зеркало из https://github.com/mozilla/gecko-dev.git
317 строки
7.2 KiB
C++
317 строки
7.2 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef mozilla_mscom_Ptr_h
|
|
#define mozilla_mscom_Ptr_h
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/DebugOnly.h"
|
|
#include "mozilla/mscom/EnsureMTA.h"
|
|
#include "mozilla/UniquePtr.h"
|
|
#include "nsError.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "nsXULAppAPI.h"
|
|
|
|
/**
|
|
* The glue code in mozilla::mscom often needs to pass around interface pointers
|
|
* belonging to a different apartment from the current one. We must not touch
|
|
* the reference counts of those objects on the wrong apartment. By using these
|
|
* UniquePtr specializations, we may ensure that the reference counts are always
|
|
* handled correctly.
|
|
*/
|
|
|
|
namespace mozilla {
|
|
namespace mscom {
|
|
|
|
namespace detail {
|
|
|
|
template <typename T>
|
|
struct MainThreadRelease
|
|
{
|
|
void operator()(T* aPtr)
|
|
{
|
|
if (!aPtr) {
|
|
return;
|
|
}
|
|
if (NS_IsMainThread()) {
|
|
aPtr->Release();
|
|
return;
|
|
}
|
|
DebugOnly<nsresult> rv =
|
|
NS_DispatchToMainThread(NewNonOwningRunnableMethod("mscom::MainThreadRelease",
|
|
aPtr,
|
|
&T::Release));
|
|
MOZ_ASSERT(NS_SUCCEEDED(rv));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct MTADelete
|
|
{
|
|
void operator()(T* aPtr)
|
|
{
|
|
if (!aPtr) {
|
|
return;
|
|
}
|
|
|
|
EnsureMTA::AsyncOperation([aPtr]() -> void {
|
|
delete aPtr;
|
|
});
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct MTARelease
|
|
{
|
|
void operator()(T* aPtr)
|
|
{
|
|
if (!aPtr) {
|
|
return;
|
|
}
|
|
|
|
// Static analysis doesn't recognize that, even though aPtr escapes the
|
|
// current scope, we are in effect moving our strong ref into the lambda.
|
|
void* ptr = aPtr;
|
|
EnsureMTA::AsyncOperation([ptr]() -> void {
|
|
reinterpret_cast<T*>(ptr)->Release();
|
|
});
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct MTAReleaseInChildProcess
|
|
{
|
|
void operator()(T* aPtr)
|
|
{
|
|
if (!aPtr) {
|
|
return;
|
|
}
|
|
|
|
if (XRE_IsParentProcess()) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
aPtr->Release();
|
|
return;
|
|
}
|
|
|
|
// Static analysis doesn't recognize that, even though aPtr escapes the
|
|
// current scope, we are in effect moving our strong ref into the lambda.
|
|
void* ptr = aPtr;
|
|
EnsureMTA::AsyncOperation([ptr]() -> void {
|
|
reinterpret_cast<T*>(ptr)->Release();
|
|
});
|
|
}
|
|
};
|
|
|
|
struct InterceptorTargetDeleter
|
|
{
|
|
void operator()(IUnknown* aPtr)
|
|
{
|
|
// We intentionally do not touch the refcounts of interceptor targets!
|
|
}
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
template <typename T>
|
|
using STAUniquePtr = mozilla::UniquePtr<T, detail::MainThreadRelease<T>>;
|
|
|
|
template <typename T>
|
|
using MTAUniquePtr = mozilla::UniquePtr<T, detail::MTARelease<T>>;
|
|
|
|
template <typename T>
|
|
using MTADeletePtr = mozilla::UniquePtr<T, detail::MTADelete<T>>;
|
|
|
|
template <typename T>
|
|
using ProxyUniquePtr = mozilla::UniquePtr<T, detail::MTAReleaseInChildProcess<T>>;
|
|
|
|
template <typename T>
|
|
using InterceptorTargetPtr =
|
|
mozilla::UniquePtr<T, detail::InterceptorTargetDeleter>;
|
|
|
|
namespace detail {
|
|
|
|
// We don't have direct access to UniquePtr's storage, so we use mPtrStorage
|
|
// to receive the pointer and then set the target inside the destructor.
