheFileChunkListener> mCallback;
nsresult mRV;
uint32_t mChunkIdx;
RefPtr<CacheFileChunk> mChunk;
};
class DoomFileHelper : public CacheFileIOListener {
public:
NS_DECL_THREADSAFE_ISUPPORTS
explicit DoomFileHelper(CacheFileListener* aListener)
: mListener(aListener) {}
NS_IMETHOD OnFileOpened(CacheFileHandle* aHandle, nsresult aResult) override {
MOZ_CRASH("DoomFileHelper::OnFileOpened should not be called!");
return NS_ERROR_UNEXPECTED;
}
NS_IMETHOD OnDataWritten(CacheFileHandle* aHandle, const char* aBuf,
nsresult aResult) override {
MOZ_CRASH("DoomFileHelper::OnDataWritten should not be called!");
return NS_ERROR_UNEXPECTED;
}
NS_IMETHOD OnDataRead(CacheFileHandle* aHandle, char* aBuf,
nsresult aResult) override {
MOZ_CRASH("DoomFileHelper::OnDataRead should not be called!");
return NS_ERROR_UNEXPECTED;
}
NS_IMETHOD OnFileDoomed(CacheFileHandle* aHandle, nsresult aResult) override {
if (mListener) mListener->OnFileDoomed(aResult);
return NS_OK;
}
NS_IMETHOD OnEOFSet(CacheFileHandle* aHandle, nsresult aResult) override {
MOZ_CRASH("DoomFileHelper::OnEOFSet should not be called!");
return NS_ERROR_UNEXPECTED;
}
NS_IMETHOD OnFileRenamed(CacheFileHandle* aHandle,
nsresult aResult) override {
MOZ_CRASH("DoomFileHelper::OnFileRenamed should not be called!");
return NS_ERROR_UNEXPECTED;
}
private:
virtual ~DoomFileHelper() = default;
nsCOMPtr<CacheFileListener> mListener;
};
NS_IMPL_ISUPPORTS(DoomFileHelper, CacheFileIOListener)
NS_IMPL_ADDREF(CacheFile)
NS_IMPL_RELEASE(CacheFile)
NS_INTERFACE_MAP_BEGIN(CacheFile)
NS_INTERFACE_MAP_ENTRY(mozilla::net::CacheFileChunkListener)
NS_INTERFACE_MAP_ENTRY(mozilla::net::CacheFileIOListener)
NS_INTERFACE_MAP_ENTRY(mozilla::net::CacheFileMetadataListener)
NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports,
mozilla::net::CacheFileChunkListener)
NS_INTERFACE_MAP_END
CacheFile::CacheFile() : mLock(new CacheFileLock()) {
LOG(("CacheFile::CacheFile() [this=%p]", this));
}
CacheFile::~CacheFile() {
LOG(("CacheFile::~CacheFile() [this=%p]", this));
MutexAutoLock lock(mLock->Lock());
if (!mMemoryOnly && mReady && !mKill) {
// mReady flag indicates we have metadata plus in a valid state.
WriteMetadataIfNeededLocked(true);
}
}
nsresult CacheFile::Init(const nsACString& aKey, bool aCreateNew,
bool aMemoryOnly, bool aSkipSizeCheck, bool aPriority,
bool aPinned, CacheFileListener* aCallback)
MOZ_NO_THREAD_SAFETY_ANALYSIS {
MOZ_ASSERT(!mListener);
MOZ_ASSERT(!mHandle);
MOZ_ASSERT(!(aMemoryOnly && aPinned));
nsresult rv;
mKey = aKey;
mOpenAsMemoryOnly = mMemoryOnly = aMemoryOnly;
mSkipSizeCheck = aSkipSizeCheck;
mPriority = aPriority;
mPinned = aPinned;
// Some consumers (at least nsHTTPCompressConv) assume that Read() can read
// such amount of data that was announced by Available().
// CacheFileInputStream::Available() uses also preloaded chunks to compute
// number of available bytes in the input stream, so we have to make sure the
// preloadChunkCount won't change during CacheFile's lifetime since otherwise
// we could potentially release some cached chunks that was used to calculate
// available bytes but would not be available later during call to
// CacheFileInputStream::Read().
mPreloadChunkCount = CacheObserver::PreloadChunkCount();
LOG(
("CacheFile::Init() [this=%p, key=%s, createNew=%d, memoryOnly=%d, "
"priority=%d, listener=%p]",
this, mKey.get(), aCreateNew, aMemoryOnly, aPriority, aCallback));
if (mMemoryOnly) {
MOZ_ASSERT(!aCallback);
mMetadata = new CacheFileMetadata(mOpenAsMemoryOnly, false, mKey,
WrapNotNull(mLock));
mReady = true;
mDataSize = mMetadata->Offset();
return NS_OK;
}
uint32_t flags;
if (aCreateNew) {
MOZ_ASSERT(!aCallback);
flags = CacheFileIOManager::CREATE_NEW;
// make sure we can use this entry immediately
mMetadata = new CacheFileMetadata(mOpenAsMemoryOnly, mPinned, mKey,
WrapNotNull(mLock));
mReady = true;
mDataSize = mMetadata->Offset();
} else {
flags = CacheFileIOManager::CREATE;
}
if (mPriority) {
flags |= CacheFileIOManager::PRIORITY;
}
if (mPinned) {
flags |= CacheFileIOManager::PINNED;
}
mOpeningFile = true;
mListener = aCallback;
rv = CacheFileIOManager::OpenFile(mKey, flags, this);
if (NS_FAILED(rv)) {
mListener = nullptr;
mOpeningFile = false;
if (mPinned) {
LOG(
("CacheFile::Init() - CacheFileIOManager::OpenFile() failed "
"but we want to pin, fail the file opening. [this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (aCreateNew) {
NS_WARNING("Forcing memory-only entry since OpenFile failed");
LOG(
("CacheFile::Init() - CacheFileIOManager::OpenFile() failed "
"synchronously. We can continue in memory-only mode since "
"aCreateNew == true. [this=%p]",
this));
mMemoryOnly = true;
} else if (rv == NS_ERROR_NOT_INITIALIZED) {
NS_WARNING(
"Forcing memory-only entry since CacheIOManager isn't "
"initialized.");
LOG(
("CacheFile::Init() - CacheFileIOManager isn't initialized, "
"initializing entry as memory-only. [this=%p]",
this));
mMemoryOnly = true;
mMetadata = new CacheFileMetadata(mOpenAsMemoryOnly, mPinned, mKey,
WrapNotNull(mLock));
mReady = true;
mDataSize = mMetadata->Offset();
RefPtr<NotifyCacheFileListenerEvent> ev;
ev = new NotifyCacheFileListenerEvent(aCallback, NS_OK, true);
rv = NS_DispatchToCurrentThread(ev);
NS_ENSURE_SUCCESS(rv, rv);
} else {
NS_ENSURE_SUCCESS(rv, rv);
}
}
return NS_OK;
}
void CacheFile::Key(nsACString& aKey) {
CacheFileAutoLock lock(this);
aKey = mKey;
}
bool CacheFile::IsPinned() {
CacheFileAutoLock lock(this);
return mPinned;
}
nsresult CacheFile::OnChunkRead(nsresult aResult, CacheFileChunk* aChunk) {
CacheFileAutoLock lock(this);
nsresult rv;
uint32_t index = aChunk->Index();
LOG(("CacheFile::OnChunkRead() [this=%p, rv=0x%08" PRIx32
", chunk=%p, idx=%u]",
this, static_cast<uint32_t>(aResult), aChunk, index));
if (aChunk->mDiscardedChunk) {
// We discard only unused chunks, so it must be still unused when reading
// data finishes.
MOZ_ASSERT(aChunk->mRefCnt == 2);
aChunk->mActiveChunk = false;
ReleaseOutsideLock(
RefPtr<CacheFileChunkListener>(std::move(aChunk->mFile)));
DebugOnly<bool> removed = mDiscardedChunks.RemoveElement(aChunk);
MOZ_ASSERT(removed);
return NS_OK;
}
if (NS_FAILED(aResult)) {
SetError(aResult);
}
if (HaveChunkListeners(index)) {
rv = NotifyChunkListeners(index, aResult, aChunk);
NS_ENSURE_SUCCESS(rv, rv);
}
return NS_OK;
}
nsresult CacheFile::OnChunkWritten(nsresult aResult, CacheFileChunk* aChunk) {
// In case the chunk was reused, made dirty and released between calls to
// CacheFileChunk::Write() and CacheFile::OnChunkWritten(), we must write
// the chunk to the disk again. When the chunk is unused and is dirty simply
// addref and release (outside the lock) the chunk which ensures that
// CacheFile::DeactivateChunk() will be called again.
RefPtr<CacheFileChunk> deactivateChunkAgain;
CacheFileAutoLock lock(this);
nsresult rv;
LOG(("CacheFile::OnChunkWritten() [this=%p, rv=0x%08" PRIx32
", chunk=%p, idx=%u]",
this, static_cast<uint32_t>(aResult), aChunk, aChunk->Index()));
MOZ_ASSERT(!mMemoryOnly);
MOZ_ASSERT(!mOpeningFile);
MOZ_ASSERT(mHandle);
if (aChunk->mDiscardedChunk) {
// We discard only unused chunks, so it must be still unused when writing
// data finishes.
