gecko-dev/image/decoders/nsAVIFDecoder.cpp

1991 строка
70 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ImageLogging.h" // Must appear first
#include "nsAVIFDecoder.h"
#include "aom/aomdx.h"
#include "DAV1DDecoder.h"
#include "gfxPlatform.h"
#include "YCbCrUtils.h"
#include "libyuv.h"
#include "SurfacePipeFactory.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TelemetryComms.h"
using namespace mozilla::gfx;
namespace mozilla {
namespace image {
using Telemetry::LABELS_AVIF_A1LX;
using Telemetry::LABELS_AVIF_A1OP;
using Telemetry::LABELS_AVIF_ALPHA;
using Telemetry::LABELS_AVIF_AOM_DECODE_ERROR;
using Telemetry::LABELS_AVIF_BIT_DEPTH;
using Telemetry::LABELS_AVIF_CICP_CP;
using Telemetry::LABELS_AVIF_CICP_MC;
using Telemetry::LABELS_AVIF_CICP_TC;
using Telemetry::LABELS_AVIF_CLAP;
using Telemetry::LABELS_AVIF_COLR;
using Telemetry::LABELS_AVIF_DECODE_RESULT;
using Telemetry::LABELS_AVIF_DECODER;
using Telemetry::LABELS_AVIF_GRID;
using Telemetry::LABELS_AVIF_IPRO;
using Telemetry::LABELS_AVIF_ISPE;
using Telemetry::LABELS_AVIF_LSEL;
using Telemetry::LABELS_AVIF_MAJOR_BRAND;
using Telemetry::LABELS_AVIF_PASP;
using Telemetry::LABELS_AVIF_PIXI;
using Telemetry::LABELS_AVIF_SEQUENCE;
using Telemetry::LABELS_AVIF_YUV_COLOR_SPACE;
static LazyLogModule sAVIFLog("AVIFDecoder");
static const LABELS_AVIF_BIT_DEPTH gColorDepthLabel[] = {
LABELS_AVIF_BIT_DEPTH::color_8, LABELS_AVIF_BIT_DEPTH::color_10,
LABELS_AVIF_BIT_DEPTH::color_12, LABELS_AVIF_BIT_DEPTH::color_16};
static const LABELS_AVIF_YUV_COLOR_SPACE gColorSpaceLabel[] = {
LABELS_AVIF_YUV_COLOR_SPACE::BT601, LABELS_AVIF_YUV_COLOR_SPACE::BT709,
LABELS_AVIF_YUV_COLOR_SPACE::BT2020, LABELS_AVIF_YUV_COLOR_SPACE::identity};
static MaybeIntSize GetImageSize(const Mp4parseAvifInfo& aInfo) {
// Note this does not take cropping via CleanAperture (clap) into account
const struct Mp4parseImageSpatialExtents* ispe = aInfo.spatial_extents;
if (ispe) {
// Decoder::PostSize takes int32_t, but ispe contains uint32_t
CheckedInt<int32_t> width = ispe->image_width;
CheckedInt<int32_t> height = ispe->image_height;
if (width.isValid() && height.isValid()) {
return Some(IntSize{width.value(), height.value()});
}
}
return Nothing();
}
// Translate the MIAF/HEIF-based orientation transforms (imir, irot) into
// ImageLib's representation. Note that the interpretation of imir was reversed
// Between HEIF (ISO 23008-12:2017) and ISO/IEC 23008-12:2017/DAmd 2. This is
// handled by mp4parse. See mp4parse::read_imir for details.
Orientation GetImageOrientation(const Mp4parseAvifInfo& aInfo) {
// Per MIAF (ISO/IEC 23000-22:2019) § 7.3.6.7
// These properties, if used, shall be indicated to be applied in the
// following order: clean aperture first, then rotation, then mirror.