|
|
template <typename T, typename Deleter>
|
|
class UniquePtrGetterAddRefs
|
|
{
|
|
public:
|
|
explicit UniquePtrGetterAddRefs(UniquePtr<T, Deleter>& aSmartPtr)
|
|
: mTargetSmartPtr(aSmartPtr)
|
|
, mPtrStorage(nullptr)
|
|
{
|
|
}
|
|
|
|
~UniquePtrGetterAddRefs()
|
|
{
|
|
mTargetSmartPtr.reset(mPtrStorage);
|
|
}
|
|
|
|
operator void**()
|
|
{
|
|
return reinterpret_cast<void**>(&mPtrStorage);
|
|
}
|
|
|
|
operator T**()
|
|
{
|
|
return &mPtrStorage;
|
|
}
|
|
|
|
T*& operator*()
|
|
{
|
|
return mPtrStorage;
|
|
}
|
|
|
|
private:
|
|
UniquePtr<T, Deleter>& mTargetSmartPtr;
|
|
T* mPtrStorage;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
template <typename T>
|
|
inline STAUniquePtr<T>
|
|
ToSTAUniquePtr(RefPtr<T>&& aRefPtr)
|
|
{
|
|
return STAUniquePtr<T>(aRefPtr.forget().take());
|
|
}
|
|
|
|
template <typename T>
|
|
inline STAUniquePtr<T>
|
|
ToSTAUniquePtr(const RefPtr<T>& aRefPtr)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
return STAUniquePtr<T>(do_AddRef(aRefPtr).take());
|
|
}
|
|
|
|
template <typename T>
|
|
inline STAUniquePtr<T>
|
|
ToSTAUniquePtr(T* aRawPtr)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
if (aRawPtr) {
|
|
aRawPtr->AddRef();
|
|
}
|
|
return STAUniquePtr<T>(aRawPtr);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline STAUniquePtr<T>
|
|
ToSTAUniquePtr(const InterceptorTargetPtr<U>& aTarget)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
RefPtr<T> newRef(static_cast<T*>(aTarget.get()));
|
|
return ToSTAUniquePtr(Move(newRef));
|
|
}
|
|
|
|
template <typename T>
|
|
inline MTAUniquePtr<T>
|
|
ToMTAUniquePtr(RefPtr<T>&& aRefPtr)
|
|
{
|
|
return MTAUniquePtr<T>(aRefPtr.forget().take());
|
|
}
|
|
|
|
template <typename T>
|
|
inline MTAUniquePtr<T>
|
|
ToMTAUniquePtr(const RefPtr<T>& aRefPtr)
|
|
{
|
|
MOZ_ASSERT(IsCurrentThreadMTA());
|
|
return MTAUniquePtr<T>(do_AddRef(aRefPtr).take());
|
|
}
|
|
|
|
template <typename T>
|
|
inline MTAUniquePtr<T>
|
|
ToMTAUniquePtr(T* aRawPtr)
|
|
{
|
|
MOZ_ASSERT(IsCurrentThreadMTA());
|
|
if (aRawPtr) {
|
|
aRawPtr->AddRef();
|
|
}
|
|
return MTAUniquePtr<T>(aRawPtr);
|
|
}
|
|
|
|
template <typename T>
|
|
inline ProxyUniquePtr<T>
|
|
ToProxyUniquePtr(RefPtr<T>&& aRefPtr)
|
|
{
|
|
return ProxyUniquePtr<T>(aRefPtr.forget().take());
|
|
}
|
|
|
|
template <typename T>
|
|
inline ProxyUniquePtr<T>
|
|
ToProxyUniquePtr(const RefPtr<T>& aRefPtr)
|
|
{
|
|
MOZ_ASSERT(IsProxy(aRefPtr));
|
|
MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
|
|
(XRE_IsContentProcess() && IsCurrentThreadMTA()));
|
|
|
|
return ProxyUniquePtr<T>(do_AddRef(aRefPtr).take());
|
|
}
|
|
|
|
template <typename T>
|
|
inline ProxyUniquePtr<T>
|
|
ToProxyUniquePtr(T* aRawPtr)
|
|
{
|
|
MOZ_ASSERT(IsProxy(aRawPtr));
|
|
MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
|
|
(XRE_IsContentProcess() && IsCurrentThreadMTA()));
|
|
|
|
if (aRawPtr) {
|
|
aRawPtr->AddRef();
|
|
}
|
|
return ProxyUniquePtr<T>(aRawPtr);
|
|
}
|
|
|
|
template <typename T, typename Deleter>
|
|
inline InterceptorTargetPtr<T>
|
|
ToInterceptorTargetPtr(const UniquePtr<T, Deleter>& aTargetPtr)
|
|
{
|
|
return InterceptorTargetPtr<T>(aTargetPtr.get());
|
|
}
|
|
|
|
template <typename T, typename Deleter>
|
|
inline detail::UniquePtrGetterAddRefs<T, Deleter>
|
|
getter_AddRefs(UniquePtr<T, Deleter>& aSmartPtr)
|
|
{
|
|
return detail::UniquePtrGetterAddRefs<T, Deleter>(aSmartPtr);
|
|
}
|
|
|
|
} // namespace mscom
|
|
} // namespace mozilla
|
|
|
|
// This block makes it possible for these smart pointers to be correctly
|
|
// applied in NewRunnableMethod and friends
|
|
namespace detail {
|
|
|
|
template<typename T>
|
|
struct SmartPointerStorageClass<mozilla::mscom::STAUniquePtr<T>>
|
|
{
|
|
typedef StoreCopyPassByRRef<mozilla::mscom::STAUniquePtr<T>> Type;
|
|
};
|
|
|
|
template<typename T>
|
|
struct SmartPointerStorageClass<mozilla::mscom::MTAUniquePtr<T>>
|
|
{
|
|
typedef StoreCopyPassByRRef<mozilla::mscom::MTAUniquePtr<T>> Type;
|
|
};
|
|
|
|
template<typename T>
|
|
struct SmartPointerStorageClass<mozilla::mscom::ProxyUniquePtr<T>>
|
|
{
|
|
typedef StoreCopyPassByRRef<mozilla::mscom::ProxyUniquePtr<T>> Type;
|
|
};
|
|
|
|
template<typename T>
|
|
struct SmartPointerStorageClass<mozilla::mscom::InterceptorTargetPtr<T>>
|
|
{
|
|
typedef StoreCopyPassByRRef<mozilla::mscom::InterceptorTargetPtr<T>> Type;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
#endif // mozilla_mscom_Ptr_h
|
|
|