MOZ_ASSERT(aChunk->mRefCnt == 2);
aChunk->mActiveChunk = false;
ReleaseOutsideLock(
RefPtr<CacheFileChunkListener>(std::move(aChunk->mFile)));
DebugOnly<bool> removed = mDiscardedChunks.RemoveElement(aChunk);
MOZ_ASSERT(removed);
return NS_OK;
}
if (NS_FAILED(aResult)) {
SetError(aResult);
}
if (NS_SUCCEEDED(aResult) && !aChunk->IsDirty()) {
// update hash value in metadata
mMetadata->SetHash(aChunk->Index(), aChunk->Hash());
}
// notify listeners if there is any
if (HaveChunkListeners(aChunk->Index())) {
// don't release the chunk since there are some listeners queued
rv = NotifyChunkListeners(aChunk->Index(), aResult, aChunk);
if (NS_SUCCEEDED(rv)) {
MOZ_ASSERT(aChunk->mRefCnt != 2);
return NS_OK;
}
}
if (aChunk->mRefCnt != 2) {
LOG(
("CacheFile::OnChunkWritten() - Chunk is still used [this=%p, chunk=%p,"
" refcnt=%" PRIuPTR "]",
this, aChunk, aChunk->mRefCnt.get()));
return NS_OK;
}
if (aChunk->IsDirty()) {
LOG(
("CacheFile::OnChunkWritten() - Unused chunk is dirty. We must go "
"through deactivation again. [this=%p, chunk=%p]",
this, aChunk));
deactivateChunkAgain = aChunk;
return NS_OK;
}
bool keepChunk = false;
if (NS_SUCCEEDED(aResult)) {
keepChunk = ShouldCacheChunk(aChunk->Index());
LOG(("CacheFile::OnChunkWritten() - %s unused chunk [this=%p, chunk=%p]",
keepChunk ? "Caching" : "Releasing", this, aChunk));
} else {
LOG(
("CacheFile::OnChunkWritten() - Releasing failed chunk [this=%p, "
"chunk=%p]",
this, aChunk));
}
RemoveChunkInternal(aChunk, keepChunk);
WriteMetadataIfNeededLocked();
return NS_OK;
}
nsresult CacheFile::OnChunkAvailable(nsresult aResult, uint32_t aChunkIdx,
CacheFileChunk* aChunk) {
MOZ_CRASH("CacheFile::OnChunkAvailable should not be called!");
return NS_ERROR_UNEXPECTED;
}
nsresult CacheFile::OnChunkUpdated(CacheFileChunk* aChunk) {
MOZ_CRASH("CacheFile::OnChunkUpdated should not be called!");
return NS_ERROR_UNEXPECTED;
}
nsresult CacheFile::OnFileOpened(CacheFileHandle* aHandle, nsresult aResult) {
// Using an 'auto' class to perform doom or fail the listener
// outside the CacheFile's lock.
class AutoFailDoomListener {
public:
explicit AutoFailDoomListener(CacheFileHandle* aHandle)
: mHandle(aHandle), mAlreadyDoomed(false) {}
~AutoFailDoomListener() {
if (!mListener) return;
if (mHandle) {
if (mAlreadyDoomed) {
mListener->OnFileDoomed(mHandle, NS_OK);
} else {
CacheFileIOManager::DoomFile(mHandle, mListener);
}
} else {
mListener->OnFileDoomed(nullptr, NS_ERROR_NOT_AVAILABLE);
}
}
CacheFileHandle* mHandle;
nsCOMPtr<CacheFileIOListener> mListener;
bool mAlreadyDoomed;
} autoDoom(aHandle);
RefPtr<CacheFileMetadata> metadata;
nsCOMPtr<CacheFileListener> listener;
bool isNew = false;
nsresult retval = NS_OK;
{
CacheFileAutoLock lock(this);
MOZ_ASSERT(mOpeningFile);
MOZ_ASSERT((NS_SUCCEEDED(aResult) && aHandle) ||
(NS_FAILED(aResult) && !aHandle));
MOZ_ASSERT((mListener && !mMetadata) || // !createNew
(!mListener && mMetadata)); // createNew
MOZ_ASSERT(!mMemoryOnly || mMetadata); // memory-only was set on new entry
LOG(("CacheFile::OnFileOpened() [this=%p, rv=0x%08" PRIx32 ", handle=%p]",
this, static_cast<uint32_t>(aResult), aHandle));
mOpeningFile = false;
autoDoom.mListener.swap(mDoomAfterOpenListener);
if (mMemoryOnly) {
// We can be here only in case the entry was initilized as createNew and
// SetMemoryOnly() was called.
// Just don't store the handle into mHandle and exit
autoDoom.mAlreadyDoomed = true;
return NS_OK;
}
if (NS_FAILED(aResult)) {
if (mMetadata) {
// This entry was initialized as createNew, just switch to memory-only
// mode.
NS_WARNING("Forcing memory-only entry since OpenFile failed");
LOG(
("CacheFile::OnFileOpened() - CacheFileIOManager::OpenFile() "
"failed asynchronously. We can continue in memory-only mode since "
"aCreateNew == true. [this=%p]",
this));
mMemoryOnly = true;
return NS_OK;
}
if (aResult == NS_ERROR_FILE_INVALID_PATH) {
// CacheFileIOManager doesn't have mCacheDirectory, switch to
// memory-only mode.
NS_WARNING(
"Forcing memory-only entry since CacheFileIOManager doesn't "
"have mCacheDirectory.");
LOG(
("CacheFile::OnFileOpened() - CacheFileIOManager doesn't have "
"mCacheDirectory, initializing entry as memory-only. [this=%p]",
this));
mMemoryOnly = true;
mMetadata = new CacheFileMetadata(mOpenAsMemoryOnly, mPinned, mKey,
WrapNotNull(mLock));
mReady = true;
mDataSize = mMetadata->Offset();
isNew = true;
retval = NS_OK;
} else {
// CacheFileIOManager::OpenFile() failed for another reason.
isNew = false;
retval = aResult;
}
mListener.swap(listener);
} else {
mHandle = aHandle;
if (NS_FAILED(mStatus)) {
CacheFileIOManager::DoomFile(mHandle, nullptr);
}
if (mMetadata) {
InitIndexEntry();
// The entry was initialized as createNew, don't try to read metadata.
mMetadata->SetHandle(mHandle);
// Write all cached chunks, otherwise they may stay unwritten.
for (auto iter = mCachedChunks.Iter(); !iter.Done(); iter.Next()) {
uint32_t idx = iter.Key();
RefPtr<CacheFileChunk>& chunk = iter.Data();
LOG(("CacheFile::OnFileOpened() - write [this=%p, idx=%u, chunk=%p]",
this, idx, chunk.get()));
mChunks.InsertOrUpdate(idx, RefPtr{chunk});
chunk->mFile = this;
chunk->mActiveChunk = true;
MOZ_ASSERT(chunk->IsReady());
// This would be cleaner if we had an nsRefPtr constructor that took
// a RefPtr<Derived>.
ReleaseOutsideLock(std::move(chunk));
iter.Remove();
}
return NS_OK;
}
}
if (listener) {
lock.Unlock();
listener->OnFileReady(retval, isNew);
return NS_OK;
}
MOZ_ASSERT(NS_SUCCEEDED(aResult));
MOZ_ASSERT(!mMetadata);
MOZ_ASSERT(mListener);
// mMetaData is protected by a lock, but ReadMetaData has to be called
// without the lock. Alternatively we could make a
// "ReadMetaDataLocked", and temporarily unlock to call OnFileReady
metadata = mMetadata =
new CacheFileMetadata(mHandle, mKey, WrapNotNull(mLock));
}
metadata->ReadMetadata(this);
return NS_OK;
}
nsresult CacheFile::OnDataWritten(CacheFileHandle* aHandle, const char* aBuf,
nsresult aResult) {
MOZ_CRASH("CacheFile::OnDataWritten should not be called!");
return NS_ERROR_UNEXPECTED;
}
nsresult CacheFile::OnDataRead(CacheFileHandle* aHandle, char* aBuf,
nsresult aResult) {
MOZ_CRASH("CacheFile::OnDataRead should not be called!");
return NS_ERROR_UNEXPECTED;
}
nsresult CacheFile::OnMetadataRead(nsresult aResult) {
nsCOMPtr<CacheFileListener> listener;
bool isNew = false;
{
CacheFileAutoLock lock(this);
MOZ_ASSERT(mListener);
LOG(("CacheFile::OnMetadataRead() [this=%p, rv=0x%08" PRIx32 "]", this,
static_cast<uint32_t>(aResult)));
if (NS_SUCCEEDED(aResult)) {
mPinned = mMetadata->Pinned();
mReady = true;
mDataSize = mMetadata->Offset();
if (mDataSize == 0 && mMetadata->ElementsSize() == 0) {
isNew = true;
mMetadata->MarkDirty();
} else {
const char* altData =
mMetadata->GetElement(CacheFileUtils::kAltDataKey);
if (altData && (NS_FAILED(CacheFileUtils::ParseAlternativeDataInfo(
altData, &mAltDataOffset, &mAltDataType)) ||
(mAltDataOffset > mDataSize))) {
// alt-metadata cannot be parsed or alt-data offset is invalid
mMetadata->InitEmptyMetadata();
isNew = true;
mAltDataOffset = -1;
mAltDataType.Truncate();
mDataSize = 0;
} else {
PreloadChunks(0);
}
}
InitIndexEntry();
}
mListener.swap(listener);
}
listener->OnFileReady(aResult, isNew);
return NS_OK;
}
nsresult CacheFile::OnMetadataWritten(nsresult aResult) {
CacheFileAutoLock lock(this);
LOG(("CacheFile::OnMetadataWritten() [this=%p, rv=0x%08" PRIx32 "]", this,
static_cast<uint32_t>(aResult)));
MOZ_ASSERT(mWritingMetadata);
mWritingMetadata = false;
MOZ_ASSERT(!mMemoryOnly);
MOZ_ASSERT(!mOpeningFile);
if (NS_WARN_IF(NS_FAILED(aResult))) {
// TODO close streams with an error ???