// The Orientation type does the same order, but opposite rotation direction
const Mp4parseIrot heifRot = aInfo.image_rotation;
const Mp4parseImir* heifMir = aInfo.image_mirror;
Angle mozRot;
Flip mozFlip;
if (!heifMir) { // No mirroring
mozFlip = Flip::Unflipped;
switch (heifRot) {
case MP4PARSE_IROT_D0:
// ⥠ UPWARDS HARPOON WITH BARB LEFT FROM BAR
mozRot = Angle::D0;
break;
case MP4PARSE_IROT_D90:
// ⥞ LEFTWARDS HARPOON WITH BARB DOWN FROM BAR
mozRot = Angle::D270;
break;
case MP4PARSE_IROT_D180:
// ⥝ DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR
mozRot = Angle::D180;
break;
case MP4PARSE_IROT_D270:
// ⥛ RIGHTWARDS HARPOON WITH BARB UP FROM BAR
mozRot = Angle::D90;
break;
default:
MOZ_ASSERT_UNREACHABLE();
}
} else {
MOZ_ASSERT(heifMir);
mozFlip = Flip::Horizontal;
enum class HeifFlippedOrientation : uint8_t {
IROT_D0_IMIR_V = (MP4PARSE_IROT_D0 << 1) | MP4PARSE_IMIR_LEFT_RIGHT,
IROT_D0_IMIR_H = (MP4PARSE_IROT_D0 << 1) | MP4PARSE_IMIR_TOP_BOTTOM,
IROT_D90_IMIR_V = (MP4PARSE_IROT_D90 << 1) | MP4PARSE_IMIR_LEFT_RIGHT,
IROT_D90_IMIR_H = (MP4PARSE_IROT_D90 << 1) | MP4PARSE_IMIR_TOP_BOTTOM,
IROT_D180_IMIR_V = (MP4PARSE_IROT_D180 << 1) | MP4PARSE_IMIR_LEFT_RIGHT,
IROT_D180_IMIR_H = (MP4PARSE_IROT_D180 << 1) | MP4PARSE_IMIR_TOP_BOTTOM,
IROT_D270_IMIR_V = (MP4PARSE_IROT_D270 << 1) | MP4PARSE_IMIR_LEFT_RIGHT,
IROT_D270_IMIR_H = (MP4PARSE_IROT_D270 << 1) | MP4PARSE_IMIR_TOP_BOTTOM,
};
HeifFlippedOrientation heifO =
HeifFlippedOrientation((heifRot << 1) | *heifMir);
switch (heifO) {
case HeifFlippedOrientation::IROT_D0_IMIR_V:
case HeifFlippedOrientation::IROT_D180_IMIR_H:
// ⥜ UPWARDS HARPOON WITH BARB RIGHT FROM BAR
mozRot = Angle::D0;
break;
case HeifFlippedOrientation::IROT_D270_IMIR_V:
case HeifFlippedOrientation::IROT_D90_IMIR_H:
// ⥚ LEFTWARDS HARPOON WITH BARB UP FROM BAR
mozRot = Angle::D90;
break;
case HeifFlippedOrientation::IROT_D180_IMIR_V:
case HeifFlippedOrientation::IROT_D0_IMIR_H:
// ⥡ DOWNWARDS HARPOON WITH BARB LEFT FROM BAR
mozRot = Angle::D180;
break;
case HeifFlippedOrientation::IROT_D90_IMIR_V:
case HeifFlippedOrientation::IROT_D270_IMIR_H:
// ⥟ RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR
mozRot = Angle::D270;
break;
default:
MOZ_ASSERT_UNREACHABLE();
}
}
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("GetImageOrientation: (rot%d, imir(%s)) -> (Angle%d, "
"Flip%d)",
static_cast<int>(heifRot),
heifMir ? (*heifMir == MP4PARSE_IMIR_LEFT_RIGHT ? "left-right"
: "top-bottom")
: "none",
static_cast<int>(mozRot), static_cast<int>(mozFlip)));
return Orientation{mozRot, mozFlip};
}
bool AVIFDecoderStream::ReadAt(int64_t offset, void* data, size_t size,
size_t* bytes_read) {
size = std::min(size, size_t(mBuffer->length() - offset));
if (size <= 0) {
return false;
}
memcpy(data, mBuffer->begin() + offset, size);
*bytes_read = size;
return true;
}
bool AVIFDecoderStream::Length(int64_t* size) {
*size =
static_cast<int64_t>(std::min<uint64_t>(mBuffer->length(), INT64_MAX));
return true;
}
const uint8_t* AVIFDecoderStream::GetContiguousAccess(int64_t aOffset,
size_t aSize) {
if (aOffset + aSize >= mBuffer->length()) {
return nullptr;
}
return mBuffer->begin() + aOffset;
}
AVIFParser::~AVIFParser() {
MOZ_LOG(sAVIFLog, LogLevel::Debug, ("Destroy AVIFParser=%p", this));
}
Mp4parseStatus AVIFParser::Create(const Mp4parseIo* aIo, ByteStream* aBuffer,
UniquePtr<AVIFParser>& aParserOut,
bool aAllowSequences,
bool aAnimateAVIFMajor) {
MOZ_ASSERT(aIo);
MOZ_ASSERT(!aParserOut);
UniquePtr<AVIFParser> p(new AVIFParser(aIo));
Mp4parseStatus status = p->Init(aBuffer, aAllowSequences, aAnimateAVIFMajor);
if (status == MP4PARSE_STATUS_OK) {
MOZ_ASSERT(p->mParser);
aParserOut = std::move(p);
}
return status;
}
nsAVIFDecoder::DecodeResult AVIFParser::GetImage(AVIFImage& aImage) {
MOZ_ASSERT(mParser);
// If the AVIF is animated, get next frame and yield if sequence is not done.
if (IsAnimated()) {
aImage.mColorImage = mColorSampleIter->GetNext();
if (!aImage.mColorImage) {
return AsVariant(nsAVIFDecoder::NonDecoderResult::NoSamples);
}
aImage.mFrameNum = mFrameNum++;
int64_t durationMs = aImage.mColorImage->mDuration.ToMilliseconds();
aImage.mDuration = FrameTimeout::FromRawMilliseconds(
static_cast<int32_t>(std::min<int64_t>(durationMs, INT32_MAX)));
if (mAlphaSampleIter) {
aImage.mAlphaImage = mAlphaSampleIter->GetNext();
if (!aImage.mAlphaImage) {
return AsVariant(nsAVIFDecoder::NonDecoderResult::NoSamples);
}
}
bool hasNext = mColorSampleIter->HasNext();
if (mAlphaSampleIter && (hasNext != mAlphaSampleIter->HasNext())) {
MOZ_LOG(
sAVIFLog, LogLevel::Warning,
("[this=%p] The %s sequence ends before frame %d, aborting decode.",
this, hasNext ? "alpha" : "color", mFrameNum));
return AsVariant(nsAVIFDecoder::NonDecoderResult::NoSamples);
}
if (!hasNext) {
return AsVariant(nsAVIFDecoder::NonDecoderResult::Complete);
}
return AsVariant(nsAVIFDecoder::NonDecoderResult::OutputAvailable);
}
if (!mInfo.has_primary_item) {
return AsVariant(nsAVIFDecoder::NonDecoderResult::NoSamples);
}
// If the AVIF is not animated, get the pitm image and return Complete.