SetError(aResult);
}
if (mOutput || mInputs.Length() || mChunks.Count()) return NS_OK;
if (IsDirty()) WriteMetadataIfNeededLocked();
if (!mWritingMetadata) {
LOG(("CacheFile::OnMetadataWritten() - Releasing file handle [this=%p]",
this));
CacheFileIOManager::ReleaseNSPRHandle(mHandle);
}
return NS_OK;
}
nsresult CacheFile::OnFileDoomed(CacheFileHandle* aHandle, nsresult aResult) {
nsCOMPtr<CacheFileListener> listener;
{
CacheFileAutoLock lock(this);
MOZ_ASSERT(mListener);
LOG(("CacheFile::OnFileDoomed() [this=%p, rv=0x%08" PRIx32 ", handle=%p]",
this, static_cast<uint32_t>(aResult), aHandle));
mListener.swap(listener);
}
listener->OnFileDoomed(aResult);
return NS_OK;
}
nsresult CacheFile::OnEOFSet(CacheFileHandle* aHandle, nsresult aResult) {
MOZ_CRASH("CacheFile::OnEOFSet should not be called!");
return NS_ERROR_UNEXPECTED;
}
nsresult CacheFile::OnFileRenamed(CacheFileHandle* aHandle, nsresult aResult) {
MOZ_CRASH("CacheFile::OnFileRenamed should not be called!");
return NS_ERROR_UNEXPECTED;
}
bool CacheFile::IsKilled() {
bool killed = mKill;
if (killed) {
LOG(("CacheFile is killed, this=%p", this));
}
return killed;
}
nsresult CacheFile::OpenInputStream(nsICacheEntry* aEntryHandle,
nsIInputStream** _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mHandle || mMemoryOnly || mOpeningFile);
if (!mReady) {
LOG(("CacheFile::OpenInputStream() - CacheFile is not ready [this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (NS_FAILED(mStatus)) {
LOG(
("CacheFile::OpenInputStream() - CacheFile is in a failure state "
"[this=%p, status=0x%08" PRIx32 "]",
this, static_cast<uint32_t>(mStatus)));
// Don't allow opening the input stream when this CacheFile is in
// a failed state. This is the only way to protect consumers correctly
// from reading a broken entry. When the file is in the failed state,
// it's also doomed, so reopening the entry won't make any difference -
// data will still be inaccessible anymore. Note that for just doomed
// files, we must allow reading the data.
return mStatus;
}
// Once we open input stream we no longer allow preloading of chunks without
// input stream, i.e. we will no longer keep first few chunks preloaded when
// the last input stream is closed.
mPreloadWithoutInputStreams = false;
CacheFileInputStream* input =
new CacheFileInputStream(this, aEntryHandle, false);
LOG(("CacheFile::OpenInputStream() - Creating new input stream %p [this=%p]",
input, this));
mInputs.AppendElement(input);
NS_ADDREF(input);
mDataAccessed = true;
*_retval = do_AddRef(input).take();
return NS_OK;
}
nsresult CacheFile::OpenAlternativeInputStream(nsICacheEntry* aEntryHandle,
const char* aAltDataType,
nsIInputStream** _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mHandle || mMemoryOnly || mOpeningFile);
if (NS_WARN_IF(!mReady)) {
LOG(
("CacheFile::OpenAlternativeInputStream() - CacheFile is not ready "
"[this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (mAltDataOffset == -1) {
LOG(
("CacheFile::OpenAlternativeInputStream() - Alternative data is not "
"available [this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (NS_FAILED(mStatus)) {
LOG(
("CacheFile::OpenAlternativeInputStream() - CacheFile is in a failure "
"state [this=%p, status=0x%08" PRIx32 "]",
this, static_cast<uint32_t>(mStatus)));
// Don't allow opening the input stream when this CacheFile is in
// a failed state. This is the only way to protect consumers correctly
// from reading a broken entry. When the file is in the failed state,
// it's also doomed, so reopening the entry won't make any difference -
// data will still be inaccessible anymore. Note that for just doomed
// files, we must allow reading the data.
return mStatus;
}
if (mAltDataType != aAltDataType) {
LOG(
("CacheFile::OpenAlternativeInputStream() - Alternative data is of a "
"different type than requested [this=%p, availableType=%s, "
"requestedType=%s]",
this, mAltDataType.get(), aAltDataType));
return NS_ERROR_NOT_AVAILABLE;
}
// Once we open input stream we no longer allow preloading of chunks without
// input stream, i.e. we will no longer keep first few chunks preloaded when
// the last input stream is closed.
mPreloadWithoutInputStreams = false;
CacheFileInputStream* input =
new CacheFileInputStream(this, aEntryHandle, true);
LOG(
("CacheFile::OpenAlternativeInputStream() - Creating new input stream %p "
"[this=%p]",
input, this));
mInputs.AppendElement(input);
NS_ADDREF(input);
mDataAccessed = true;
*_retval = do_AddRef(input).take();
return NS_OK;
}
nsresult CacheFile::OpenOutputStream(CacheOutputCloseListener* aCloseListener,
nsIOutputStream** _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mHandle || mMemoryOnly || mOpeningFile);
nsresult rv;
if (!mReady) {
LOG(("CacheFile::OpenOutputStream() - CacheFile is not ready [this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (mOutput) {
LOG(
("CacheFile::OpenOutputStream() - We already have output stream %p "
"[this=%p]",
mOutput, this));
return NS_ERROR_NOT_AVAILABLE;
}
if (NS_FAILED(mStatus)) {
LOG(
("CacheFile::OpenOutputStream() - CacheFile is in a failure state "
"[this=%p, status=0x%08" PRIx32 "]",
this, static_cast<uint32_t>(mStatus)));
// The CacheFile is already doomed. It make no sense to allow to write any
// data to such entry.
return mStatus;
}
// Fail if there is any input stream opened for alternative data
for (uint32_t i = 0; i < mInputs.Length(); ++i) {
if (mInputs[i]->IsAlternativeData()) {
return NS_ERROR_NOT_AVAILABLE;
}
}
if (mAltDataOffset != -1) {
// Remove alt-data
rv = Truncate(mAltDataOffset);
if (NS_FAILED(rv)) {
LOG(
("CacheFile::OpenOutputStream() - Truncating alt-data failed "
"[rv=0x%08" PRIx32 "]",
static_cast<uint32_t>(rv)));
return rv;
}
SetAltMetadata(nullptr);
mAltDataOffset = -1;
mAltDataType.Truncate();
}
// Once we open output stream we no longer allow preloading of chunks without
// input stream. There is no reason to believe that some input stream will be
// opened soon. Otherwise we would cache unused chunks of all newly created
// entries until the CacheFile is destroyed.
mPreloadWithoutInputStreams = false;
mOutput = new CacheFileOutputStream(this, aCloseListener, false);
LOG(
("CacheFile::OpenOutputStream() - Creating new output stream %p "
"[this=%p]",
mOutput, this));
mDataAccessed = true;
*_retval = do_AddRef(mOutput).take();
return NS_OK;
}
nsresult CacheFile::OpenAlternativeOutputStream(
CacheOutputCloseListener* aCloseListener, const char* aAltDataType,
nsIAsyncOutputStream** _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mHandle || mMemoryOnly || mOpeningFile);
if (!mReady) {
LOG(
("CacheFile::OpenAlternativeOutputStream() - CacheFile is not ready "
"[this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (mOutput) {
LOG(
("CacheFile::OpenAlternativeOutputStream() - We already have output "
"stream %p [this=%p]",
mOutput, this));
return NS_ERROR_NOT_AVAILABLE;
}
if (NS_FAILED(mStatus)) {
LOG(
("CacheFile::OpenAlternativeOutputStream() - CacheFile is in a failure "
"state [this=%p, status=0x%08" PRIx32 "]",
this, static_cast<uint32_t>(mStatus)));
// The CacheFile is already doomed. It make no sense to allow to write any
// data to such entry.
return mStatus;
}
// Fail if there is any input stream opened for alternative data
for (uint32_t i = 0; i < mInputs.Length(); ++i) {
if (mInputs[i]->IsAlternativeData()) {
return NS_ERROR_NOT_AVAILABLE;
}
}
nsresult rv;
if (mAltDataOffset != -1) {
// Truncate old alt-data
rv = Truncate(mAltDataOffset);
if (NS_FAILED(rv)) {
LOG(
("CacheFile::OpenAlternativeOutputStream() - Truncating old alt-data "
"failed [rv=0x%08" PRIx32 "]",
static_cast<uint32_t>(rv)));
return rv;
}
} else {
mAltDataOffset = mDataSize;
}
nsAutoCString altMetadata;
CacheFileUtils::BuildAlternativeDataInfo(aAltDataType, mAltDataOffset,
altMetadata);
rv = SetAltMetadata(altMetadata.get());
if (NS_FAILED(rv)) {
LOG(
("CacheFile::OpenAlternativeOutputStream() - Set Metadata for alt-data"
"failed [rv=0x%08" PRIx32 "]",
static_cast<uint32_t>(rv)));
return rv;
}
// Once we open output stream we no longer allow preloading of chunks without
// input stream. There is no reason to believe that some input stream will be
// opened soon. Otherwise we would cache unused chunks of all newly created
// entries until the CacheFile is destroyed.
mPreloadWithoutInputStreams = false;
mOutput = new CacheFileOutputStream(this, aCloseListener, true);
LOG(
("CacheFile::OpenAlternativeOutputStream() - Creating new output stream "
"%p [this=%p]",
mOutput, this));
mDataAccessed = true;
mAltDataType = aAltDataType;
*_retval = do_AddRef(mOutput).take();
return NS_OK;
}
nsresult CacheFile::SetMemoryOnly() {
CacheFileAutoLock lock(this);
LOG(("CacheFile::SetMemoryOnly() mMemoryOnly=%d [this=%p]", mMemoryOnly,
this));
if (mMemoryOnly) return NS_OK;
MOZ_ASSERT(mReady);
if (!mReady) {
LOG(("CacheFile::SetMemoryOnly() - CacheFile is not ready [this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (mDataAccessed) {
LOG(("CacheFile::SetMemoryOnly() - Data was already accessed [this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
// TODO what to do when this isn't a new entry and has an existing metadata???