Mp4parseAvifImage image = {};
Mp4parseStatus status = mp4parse_avif_get_image(mParser.get(), &image);
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] mp4parse_avif_get_image -> %d; primary_item length: "
"%zu, alpha_item length: %zu",
this, status, image.primary_image.length, image.alpha_image.length));
if (status != MP4PARSE_STATUS_OK) {
return AsVariant(status);
}
MOZ_ASSERT(image.primary_image.data);
RefPtr<MediaRawData> colorImage =
new MediaRawData(image.primary_image.data, image.primary_image.length);
RefPtr<MediaRawData> alphaImage = nullptr;
if (image.alpha_image.length) {
alphaImage =
new MediaRawData(image.alpha_image.data, image.alpha_image.length);
}
aImage.mFrameNum = 0;
aImage.mDuration = FrameTimeout::Forever();
aImage.mColorImage = colorImage;
aImage.mAlphaImage = alphaImage;
return AsVariant(nsAVIFDecoder::NonDecoderResult::Complete);
}
AVIFParser::AVIFParser(const Mp4parseIo* aIo) : mIo(aIo) {
MOZ_ASSERT(mIo);
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("Create AVIFParser=%p, image.avif.compliance_strictness: %d", this,
StaticPrefs::image_avif_compliance_strictness()));
}
static Mp4parseStatus CreateSampleIterator(
Mp4parseAvifParser* aParser, ByteStream* aBuffer, uint32_t trackID,
UniquePtr<SampleIterator>& aIteratorOut) {
Mp4parseByteData data;
uint64_t timescale;
Mp4parseStatus rv =
mp4parse_avif_get_indice_table(aParser, trackID, &data, &timescale);
if (rv != MP4PARSE_STATUS_OK) {
return rv;
}
UniquePtr<IndiceWrapper> wrapper = MakeUnique<IndiceWrapper>(data);
RefPtr<MP4SampleIndex> index = new MP4SampleIndex(
*wrapper, aBuffer, trackID, false, AssertedCast<int32_t>(timescale));
aIteratorOut = MakeUnique<SampleIterator>(index);
return MP4PARSE_STATUS_OK;
}
Mp4parseStatus AVIFParser::Init(ByteStream* aBuffer, bool aAllowSequences,
bool aAnimateAVIFMajor) {
#define CHECK_MP4PARSE_STATUS(v) \
do { \
if ((v) != MP4PARSE_STATUS_OK) { \
return v; \
} \
} while (false)
MOZ_ASSERT(!mParser);
Mp4parseAvifParser* parser = nullptr;
Mp4parseStatus status =
mp4parse_avif_new(mIo,
static_cast<enum Mp4parseStrictness>(
StaticPrefs::image_avif_compliance_strictness()),
&parser);
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] mp4parse_avif_new status: %d", this, status));
CHECK_MP4PARSE_STATUS(status);
MOZ_ASSERT(parser);
mParser.reset(parser);
status = mp4parse_avif_get_info(mParser.get(), &mInfo);
CHECK_MP4PARSE_STATUS(status);
bool useSequence = mInfo.has_sequence;
if (useSequence) {
if (!aAllowSequences) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] AVIF sequences disabled", this));
useSequence = false;
} else if (!aAnimateAVIFMajor &&
!!memcmp(mInfo.major_brand, "avis", sizeof(mInfo.major_brand))) {
useSequence = false;
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] AVIF prefers still image", this));
}
}
if (useSequence) {
status = CreateSampleIterator(parser, aBuffer, mInfo.color_track_id,
mColorSampleIter);
CHECK_MP4PARSE_STATUS(status);
MOZ_ASSERT(mColorSampleIter);
if (mInfo.alpha_track_id) {
status = CreateSampleIterator(parser, aBuffer, mInfo.alpha_track_id,
mAlphaSampleIter);
CHECK_MP4PARSE_STATUS(status);
MOZ_ASSERT(mAlphaSampleIter);
}
}
return status;
}
bool AVIFParser::IsAnimated() const { return !!mColorSampleIter; }
// The gfx::YUVColorSpace value is only used in the conversion from YUV -> RGB.
// Typically this comes directly from the CICP matrix_coefficients value, but
// certain values require additionally considering the colour_primaries value.
// See `gfxUtils::CicpToColorSpace` for details. We return a gfx::YUVColorSpace
// rather than CICP::MatrixCoefficients, since that's what
// `gfx::ConvertYCbCrATo[A]RGB` uses. `aBitstreamColorSpaceFunc` abstracts the
// fact that different decoder libraries require different methods for
// extracting the CICP values from the AV1 bitstream and we don't want to do
// that work unnecessarily because in addition to wasted effort, it would make
// the logging more confusing.
template <typename F>
static gfx::YUVColorSpace GetAVIFColorSpace(
const Mp4parseNclxColourInformation* aNclx, F&& aBitstreamColorSpaceFunc) {
return ToMaybe(aNclx)
.map([=](const auto& nclx) {
return gfxUtils::CicpToColorSpace(
static_cast<CICP::MatrixCoefficients>(nclx.matrix_coefficients),
static_cast<CICP::ColourPrimaries>(nclx.colour_primaries),
sAVIFLog);
})
.valueOrFrom(aBitstreamColorSpaceFunc)
.valueOr(gfx::YUVColorSpace::BT601);
}
static gfx::ColorRange GetAVIFColorRange(
const Mp4parseNclxColourInformation* aNclx,
const gfx::ColorRange av1ColorRange) {
return ToMaybe(aNclx)
.map([=](const auto& nclx) {
return aNclx->full_range_flag ? gfx::ColorRange::FULL
: gfx::ColorRange::LIMITED;
})
.valueOr(av1ColorRange);
}
void AVIFDecodedData::SetCicpValues(
const Mp4parseNclxColourInformation* aNclx,
const gfx::CICP::ColourPrimaries aAv1ColourPrimaries,
const gfx::CICP::TransferCharacteristics aAv1TransferCharacteristics,
const gfx::CICP::MatrixCoefficients aAv1MatrixCoefficients) {
auto cp = CICP::ColourPrimaries::CP_UNSPECIFIED;
auto tc = CICP::TransferCharacteristics::TC_UNSPECIFIED;
auto mc = CICP::MatrixCoefficients::MC_UNSPECIFIED;
if (aNclx) {
cp = static_cast<CICP::ColourPrimaries>(aNclx->colour_primaries);
tc = static_cast<CICP::TransferCharacteristics>(
aNclx->transfer_characteristics);
mc = static_cast<CICP::MatrixCoefficients>(aNclx->matrix_coefficients);
}
if (cp == CICP::ColourPrimaries::CP_UNSPECIFIED) {
if (aAv1ColourPrimaries != CICP::ColourPrimaries::CP_UNSPECIFIED) {
cp = aAv1ColourPrimaries;
MOZ_LOG(sAVIFLog, LogLevel::Info,
("Unspecified colour_primaries value specified in colr box, "
"using AV1 sequence header (%hhu)",
cp));
} else {
cp = CICP::ColourPrimaries::CP_BT709;
MOZ_LOG(sAVIFLog, LogLevel::Warning,
("Unspecified colour_primaries value specified in colr box "
"or AV1 sequence header, using fallback value (%hhu)",
cp));
}
} else if (cp != aAv1ColourPrimaries) {
MOZ_LOG(sAVIFLog, LogLevel::Warning,
("colour_primaries mismatch: colr box = %hhu, AV1 "
"sequence header = %hhu, using colr box",
cp, aAv1ColourPrimaries));
}
if (tc == CICP::TransferCharacteristics::TC_UNSPECIFIED) {
if (aAv1TransferCharacteristics !=
CICP::TransferCharacteristics::TC_UNSPECIFIED) {
tc = aAv1TransferCharacteristics;
MOZ_LOG(sAVIFLog, LogLevel::Info,
("Unspecified transfer_characteristics value specified in "
"colr box, using AV1 sequence header (%hhu)",
tc));
} else {
tc = CICP::TransferCharacteristics::TC_SRGB;
MOZ_LOG(sAVIFLog, LogLevel::Warning,
("Unspecified transfer_characteristics value specified in "
"colr box or AV1 sequence header, using fallback value (%hhu)",