mMemoryOnly = true;
return NS_OK;
}
nsresult CacheFile::Doom(CacheFileListener* aCallback) {
LOG(("CacheFile::Doom() [this=%p, listener=%p]", this, aCallback));
CacheFileAutoLock lock(this);
return DoomLocked(aCallback);
}
nsresult CacheFile::DoomLocked(CacheFileListener* aCallback) {
AssertOwnsLock();
MOZ_ASSERT(mHandle || mMemoryOnly || mOpeningFile);
LOG(("CacheFile::DoomLocked() [this=%p, listener=%p]", this, aCallback));
nsresult rv = NS_OK;
if (mMemoryOnly) {
return NS_ERROR_FILE_NOT_FOUND;
}
if (mHandle && mHandle->IsDoomed()) {
return NS_ERROR_FILE_NOT_FOUND;
}
nsCOMPtr<CacheFileIOListener> listener;
if (aCallback || !mHandle) {
listener = new DoomFileHelper(aCallback);
}
if (mHandle) {
rv = CacheFileIOManager::DoomFile(mHandle, listener);
} else if (mOpeningFile) {
mDoomAfterOpenListener = listener;
}
return rv;
}
nsresult CacheFile::ThrowMemoryCachedData() {
CacheFileAutoLock lock(this);
LOG(("CacheFile::ThrowMemoryCachedData() [this=%p]", this));
if (mMemoryOnly) {
// This method should not be called when the CacheFile was initialized as
// memory-only, but it can be called when CacheFile end up as memory-only
// due to e.g. IO failure since CacheEntry doesn't know it.
LOG(
("CacheFile::ThrowMemoryCachedData() - Ignoring request because the "
"entry is memory-only. [this=%p]",
this));
return NS_ERROR_NOT_AVAILABLE;
}
if (mOpeningFile) {
// mayhemer, note: we shouldn't get here, since CacheEntry prevents loading
// entries from being purged.
LOG(
("CacheFile::ThrowMemoryCachedData() - Ignoring request because the "
"entry is still opening the file [this=%p]",
this));
return NS_ERROR_ABORT;
}
// We cannot release all cached chunks since we need to keep preloaded chunks
// in memory. See initialization of mPreloadChunkCount for explanation.
CleanUpCachedChunks();
return NS_OK;
}
nsresult CacheFile::GetElement(const char* aKey, char** _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
const char* value;
value = mMetadata->GetElement(aKey);
if (!value) return NS_ERROR_NOT_AVAILABLE;
*_retval = NS_xstrdup(value);
return NS_OK;
}
nsresult CacheFile::SetElement(const char* aKey, const char* aValue) {
CacheFileAutoLock lock(this);
LOG(("CacheFile::SetElement() this=%p", this));
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
if (!strcmp(aKey, CacheFileUtils::kAltDataKey)) {
NS_ERROR(
"alt-data element is reserved for internal use and must not be "
"changed via CacheFile::SetElement()");
return NS_ERROR_FAILURE;
}
PostWriteTimer();
return mMetadata->SetElement(aKey, aValue);
}
nsresult CacheFile::VisitMetaData(nsICacheEntryMetaDataVisitor* aVisitor) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
MOZ_ASSERT(mReady);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
mMetadata->Visit(aVisitor);
return NS_OK;
}
nsresult CacheFile::ElementsSize(uint32_t* _retval) {
CacheFileAutoLock lock(this);
if (!mMetadata) return NS_ERROR_NOT_AVAILABLE;
*_retval = mMetadata->ElementsSize();
return NS_OK;
}
nsresult CacheFile::SetExpirationTime(uint32_t aExpirationTime) {
CacheFileAutoLock lock(this);
LOG(("CacheFile::SetExpirationTime() this=%p, expiration=%u", this,
aExpirationTime));
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
PostWriteTimer();
mMetadata->SetExpirationTime(aExpirationTime);
return NS_OK;
}
nsresult CacheFile::GetExpirationTime(uint32_t* _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
*_retval = mMetadata->GetExpirationTime();
return NS_OK;
}
nsresult CacheFile::SetFrecency(uint32_t aFrecency) {
CacheFileAutoLock lock(this);
LOG(("CacheFile::SetFrecency() this=%p, frecency=%u", this, aFrecency));
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
PostWriteTimer();
if (mHandle && !mHandle->IsDoomed()) {
CacheFileIOManager::UpdateIndexEntry(mHandle, &aFrecency, nullptr, nullptr,
nullptr, nullptr);
}
mMetadata->SetFrecency(aFrecency);
return NS_OK;
}
nsresult CacheFile::GetFrecency(uint32_t* _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
*_retval = mMetadata->GetFrecency();
return NS_OK;
}
nsresult CacheFile::SetNetworkTimes(uint64_t aOnStartTime,
uint64_t aOnStopTime) {
CacheFileAutoLock lock(this);
LOG(("CacheFile::SetNetworkTimes() this=%p, aOnStartTime=%" PRIu64
", aOnStopTime=%" PRIu64 "",
this, aOnStartTime, aOnStopTime));
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
PostWriteTimer();
nsAutoCString onStartTime;
onStartTime.AppendInt(aOnStartTime);
nsresult rv =
mMetadata->SetElement("net-response-time-onstart", onStartTime.get());
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
nsAutoCString onStopTime;
onStopTime.AppendInt(aOnStopTime);
rv = mMetadata->SetElement("net-response-time-onstop", onStopTime.get());
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
uint16_t onStartTime16 = aOnStartTime <= kIndexTimeOutOfBound
? aOnStartTime
: kIndexTimeOutOfBound;
uint16_t onStopTime16 =
aOnStopTime <= kIndexTimeOutOfBound ? aOnStopTime : kIndexTimeOutOfBound;
if (mHandle && !mHandle->IsDoomed()) {
CacheFileIOManager::UpdateIndexEntry(
mHandle, nullptr, nullptr, &onStartTime16, &onStopTime16, nullptr);
}
return NS_OK;
}
nsresult CacheFile::GetOnStartTime(uint64_t* _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
const char* onStartTimeStr =
mMetadata->GetElement("net-response-time-onstart");
if (!onStartTimeStr) {
return NS_ERROR_NOT_AVAILABLE;
}
nsresult rv;
*_retval = nsDependentCString(onStartTimeStr).ToInteger64(&rv);
MOZ_ASSERT(NS_SUCCEEDED(rv));
return NS_OK;
}
nsresult CacheFile::GetOnStopTime(uint64_t* _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
const char* onStopTimeStr = mMetadata->GetElement("net-response-time-onstop");
if (!onStopTimeStr) {
return NS_ERROR_NOT_AVAILABLE;
}
nsresult rv;
*_retval = nsDependentCString(onStopTimeStr).ToInteger64(&rv);
MOZ_ASSERT(NS_SUCCEEDED(rv));
return NS_OK;
}
nsresult CacheFile::SetContentType(uint8_t aContentType) {
CacheFileAutoLock lock(this);
LOG(("CacheFile::SetContentType() this=%p, contentType=%u", this,
aContentType));
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
PostWriteTimer();
// Save the content type to metadata for case we need to rebuild the index.
nsAutoCString contentType;
contentType.AppendInt(aContentType);
nsresult rv = mMetadata->SetElement("ctid", contentType.get());
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
if (mHandle && !mHandle->IsDoomed()) {
CacheFileIOManager::UpdateIndexEntry(mHandle, nullptr, nullptr, nullptr,
nullptr, &aContentType);
}
return NS_OK;
}
nsresult CacheFile::SetAltMetadata(const char* aAltMetadata) {
AssertOwnsLock();
LOG(("CacheFile::SetAltMetadata() this=%p, aAltMetadata=%s", this,
aAltMetadata ? aAltMetadata : ""));
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
PostWriteTimer();
nsresult rv =
mMetadata->SetElement(CacheFileUtils::kAltDataKey, aAltMetadata);
bool hasAltData = !!aAltMetadata;
if (NS_FAILED(rv)) {
// Removing element shouldn't fail because it doesn't allocate memory.
mMetadata->SetElement(CacheFileUtils::kAltDataKey, nullptr);
mAltDataOffset = -1;
mAltDataType.Truncate();
hasAltData = false;
}
if (mHandle && !mHandle->IsDoomed()) {
CacheFileIOManager::UpdateIndexEntry(mHandle, nullptr, &hasAltData, nullptr,
nullptr, nullptr);
}
return rv;
}
nsresult CacheFile::GetLastModified(uint32_t* _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
*_retval = mMetadata->GetLastModified();
return NS_OK;
}
nsresult CacheFile::GetLastFetched(uint32_t* _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
*_retval = mMetadata->GetLastFetched();
return NS_OK;
}
nsresult CacheFile::GetFetchCount(uint32_t* _retval) {
CacheFileAutoLock lock(this);
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
*_retval = mMetadata->GetFetchCount();
return NS_OK;
}
nsresult CacheFile::GetDiskStorageSizeInKB(uint32_t* aDiskStorageSize) {
CacheFileAutoLock lock(this);
if (!mHandle) {
return NS_ERROR_NOT_AVAILABLE;
}
*aDiskStorageSize = mHandle->FileSizeInK();
return NS_OK;
}
nsresult CacheFile::OnFetched() {
CacheFileAutoLock lock(this);
LOG(("CacheFile::OnFetched() this=%p", this));
MOZ_ASSERT(mMetadata);
NS_ENSURE_TRUE(mMetadata, NS_ERROR_UNEXPECTED);
PostWriteTimer();
mMetadata->OnFetched();
return NS_OK;
}
void CacheFile::ReleaseOutsideLock(RefPtr<nsISupports> aObject) {
AssertOwnsLock();
mObjsToRelease.AppendElement(std::move(aObject));
}
nsresult CacheFile::GetChunkLocked(uint32_t aIndex, ECallerType aCaller,
CacheFileChunkListener* aCallback,
CacheFileChunk** _retval) {
AssertOwnsLock();
LOG(("CacheFile::GetChunkLocked() [this=%p, idx=%u, caller=%d, listener=%p]",
this, aIndex, aCaller, aCallback));
MOZ_ASSERT(mReady);
MOZ_ASSERT(mHandle || mMemoryOnly || mOpeningFile);
MOZ_ASSERT((aCaller == READER && aCallback) ||
(aCaller == WRITER && !aCallback) ||
(aCaller == PRELOADER && !aCallback));
// Preload chunks from disk when this is disk backed entry and the listener
// is reader.
bool preload = !mMemoryOnly && (aCaller == READER);
nsresult rv;
RefPtr<CacheFileChunk> chunk;
if (mChunks.Get(aIndex, getter_AddRefs(chunk))) {
LOG(("CacheFile::GetChunkLocked() - Found chunk %p in mChunks [this=%p]",
chunk.get(), this));
// Preloader calls this method to preload only non-loaded chunks.