tc));
}
} else if (tc != aAv1TransferCharacteristics) {
MOZ_LOG(sAVIFLog, LogLevel::Warning,
("transfer_characteristics mismatch: colr box = %hhu, "
"AV1 sequence header = %hhu, using colr box",
tc, aAv1TransferCharacteristics));
}
if (mc == CICP::MatrixCoefficients::MC_UNSPECIFIED) {
if (aAv1MatrixCoefficients != CICP::MatrixCoefficients::MC_UNSPECIFIED) {
mc = aAv1MatrixCoefficients;
MOZ_LOG(sAVIFLog, LogLevel::Info,
("Unspecified matrix_coefficients value specified in "
"colr box, using AV1 sequence header (%hhu)",
mc));
} else {
mc = CICP::MatrixCoefficients::MC_BT601;
MOZ_LOG(sAVIFLog, LogLevel::Warning,
("Unspecified matrix_coefficients value specified in "
"colr box or AV1 sequence header, using fallback value (%hhu)",
mc));
}
} else if (mc != aAv1MatrixCoefficients) {
MOZ_LOG(sAVIFLog, LogLevel::Warning,
("matrix_coefficients mismatch: colr box = %hhu, "
"AV1 sequence header = %hhu, using colr box",
mc, aAv1TransferCharacteristics));
}
mColourPrimaries = cp;
mTransferCharacteristics = tc;
mMatrixCoefficients = mc;
}
class Dav1dDecoder final : AVIFDecoderInterface {
public:
~Dav1dDecoder() {
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("Destroy Dav1dDecoder=%p", this));
if (mColorContext) {
dav1d_close(&mColorContext);
MOZ_ASSERT(!mColorContext);
}
if (mAlphaContext) {
dav1d_close(&mAlphaContext);
MOZ_ASSERT(!mAlphaContext);
}
}
static DecodeResult Create(UniquePtr<AVIFDecoderInterface>& aDecoder,
bool aHasAlpha) {
UniquePtr<Dav1dDecoder> d(new Dav1dDecoder());
Dav1dResult r = d->Init(aHasAlpha);
if (r == 0) {
aDecoder.reset(d.release());
}
return AsVariant(r);
}
DecodeResult Decode(bool aShouldSendTelemetry,
const Mp4parseAvifInfo& aAVIFInfo,
const AVIFImage& aSamples) override {
MOZ_ASSERT(mColorContext);
MOZ_ASSERT(!mDecodedData);
MOZ_ASSERT(aSamples.mColorImage);
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("[this=%p] Decoding color", this));
OwnedDav1dPicture colorPic = OwnedDav1dPicture(new Dav1dPicture());
OwnedDav1dPicture alphaPic = nullptr;
Dav1dResult r = GetPicture(*mColorContext, *aSamples.mColorImage,
colorPic.get(), aShouldSendTelemetry);
if (r != 0) {
return AsVariant(r);
}
if (aSamples.mAlphaImage) {
MOZ_ASSERT(mAlphaContext);
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("[this=%p] Decoding alpha", this));
alphaPic = OwnedDav1dPicture(new Dav1dPicture());
r = GetPicture(*mAlphaContext, *aSamples.mAlphaImage, alphaPic.get(),
aShouldSendTelemetry);
if (r != 0) {
return AsVariant(r);
}
// Per § 4 of the AVIF spec
// https://aomediacodec.github.io/av1-avif/#auxiliary-images: An AV1
// Alpha Image Item […] shall be encoded with the same bit depth as the
// associated master AV1 Image Item
if (colorPic->p.bpc != alphaPic->p.bpc) {
return AsVariant(NonDecoderResult::AlphaYColorDepthMismatch);
}
if (colorPic->stride[0] != alphaPic->stride[0]) {
return AsVariant(NonDecoderResult::AlphaYSizeMismatch);
}
}
MOZ_ASSERT_IF(!alphaPic, !aAVIFInfo.premultiplied_alpha);
mDecodedData = Dav1dPictureToDecodedData(
aAVIFInfo.nclx_colour_information, std::move(colorPic),
std::move(alphaPic), aAVIFInfo.premultiplied_alpha);