MOZ_ASSERT(aCaller != PRELOADER, "Unexpected!");
// We might get failed chunk between releasing the lock in
// CacheFileChunk::OnDataWritten/Read and CacheFile::OnChunkWritten/Read
rv = chunk->GetStatus();
if (NS_FAILED(rv)) {
SetError(rv);
LOG(
("CacheFile::GetChunkLocked() - Found failed chunk in mChunks "
"[this=%p]",
this));
return rv;
}
if (chunk->IsReady() || aCaller == WRITER) {
chunk.swap(*_retval);
} else {
QueueChunkListener(aIndex, aCallback);
}
if (preload) {
PreloadChunks(aIndex + 1);
}
return NS_OK;
}
if (mCachedChunks.Get(aIndex, getter_AddRefs(chunk))) {
LOG(("CacheFile::GetChunkLocked() - Reusing cached chunk %p [this=%p]",
chunk.get(), this));
// Preloader calls this method to preload only non-loaded chunks.
MOZ_ASSERT(aCaller != PRELOADER, "Unexpected!");
mChunks.InsertOrUpdate(aIndex, RefPtr{chunk});
mCachedChunks.Remove(aIndex);
chunk->mFile = this;
chunk->mActiveChunk = true;
MOZ_ASSERT(chunk->IsReady());
chunk.swap(*_retval);
if (preload) {
PreloadChunks(aIndex + 1);
}
return NS_OK;
}
int64_t off = aIndex * static_cast<int64_t>(kChunkSize);
if (off < mDataSize) {
// We cannot be here if this is memory only entry since the chunk must exist
MOZ_ASSERT(!mMemoryOnly);
if (mMemoryOnly) {
// If this ever really happen it is better to fail rather than crashing on
// a null handle.
LOG(
("CacheFile::GetChunkLocked() - Unexpected state! Offset < mDataSize "
"for memory-only entry. [this=%p, off=%" PRId64
", mDataSize=%" PRId64 "]",
this, off, mDataSize));
return NS_ERROR_UNEXPECTED;
}
chunk = new CacheFileChunk(this, aIndex, aCaller == WRITER);
mChunks.InsertOrUpdate(aIndex, RefPtr{chunk});
chunk->mActiveChunk = true;
LOG(
("CacheFile::GetChunkLocked() - Reading newly created chunk %p from "
"the disk [this=%p]",
chunk.get(), this));
// Read the chunk from the disk
rv = chunk->Read(mHandle,
std::min(static_cast<uint32_t>(mDataSize - off),
static_cast<uint32_t>(kChunkSize)),
mMetadata->GetHash(aIndex), this);
if (NS_WARN_IF(NS_FAILED(rv))) {
RemoveChunkInternal(chunk, false);
return rv;
}
if (aCaller == WRITER) {
chunk.swap(*_retval);
} else if (aCaller != PRELOADER) {
QueueChunkListener(aIndex, aCallback);
}
if (preload) {
PreloadChunks(aIndex + 1);
}
return NS_OK;
}
if (off == mDataSize) {
if (aCaller == WRITER) {
// this listener is going to write to the chunk
chunk = new CacheFileChunk(this, aIndex, true);
mChunks.InsertOrUpdate(aIndex, RefPtr{chunk});
chunk->mActiveChunk = true;
LOG(("CacheFile::GetChunkLocked() - Created new empty chunk %p [this=%p]",
chunk.get(), this));
chunk->InitNew();
mMetadata->SetHash(aIndex, chunk->Hash());
if (HaveChunkListeners(aIndex)) {
rv = NotifyChunkListeners(aIndex, NS_OK, chunk);
NS_ENSURE_SUCCESS(rv, rv);
}
chunk.swap(*_retval);
return NS_OK;
}
} else {
if (aCaller == WRITER) {
// this chunk was requested by writer, but we need to fill the gap first
// Fill with zero the last chunk if it is incomplete
if (mDataSize % kChunkSize) {
rv = PadChunkWithZeroes(mDataSize / kChunkSize);
NS_ENSURE_SUCCESS(rv, rv);
MOZ_ASSERT(!(mDataSize % kChunkSize));
}
uint32_t startChunk = mDataSize / kChunkSize;
if (mMemoryOnly) {
// We need to create all missing CacheFileChunks if this is memory-only
// entry
for (uint32_t i = startChunk; i < aIndex; i++) {
rv = PadChunkWithZeroes(i);
NS_ENSURE_SUCCESS(rv, rv);
}
} else {
// We don't need to create CacheFileChunk for other empty chunks unless
// there is some input stream waiting for this chunk.
if (startChunk != aIndex) {
// Make sure the file contains zeroes at the end of the file
rv = CacheFileIOManager::TruncateSeekSetEOF(
mHandle, startChunk * kChunkSize, aIndex * kChunkSize, nullptr);
NS_ENSURE_SUCCESS(rv, rv);
}
for (uint32_t i = startChunk; i < aIndex; i++) {
if (HaveChunkListeners(i)) {
rv = PadChunkWithZeroes(i);
NS_ENSURE_SUCCESS(rv, rv);
} else {
mMetadata->SetHash(i, kEmptyChunkHash);
mDataSize = (i + 1) * kChunkSize;
}
}
}
MOZ_ASSERT(mDataSize == off);
rv = GetChunkLocked(aIndex, WRITER, nullptr, getter_AddRefs(chunk));
NS_ENSURE_SUCCESS(rv, rv);
chunk.swap(*_retval);
return NS_OK;
}
}
// We can be here only if the caller is reader since writer always create a
// new chunk above and preloader calls this method to preload only chunks that
// are not loaded but that do exist.
MOZ_ASSERT(aCaller == READER, "Unexpected!");
if (mOutput) {
// the chunk doesn't exist but mOutput may create it
QueueChunkListener(aIndex, aCallback);
} else {
return NS_ERROR_NOT_AVAILABLE;
}
return NS_OK;
}
void CacheFile::PreloadChunks(uint32_t aIndex) {
AssertOwnsLock();
uint32_t limit = aIndex + mPreloadChunkCount;
for (uint32_t i = aIndex; i < limit; ++i) {
int64_t off = i * static_cast<int64_t>(kChunkSize);
if (off >= mDataSize) {
// This chunk is beyond EOF.
return;
}
if (mChunks.GetWeak(i) || mCachedChunks.GetWeak(i)) {
// This chunk is already in memory or is being read right now.
continue;
}
LOG(("CacheFile::PreloadChunks() - Preloading chunk [this=%p, idx=%u]",
this, i));
RefPtr<CacheFileChunk> chunk;
GetChunkLocked(i, PRELOADER, nullptr, getter_AddRefs(chunk));
// We've checked that we don't have this chunk, so no chunk must be
// returned.
MOZ_ASSERT(!chunk);
}
}
bool CacheFile::ShouldCacheChunk(uint32_t aIndex) {
AssertOwnsLock();
#ifdef CACHE_CHUNKS
// We cache all chunks.
return true;
#else
if (mPreloadChunkCount != 0 && mInputs.Length() == 0 &&
mPreloadWithoutInputStreams && aIndex < mPreloadChunkCount) {
// We don't have any input stream yet, but it is likely that some will be
// opened soon. Keep first mPreloadChunkCount chunks in memory. The
// condition is here instead of in MustKeepCachedChunk() since these
// chunks should be preloaded and can be kept in memory as an optimization,
// but they can be released at any time until they are considered as
// preloaded chunks for any input stream.
return true;
}
// Cache only chunks that we really need to keep.
return MustKeepCachedChunk(aIndex);
#endif
}
bool CacheFile::MustKeepCachedChunk(uint32_t aIndex) {
AssertOwnsLock();
// We must keep the chunk when this is memory only entry or we don't have
// a handle yet.
if (mMemoryOnly || mOpeningFile) {
return true;
}
if (mPreloadChunkCount == 0) {
// Preloading of chunks is disabled
return false;
}
// Check whether this chunk should be considered as preloaded chunk for any
// existing input stream.
// maxPos is the position of the last byte in the given chunk
int64_t maxPos = static_cast<int64_t>(aIndex + 1) * kChunkSize - 1;
// minPos is the position of the first byte in a chunk that precedes the given
// chunk by mPreloadChunkCount chunks
int64_t minPos;
if (mPreloadChunkCount >= aIndex) {
minPos = 0;
} else {
minPos = static_cast<int64_t>(aIndex - mPreloadChunkCount) * kChunkSize;
}
for (uint32_t i = 0; i < mInputs.Length(); ++i) {
int64_t inputPos = mInputs[i]->GetPosition();
if (inputPos >= minPos && inputPos <= maxPos) {
return true;
}
}
return false;
}
nsresult CacheFile::DeactivateChunk(CacheFileChunk* aChunk) {
nsresult rv;
// Avoid lock reentrancy by increasing the RefCnt
RefPtr<CacheFileChunk> chunk = aChunk;
{
CacheFileAutoLock lock(this);
LOG(("CacheFile::DeactivateChunk() [this=%p, chunk=%p, idx=%u]", this,
aChunk, aChunk->Index()));
MOZ_ASSERT(mReady);
MOZ_ASSERT((mHandle && !mMemoryOnly && !mOpeningFile) ||
(!mHandle && mMemoryOnly && !mOpeningFile) ||
(!mHandle && !mMemoryOnly && mOpeningFile));
if (aChunk->mRefCnt != 2) {
LOG(
("CacheFile::DeactivateChunk() - Chunk is still used [this=%p, "
"chunk=%p, refcnt=%" PRIuPTR "]",
this, aChunk, aChunk->mRefCnt.get()));
// somebody got the reference before the lock was acquired
return NS_OK;
}
if (aChunk->mDiscardedChunk) {
aChunk->mActiveChunk = false;
ReleaseOutsideLock(
RefPtr<CacheFileChunkListener>(std::move(aChunk->mFile)));
DebugOnly<bool> removed = mDiscardedChunks.RemoveElement(aChunk);
MOZ_ASSERT(removed);
return NS_OK;
}
#ifdef DEBUG
{
// We can be here iff the chunk is in the hash table
RefPtr<CacheFileChunk> chunkCheck;
mChunks.Get(chunk->Index(), getter_AddRefs(chunkCheck));
MOZ_ASSERT(chunkCheck == chunk);
// We also shouldn't have any queued listener for this chunk
ChunkListeners* listeners;
mChunkListeners.Get(chunk->Index(), &listeners);
MOZ_ASSERT(!listeners);
}
#endif
if (NS_FAILED(chunk->GetStatus())) {
SetError(chunk->GetStatus());
}
if (NS_FAILED(mStatus)) {
// Don't write any chunk to disk since this entry will be doomed
LOG(
("CacheFile::DeactivateChunk() - Releasing chunk because of status "
"[this=%p, chunk=%p, mStatus=0x%08" PRIx32 "]",
this, chunk.get(), static_cast<uint32_t>(mStatus)));
RemoveChunkInternal(chunk, false);
return mStatus;
}
if (chunk->IsDirty() && !mMemoryOnly && !mOpeningFile) {
LOG(
("CacheFile::DeactivateChunk() - Writing dirty chunk to the disk "
"[this=%p]",
this));
mDataIsDirty = true;
rv = chunk->Write(mHandle, this);
if (NS_FAILED(rv)) {
LOG(
("CacheFile::DeactivateChunk() - CacheFileChunk::Write() failed "
"synchronously. Removing it. [this=%p, chunk=%p, rv=0x%08" PRIx32
"]",
this, chunk.get(), static_cast<uint32_t>(rv)));
RemoveChunkInternal(chunk, false);
SetError(rv);
return rv;
}
// Chunk will be removed in OnChunkWritten if it is still unused
// chunk needs to be released under the lock to be able to rely on
// CacheFileChunk::mRefCnt in CacheFile::OnChunkWritten()
chunk = nullptr;
return NS_OK;
}
bool keepChunk = ShouldCacheChunk(aChunk->Index());
LOG(("CacheFile::DeactivateChunk() - %s unused chunk [this=%p, chunk=%p]",
keepChunk ? "Caching" : "Releasing", this, chunk.get()));
RemoveChunkInternal(chunk, keepChunk);
if (!mMemoryOnly) WriteMetadataIfNeededLocked();
}
return NS_OK;
}
void CacheFile::RemoveChunkInternal(CacheFileChunk* aChunk, bool aCacheChunk) {
AssertOwnsLock();
aChunk->mActiveChunk = false;
ReleaseOutsideLock(RefPtr<CacheFileChunkListener>(std::move(aChunk->mFile)));
if (aCacheChunk) {
mCachedChunks.InsertOrUpdate(aChunk->Index(), RefPtr{aChunk});
}
mChunks.Remove(aChunk->Index());
}
bool CacheFile::OutputStreamExists(bool aAlternativeData) {
AssertOwnsLock();
if (!mOutput) {
return false;
}
return mOutput->IsAlternativeData() == aAlternativeData;
}
int64_t CacheFile::BytesFromChunk(uint32_t aIndex, bool aAlternativeData) {
AssertOwnsLock();
int64_t dataSize;
if (mAltDataOffset != -1) {
if (aAlternativeData) {
dataSize = mDataSize;
} else {
dataSize = mAltDataOffset;
}
} else {
MOZ_ASSERT(!aAlternativeData);
dataSize = mDataSize;
}
if (!dataSize) {
return 0;
}
// Index of the last existing chunk.
uint32_t lastChunk = (dataSize - 1) / kChunkSize;
if (aIndex > lastChunk) {
return 0;
}
// We can use only preloaded chunks for the given stream to calculate
// available bytes if this is an entry stored on disk, since only those
// chunks are guaranteed not to be released.
uint32_t maxPreloadedChunk;
if (mMemoryOnly) {
maxPreloadedChunk = lastChunk;
} else {
maxPreloadedChunk = std::min(aIndex + mPreloadChunkCount, lastChunk);
}
uint32_t i;
for (i = aIndex; i <= maxPreloadedChunk; ++i) {
CacheFileChunk* chunk;
chunk = mChunks.GetWeak(i);
if (chunk) {
MOZ_ASSERT(i == lastChunk || chunk->DataSize() == kChunkSize);
if (chunk->IsReady()) {
continue;
}
// don't search this chunk in cached
break;
}
chunk = mCachedChunks.GetWeak(i);
if (chunk) {
MOZ_ASSERT(i == lastChunk || chunk->DataSize() == kChunkSize);
continue;
}
break;
}
// theoretic bytes in advance
int64_t advance = int64_t(i - aIndex) * kChunkSize;
// real bytes till the end of the file
int64_t tail = dataSize - (aIndex * kChunkSize);
return std::min(advance, tail);
}
nsresult CacheFile::Truncate(int64_t aOffset) {
AssertOwnsLock();
LOG(("CacheFile::Truncate() [this=%p, offset=%" PRId64 "]", this, aOffset));
nsresult rv;
// If we ever need to truncate on non alt-data boundary, we need to handle
// existing input streams.
MOZ_ASSERT(aOffset == mAltDataOffset,
"Truncating normal data not implemented");
MOZ_ASSERT(mReady);
MOZ_ASSERT(!mOutput);
uint32_t lastChunk = 0;
if (mDataSize > 0) {
lastChunk = (mDataSize - 1) / kChunkSize;
}
uint32_t newLastChunk = 0;
if (aOffset > 0) {
newLastChunk = (aOffset - 1) / kChunkSize;
}
uint32_t bytesInNewLastChunk = aOffset - newLastChunk * kChunkSize;
LOG(
("CacheFileTruncate() - lastChunk=%u, newLastChunk=%u, "
"bytesInNewLastChunk=%u",
lastChunk, newLastChunk, bytesInNewLastChunk));
// Remove all truncated chunks from mCachedChunks
for (auto iter = mCachedChunks.Iter(); !iter.Done(); iter.Next()) {
uint32_t idx = iter.Key();
if (idx > newLastChunk) {
// This is unused chunk, simply remove it.
LOG(("CacheFile::Truncate() - removing cached chunk [idx=%u]", idx));
iter.Remove();
}
}
// We need to make sure no input stream holds a reference to a chunk we're
// going to discard. In theory, if alt-data begins at chunk boundary, input
// stream for normal data can get the chunk containing only alt-data via
// EnsureCorrectChunk() call. The input stream won't read the data from such
// chunk, but it will keep the reference until the stream is closed and we
// cannot simply discard this chunk.
int64_t maxInputChunk = -1;
for (uint32_t i = 0; i < mInputs.Length(); ++i) {
int64_t inputChunk = mInputs[i]->GetChunkIdx();
if (maxInputChunk < inputChunk) {
maxInputChunk = inputChunk;
}
MOZ_RELEASE_ASSERT(mInputs[i]->GetPosition() <= aOffset);
}
MOZ_RELEASE_ASSERT(maxInputChunk <= newLastChunk + 1);
if (maxInputChunk == newLastChunk + 1) {
// Truncating must be done at chunk boundary
MOZ_RELEASE_ASSERT(bytesInNewLastChunk == kChunkSize);
newLastChunk++;
bytesInNewLastChunk = 0;
LOG(
("CacheFile::Truncate() - chunk %p is still in use, using "
"newLastChunk=%u and bytesInNewLastChunk=%u",
mChunks.GetWeak(newLastChunk), newLastChunk, bytesInNewLastChunk));
}
// Discard all truncated chunks in mChunks
for (auto iter = mChunks.Iter(); !iter.Done(); iter.Next()) {
uint32_t idx = iter.Key();
if (idx > newLastChunk) {
RefPtr<CacheFileChunk>& chunk = iter.Data();
LOG(("CacheFile::Truncate() - discarding chunk [idx=%u, chunk=%p]", idx,
chunk.get()));
if (HaveChunkListeners(idx)) {
NotifyChunkListeners(idx, NS_ERROR_NOT_AVAILABLE, chunk);
}
chunk->mDiscardedChunk = true;
mDiscardedChunks.AppendElement(chunk);
iter.Remove();
}
}
// Remove hashes of all removed chunks from the metadata
for (uint32_t i = lastChunk; i > newLastChunk; --i) {
mMetadata->RemoveHash(i);
}
// Truncate new last chunk
if (bytesInNewLastChunk == kChunkSize) {
LOG(("CacheFile::Truncate() - not truncating last chunk."));
} else {
RefPtr<CacheFileChunk> chunk;
if (mChunks.Get(newLastChunk, getter_AddRefs(chunk))) {
LOG(("CacheFile::Truncate() - New last chunk %p got from mChunks.",
chunk.get()));
} else if (mCachedChunks.Get(newLastChunk, getter_AddRefs(chunk))) {
LOG(("CacheFile::Truncate() - New last chunk %p got from mCachedChunks.",
chunk.get()));
} else {
// New last chunk isn't loaded but we need to update the hash.