return AsVariant(r);
}
private:
explicit Dav1dDecoder() {
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("Create Dav1dDecoder=%p", this));
}
Dav1dResult Init(bool aHasAlpha) {
MOZ_ASSERT(!mColorContext);
MOZ_ASSERT(!mAlphaContext);
Dav1dSettings settings;
dav1d_default_settings(&settings);
settings.all_layers = 0;
settings.max_frame_delay = 1;
// TODO: tune settings a la DAV1DDecoder for AV1 (Bug 1681816)
Dav1dResult r = dav1d_open(&mColorContext, &settings);
if (r != 0) {
return r;
}
MOZ_ASSERT(mColorContext);
if (aHasAlpha) {
r = dav1d_open(&mAlphaContext, &settings);
if (r != 0) {
return r;
}
MOZ_ASSERT(mAlphaContext);
}
return 0;
}
static Dav1dResult GetPicture(Dav1dContext& aContext,
const MediaRawData& aBytes,
Dav1dPicture* aPicture,
bool aShouldSendTelemetry) {
MOZ_ASSERT(aPicture);
Dav1dData dav1dData;
Dav1dResult r = dav1d_data_wrap(&dav1dData, aBytes.Data(), aBytes.Size(),
Dav1dFreeCallback_s, nullptr);
MOZ_LOG(
sAVIFLog, r == 0 ? LogLevel::Verbose : LogLevel::Error,
("dav1d_data_wrap(%p, %zu) -> %d", dav1dData.data, dav1dData.sz, r));
if (r != 0) {
return r;
}
r = dav1d_send_data(&aContext, &dav1dData);
MOZ_LOG(sAVIFLog, r == 0 ? LogLevel::Debug : LogLevel::Error,
("dav1d_send_data -> %d", r));
if (r != 0) {
return r;
}
r = dav1d_get_picture(&aContext, aPicture);
MOZ_LOG(sAVIFLog, r == 0 ? LogLevel::Debug : LogLevel::Error,
("dav1d_get_picture -> %d", r));
// We already have the AVIF_DECODE_RESULT histogram to record all the
// successful calls, so only bother recording what type of errors we see
// via events. Unlike AOM, dav1d returns an int, not an enum, so this is
// the easiest way to see if we're getting unexpected behavior to
// investigate.
if (aShouldSendTelemetry && r != 0) {
// Uncomment once bug 1691156 is fixed
// mozilla::Telemetry::SetEventRecordingEnabled("avif"_ns, true);
mozilla::Telemetry::RecordEvent(
mozilla::Telemetry::EventID::Avif_Dav1dGetPicture_ReturnValue,
Some(nsPrintfCString("%d", r)), Nothing());
}
return r;
}
// A dummy callback for dav1d_data_wrap
static void Dav1dFreeCallback_s(const uint8_t* aBuf, void* aCookie) {
// The buf is managed by the mParser inside Dav1dDecoder itself. Do
// nothing here.
}
static UniquePtr<AVIFDecodedData> Dav1dPictureToDecodedData(
const Mp4parseNclxColourInformation* aNclx, OwnedDav1dPicture aPicture,
OwnedDav1dPicture aAlphaPlane, bool aPremultipliedAlpha);
Dav1dContext* mColorContext = nullptr;
Dav1dContext* mAlphaContext = nullptr;
};
OwnedAOMImage::OwnedAOMImage() {
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("Create OwnedAOMImage=%p", this));
}
OwnedAOMImage::~OwnedAOMImage() {
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("Destroy OwnedAOMImage=%p", this));
}
bool OwnedAOMImage::CloneFrom(aom_image_t* aImage, bool aIsAlpha) {
MOZ_ASSERT(aImage);
MOZ_ASSERT(!mImage);
MOZ_ASSERT(!mBuffer);
uint8_t* srcY = aImage->planes[AOM_PLANE_Y];
int yStride = aImage->stride[AOM_PLANE_Y];
int yHeight = aom_img_plane_height(aImage, AOM_PLANE_Y);
size_t yBufSize = yStride * yHeight;
// If aImage is alpha plane. The data is located in Y channel.