MOZ_ASSERT(!mMemoryOnly);
MOZ_ASSERT(mHandle);
rv = GetChunkLocked(newLastChunk, PRELOADER, nullptr,
getter_AddRefs(chunk));
if (NS_FAILED(rv)) {
return rv;
}
// We've checked that we don't have this chunk, so no chunk must be
// returned.
MOZ_ASSERT(!chunk);
if (!mChunks.Get(newLastChunk, getter_AddRefs(chunk))) {
return NS_ERROR_UNEXPECTED;
}
LOG(("CacheFile::Truncate() - New last chunk %p got from preloader.",
chunk.get()));
}
rv = chunk->GetStatus();
if (NS_FAILED(rv)) {
LOG(
("CacheFile::Truncate() - New last chunk is failed "
"[status=0x%08" PRIx32 "]",
static_cast<uint32_t>(rv)));
return rv;
}
chunk->Truncate(bytesInNewLastChunk);
// If the chunk is ready set the new hash now. If it's still being loaded
// CacheChunk::Truncate() made the chunk dirty and the hash will be updated
// in OnChunkWritten().
if (chunk->IsReady()) {
mMetadata->SetHash(newLastChunk, chunk->Hash());
}
}
if (mHandle) {
rv = CacheFileIOManager::TruncateSeekSetEOF(mHandle, aOffset, aOffset,
nullptr);
if (NS_FAILED(rv)) {
return rv;
}
}
mDataSize = aOffset;
return NS_OK;
}
static uint32_t StatusToTelemetryEnum(nsresult aStatus) {
if (NS_SUCCEEDED(aStatus)) {
return 0;
}
switch (aStatus) {
case NS_BASE_STREAM_CLOSED:
return 0; // Log this as a success
case NS_ERROR_OUT_OF_MEMORY:
return 2;
case NS_ERROR_FILE_NO_DEVICE_SPACE:
return 3;
case NS_ERROR_FILE_CORRUPTED:
return 4;
case NS_ERROR_FILE_NOT_FOUND:
return 5;
case NS_BINDING_ABORTED:
return 6;
default:
return 1; // other error
}
MOZ_ASSERT_UNREACHABLE("We should never get here");
}
void CacheFile::RemoveInput(CacheFileInputStream* aInput, nsresult aStatus) {
AssertOwnsLock();
LOG(("CacheFile::RemoveInput() [this=%p, input=%p, status=0x%08" PRIx32 "]",
this, aInput, static_cast<uint32_t>(aStatus)));
DebugOnly<bool> found{};
found = mInputs.RemoveElement(aInput);
MOZ_ASSERT(found);
ReleaseOutsideLock(
already_AddRefed<nsIInputStream>(static_cast<nsIInputStream*>(aInput)));
if (!mMemoryOnly) WriteMetadataIfNeededLocked();
// If the input didn't read all data, there might be left some preloaded
// chunks that won't be used anymore.
CleanUpCachedChunks();
Telemetry::Accumulate(Telemetry::NETWORK_CACHE_V2_INPUT_STREAM_STATUS,
StatusToTelemetryEnum(aStatus));
}
void CacheFile::RemoveOutput(CacheFileOutputStream* aOutput, nsresult aStatus) {
AssertOwnsLock();
nsresult rv;
LOG(("CacheFile::RemoveOutput() [this=%p, output=%p, status=0x%08" PRIx32 "]",
this, aOutput, static_cast<uint32_t>(aStatus)));
if (mOutput != aOutput) {
LOG(
("CacheFile::RemoveOutput() - This output was already removed, ignoring"
" call [this=%p]",
this));
return;
}
mOutput = nullptr;
// Cancel all queued chunk and update listeners that cannot be satisfied
NotifyListenersAboutOutputRemoval();
if (!mMemoryOnly) WriteMetadataIfNeededLocked();
// Make sure the CacheFile status is set to a failure when the output stream
// is closed with a fatal error. This way we propagate correctly and w/o any
// windows the failure state of this entry to end consumers.
if (NS_SUCCEEDED(mStatus) && NS_FAILED(aStatus) &&
aStatus != NS_BASE_STREAM_CLOSED) {
if (aOutput->IsAlternativeData()) {
MOZ_ASSERT(mAltDataOffset != -1);
// If there is no alt-data input stream truncate only alt-data, otherwise
// doom the entry.
bool altDataInputExists = false;
for (uint32_t i = 0; i < mInputs.Length(); ++i) {
if (mInputs[i]->IsAlternativeData()) {
altDataInputExists = true;
break;
}
}
if (altDataInputExists) {
SetError(aStatus);
} else {
rv = Truncate(mAltDataOffset);
if (NS_FAILED(rv)) {
LOG(
("CacheFile::RemoveOutput() - Truncating alt-data failed "
"[rv=0x%08" PRIx32 "]",
static_cast<uint32_t>(rv)));
SetError(aStatus);
} else {
SetAltMetadata(nullptr);
mAltDataOffset = -1;
mAltDataType.Truncate();
}
}
} else {
SetError(aStatus);
}
}
// Notify close listener as the last action
aOutput->NotifyCloseListener();
Telemetry::Accumulate(Telemetry::NETWORK_CACHE_V2_OUTPUT_STREAM_STATUS,
StatusToTelemetryEnum(aStatus));
}
nsresult CacheFile::NotifyChunkListener(CacheFileChunkListener* aCallback,
nsIEventTarget* aTarget,
nsresult aResult, uint32_t aChunkIdx,
CacheFileChunk* aChunk) {
LOG(
("CacheFile::NotifyChunkListener() [this=%p, listener=%p, target=%p, "
"rv=0x%08" PRIx32 ", idx=%u, chunk=%p]",
this, aCallback, aTarget, static_cast<uint32_t>(aResult), aChunkIdx,
aChunk));
RefPtr<NotifyChunkListenerEvent> ev;
ev = new NotifyChunkListenerEvent(aCallback, aResult, aChunkIdx, aChunk);
if (aTarget) {
return aTarget->Dispatch(ev, NS_DISPATCH_NORMAL);
}
return NS_DispatchToCurrentThread(ev);
}
void CacheFile::QueueChunkListener(uint32_t aIndex,
CacheFileChunkListener* aCallback) {
LOG(("CacheFile::QueueChunkListener() [this=%p, idx=%u, listener=%p]", this,
aIndex, aCallback));
AssertOwnsLock();
MOZ_ASSERT(aCallback);
ChunkListenerItem* item = new ChunkListenerItem();
item->mTarget = CacheFileIOManager::IOTarget();
if (!item->mTarget) {
LOG(
("CacheFile::QueueChunkListener() - Cannot get Cache I/O thread! Using "
"main thread for callback."));
item->mTarget = GetMainThreadSerialEventTarget();
}
item->mCallback = aCallback;
mChunkListeners.GetOrInsertNew(aIndex)->mItems.AppendElement(item);
}
nsresult CacheFile::NotifyChunkListeners(uint32_t aIndex, nsresult aResult,
CacheFileChunk* aChunk) {
LOG(("CacheFile::NotifyChunkListeners() [this=%p, idx=%u, rv=0x%08" PRIx32
", "
"chunk=%p]",
this, aIndex, static_cast<uint32_t>(aResult), aChunk));
AssertOwnsLock();
nsresult rv, rv2;
ChunkListeners* listeners;
mChunkListeners.Get(aIndex, &listeners);
MOZ_ASSERT(listeners);
rv = NS_OK;
for (uint32_t i = 0; i < listeners->mItems.Length(); i++) {
ChunkListenerItem* item = listeners->mItems[i];
rv2 = NotifyChunkListener(item->mCallback, item->mTarget, aResult, aIndex,
aChunk);
if (NS_FAILED(rv2) && NS_SUCCEEDED(rv)) rv = rv2;
delete item;
}
mChunkListeners.Remove(aIndex);
return rv;
}
bool CacheFile::HaveChunkListeners(uint32_t aIndex) {
AssertOwnsLock();
ChunkListeners* listeners;
mChunkListeners.Get(aIndex, &listeners);
return !!listeners;
}
void CacheFile::NotifyListenersAboutOutputRemoval() {
LOG(("CacheFile::NotifyListenersAboutOutputRemoval() [this=%p]", this));
AssertOwnsLock();
// First fail all chunk listeners that wait for non-existent chunk
for (auto iter = mChunkListeners.Iter(); !iter.Done(); iter.Next()) {
uint32_t idx = iter.Key();
auto* listeners = iter.UserData();
LOG(
("CacheFile::NotifyListenersAboutOutputRemoval() - fail "
"[this=%p, idx=%u]",
this, idx));
RefPtr<CacheFileChunk> chunk;
mChunks.Get(idx, getter_AddRefs(chunk));
if (chunk) {
// Skip these listeners because the chunk is being read. We don't have
// assertion here to check its state because it might be already in READY
// state while CacheFile::OnChunkRead() is waiting on Cache I/O thread for
// a lock so the listeners hasn't been notified yet. In any case, the
// listeners will be notified from CacheFile::OnChunkRead().
continue;
}
for (uint32_t i = 0; i < listeners->mItems.Length(); i++) {
ChunkListenerItem* item = listeners->mItems[i];
NotifyChunkListener(item->mCallback, item->mTarget,
NS_ERROR_NOT_AVAILABLE, idx, nullptr);
delete item;
}
iter.Remove();
}
// Fail all update listeners
for (const auto& entry : mChunks) {
const RefPtr<CacheFileChunk>& chunk = entry.GetData();
LOG(
("CacheFile::NotifyListenersAboutOutputRemoval() - fail2 "
"[this=%p, idx=%u]",
this, entry.GetKey()));
if (chunk->IsReady()) {
chunk->NotifyUpdateListeners();
}
}
}
bool CacheFile::DataSize(int64_t* aSize) {
CacheFileAutoLock lock(this);
if (OutputStreamExists(false)) {
return false;
}
if (mAltDataOffset == -1) {
*aSize = mDataSize;
} else {
*aSize = mAltDataOffset;
}
return true;
}
nsresult CacheFile::GetAltDataSize(int64_t* aSize) {
CacheFileAutoLock lock(this);
if (mOutput) {
return NS_ERROR_IN_PROGRESS;
}
if (mAltDataOffset == -1) {
return NS_ERROR_NOT_AVAILABLE;
}
*aSize = mDataSize - mAltDataOffset;
return NS_OK;
}
nsresult CacheFile::GetAltDataType(nsACString& aType) {
CacheFileAutoLock lock(this);
if (mAltDataOffset == -1) {
return NS_ERROR_NOT_AVAILABLE;
}
aType = mAltDataType;
return NS_OK;
}
bool CacheFile::IsDoomed() {
CacheFileAutoLock lock(this);
if (!mHandle) return false;
return mHandle->IsDoomed();
}
bool CacheFile::IsWriteInProgress() {
CacheFileAutoLock lock(this);
bool result = false;
if (!mMemoryOnly) {
result =
mDataIsDirty || (mMetadata && mMetadata->IsDirty()) || mWritingMetadata;
}
result = result || mOpeningFile || mOutput || mChunks.Count();
return result;
}
bool CacheFile::EntryWouldExceedLimit(int64_t aOffset, int64_t aSize,
bool aIsAltData) {
CacheFileAutoLock lock(this);
if (mSkipSizeCheck || aSize < 0) {
return false;
}
int64_t totalSize = aOffset + aSize;
if (aIsAltData) {
totalSize += (mAltDataOffset == -1) ? mDataSize : mAltDataOffset;
}
return CacheObserver::EntryIsTooBig(totalSize, !mMemoryOnly);
}
bool CacheFile::IsDirty() { return mDataIsDirty || mMetadata->IsDirty(); }
void CacheFile::WriteMetadataIfNeeded() {
LOG(("CacheFile::WriteMetadataIfNeeded() [this=%p]", this));
CacheFileAutoLock lock(this);
if (!mMemoryOnly) WriteMetadataIfNeededLocked();
}
void CacheFile::WriteMetadataIfNeededLocked(bool aFireAndForget) {
// When aFireAndForget is set to true, we are called from dtor.
// |this| must not be referenced after this method returns!
LOG(("CacheFile::WriteMetadataIfNeededLocked() [this=%p]", this));
nsresult rv;
AssertOwnsLock();
MOZ_ASSERT(!mMemoryOnly);
if (!mMetadata) {
MOZ_CRASH("Must have metadata here");
return;
}
if (NS_FAILED(mStatus)) return;
if (!IsDirty() || mOutput || mInputs.Length() || mChunks.Count() ||
mWritingMetadata || mOpeningFile || mKill) {
return;
}
if (!aFireAndForget) {
// if aFireAndForget is set, we are called from dtor. Write
// scheduler hard-refers CacheFile otherwise, so we cannot be here.
CacheFileIOManager::UnscheduleMetadataWrite(this);
}
LOG(("CacheFile::WriteMetadataIfNeededLocked() - Writing metadata [this=%p]",
this));
rv = mMetadata->WriteMetadata(mDataSize, aFireAndForget ? nullptr : this);
if (NS_SUCCEEDED(rv)) {
mWritingMetadata = true;
mDataIsDirty = false;
} else {
LOG(
("CacheFile::WriteMetadataIfNeededLocked() - Writing synchronously "
"failed [this=%p]",
this));
// TODO: close streams with error
SetError(rv);
}
}
void CacheFile::PostWriteTimer() {
if (mMemoryOnly) return;
LOG(("CacheFile::PostWriteTimer() [this=%p]", this));
CacheFileIOManager::ScheduleMetadataWrite(this);
}
void CacheFile::CleanUpCachedChunks() {
for (auto iter = mCachedChunks.Iter(); !iter.Done(); iter.Next()) {
uint32_t idx = iter.Key();
const RefPtr<CacheFileChunk>& chunk = iter.Data();
LOG(("CacheFile::CleanUpCachedChunks() [this=%p, idx=%u, chunk=%p]", this,
idx, chunk.get()));
if (MustKeepCachedChunk(idx)) {
LOG(("CacheFile::CleanUpCachedChunks() - Keeping chunk"));
continue;
}
LOG(("CacheFile::CleanUpCachedChunks() - Removing chunk"));
iter.Remove();
}
}
nsresult CacheFile::PadChunkWithZeroes(uint32_t aChunkIdx) {
AssertOwnsLock();
// This method is used to pad last incomplete chunk with zeroes or create
// a new chunk full of zeroes
MOZ_ASSERT(mDataSize / kChunkSize == aChunkIdx);
nsresult rv;
RefPtr<CacheFileChunk> chunk;
rv = GetChunkLocked(aChunkIdx, WRITER, nullptr, getter_AddRefs(chunk));
NS_ENSURE_SUCCESS(rv, rv);
LOG(
("CacheFile::PadChunkWithZeroes() - Zeroing hole in chunk %d, range %d-%d"
" [this=%p]",
aChunkIdx, chunk->DataSize(), kChunkSize - 1, this));
CacheFileChunkWriteHandle hnd = chunk->GetWriteHandle(kChunkSize);
if (!hnd.Buf()) {
ReleaseOutsideLock(std::move(chunk));
SetError(NS_ERROR_OUT_OF_MEMORY);
return NS_ERROR_OUT_OF_MEMORY;
}
uint32_t offset = hnd.DataSize();
memset(hnd.Buf() + offset, 0, kChunkSize - offset);
hnd.UpdateDataSize(offset, kChunkSize - offset);
ReleaseOutsideLock(std::move(chunk));
return NS_OK;
}
void CacheFile::SetError(nsresult aStatus) {
AssertOwnsLock();
if (NS_SUCCEEDED(mStatus)) {
mStatus = aStatus;
if (mHandle) {
CacheFileIOManager::DoomFile(mHandle, nullptr);
}
}
}
nsresult CacheFile::InitIndexEntry() {
AssertOwnsLock();
MOZ_ASSERT(mHandle);
if (mHandle->IsDoomed()) return NS_OK;
nsresult rv;
rv = CacheFileIOManager::InitIndexEntry(
mHandle, GetOriginAttrsHash(mMetadata->OriginAttributes()),
mMetadata->IsAnonymous(), mPinned);
NS_ENSURE_SUCCESS(rv, rv);
uint32_t frecency = mMetadata->GetFrecency();
bool hasAltData =
mMetadata->GetElement(CacheFileUtils::kAltDataKey) != nullptr;
static auto toUint16 = [](const char* s) -> uint16_t {
if (s) {
nsresult rv;
uint64_t n64 = nsDependentCString(s).ToInteger64(&rv);
MOZ_ASSERT(NS_SUCCEEDED(rv));
return n64 <= kIndexTimeOutOfBound ? n64 : kIndexTimeOutOfBound;
}
return kIndexTimeNotAvailable;
};
const char* onStartTimeStr =
mMetadata->GetElement("net-response-time-onstart");
uint16_t onStartTime = toUint16(onStartTimeStr);
const char* onStopTimeStr = mMetadata->GetElement("net-response-time-onstop");
uint16_t onStopTime = toUint16(onStopTimeStr);
const char* contentTypeStr = mMetadata->GetElement("ctid");
uint8_t contentType = nsICacheEntry::CONTENT_TYPE_UNKNOWN;
if (contentTypeStr) {
int64_t n64 = nsDependentCString(contentTypeStr).ToInteger64(&rv);
if (NS_FAILED(rv) || n64 < nsICacheEntry::CONTENT_TYPE_UNKNOWN ||
n64 >= nsICacheEntry::CONTENT_TYPE_LAST) {
n64 = nsICacheEntry::CONTENT_TYPE_UNKNOWN;
}
contentType = n64;
}
rv = CacheFileIOManager::UpdateIndexEntry(
mHandle, &frecency, &hasAltData, &onStartTime, &onStopTime, &contentType);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
size_t CacheFile::SizeOfExcludingThis(
mozilla::MallocSizeOf mallocSizeOf) const {
CacheFileAutoLock lock(const_cast<CacheFile*>(this));
size_t n = 0;
n += mKey.SizeOfExcludingThisIfUnshared(mallocSizeOf);
n += mChunks.ShallowSizeOfExcludingThis(mallocSizeOf);
for (const auto& chunk : mChunks.Values()) {
n += chunk->SizeOfIncludingThis(mallocSizeOf);
}
n += mCachedChunks.ShallowSizeOfExcludingThis(mallocSizeOf);
for (const auto& chunk : mCachedChunks.Values()) {
n += chunk->SizeOfIncludingThis(mallocSizeOf);
}
// Ignore metadata if it's still being read. It's not safe to access buffers
// in CacheFileMetadata because they might be reallocated on another thread
// outside CacheFile's lock.
if (mMetadata && mReady) {
n += mMetadata->SizeOfIncludingThis(mallocSizeOf);
}
// Input streams are not elsewhere reported.
n += mInputs.ShallowSizeOfExcludingThis(mallocSizeOf);
for (uint32_t i = 0; i < mInputs.Length(); ++i) {
n += mInputs[i]->SizeOfIncludingThis(mallocSizeOf);
}
// Output streams are not elsewhere reported.
if (mOutput) {
n += mOutput->SizeOfIncludingThis(mallocSizeOf);
}
// The listeners are usually classes reported just above.
n += mChunkListeners.ShallowSizeOfExcludingThis(mallocSizeOf);
n += mObjsToRelease.ShallowSizeOfExcludingThis(mallocSizeOf);
// mHandle reported directly from CacheFileIOManager.
return n;
}
size_t CacheFile::SizeOfIncludingThis(
mozilla::MallocSizeOf mallocSizeOf) const {
return mallocSizeOf(this) + SizeOfExcludingThis(mallocSizeOf);
}
} // namespace mozilla::net