if (aIsAlpha) {
mBuffer = MakeUnique<uint8_t[]>(yBufSize);
if (!mBuffer) {
return false;
}
uint8_t* destY = mBuffer.get();
memcpy(destY, srcY, yBufSize);
mImage.emplace(*aImage);
mImage->planes[AOM_PLANE_Y] = destY;
return true;
}
uint8_t* srcCb = aImage->planes[AOM_PLANE_U];
int cbStride = aImage->stride[AOM_PLANE_U];
int cbHeight = aom_img_plane_height(aImage, AOM_PLANE_U);
size_t cbBufSize = cbStride * cbHeight;
uint8_t* srcCr = aImage->planes[AOM_PLANE_V];
int crStride = aImage->stride[AOM_PLANE_V];
int crHeight = aom_img_plane_height(aImage, AOM_PLANE_V);
size_t crBufSize = crStride * crHeight;
mBuffer = MakeUnique<uint8_t[]>(yBufSize + cbBufSize + crBufSize);
if (!mBuffer) {
return false;
}
uint8_t* destY = mBuffer.get();
uint8_t* destCb = destY + yBufSize;
uint8_t* destCr = destCb + cbBufSize;
memcpy(destY, srcY, yBufSize);
memcpy(destCb, srcCb, cbBufSize);
memcpy(destCr, srcCr, crBufSize);
mImage.emplace(*aImage);
mImage->planes[AOM_PLANE_Y] = destY;
mImage->planes[AOM_PLANE_U] = destCb;
mImage->planes[AOM_PLANE_V] = destCr;
return true;
}
/* static */
OwnedAOMImage* OwnedAOMImage::CopyFrom(aom_image_t* aImage, bool aIsAlpha) {
MOZ_ASSERT(aImage);
UniquePtr<OwnedAOMImage> img(new OwnedAOMImage());
if (!img->CloneFrom(aImage, aIsAlpha)) {
return nullptr;
}
return img.release();
}
class AOMDecoder final : AVIFDecoderInterface {
public:
~AOMDecoder() {
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("Destroy AOMDecoder=%p", this));
if (mColorContext.isSome()) {
aom_codec_err_t r = aom_codec_destroy(mColorContext.ptr());
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] aom_codec_destroy -> %d", this, r));
}
if (mAlphaContext.isSome()) {
aom_codec_err_t r = aom_codec_destroy(mAlphaContext.ptr());
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] aom_codec_destroy -> %d", this, r));
}
}
static DecodeResult Create(UniquePtr<AVIFDecoderInterface>& aDecoder,
bool aHasAlpha) {
UniquePtr<AOMDecoder> d(new AOMDecoder());
aom_codec_err_t e = d->Init(aHasAlpha);
if (e == AOM_CODEC_OK) {
aDecoder.reset(d.release());
}
return AsVariant(AOMResult(e));
}
DecodeResult Decode(bool aShouldSendTelemetry,
const Mp4parseAvifInfo& aAVIFInfo,
const AVIFImage& aSamples) override {
MOZ_ASSERT(mColorContext.isSome());
MOZ_ASSERT(!mDecodedData);
MOZ_ASSERT(aSamples.mColorImage);
aom_image_t* aomImg = nullptr;
DecodeResult r = GetImage(*mColorContext, *aSamples.mColorImage, &aomImg,
aShouldSendTelemetry);
if (!IsDecodeSuccess(r)) {
return r;
}
MOZ_ASSERT(aomImg);
// The aomImg will be released in next GetImage call (aom_codec_decode
// actually). The GetImage could be called again immediately if parsedImg
// contains alpha data. Therefore, we need to copy the image and manage it
// by AOMDecoder itself.
OwnedAOMImage* clonedImg = OwnedAOMImage::CopyFrom(aomImg, false);
if (!clonedImg) {
return AsVariant(NonDecoderResult::OutOfMemory);
}
mOwnedImage.reset(clonedImg);
if (aSamples.mAlphaImage) {
MOZ_ASSERT(mAlphaContext.isSome());
aom_image_t* alphaImg = nullptr;
r = GetImage(*mAlphaContext, *aSamples.mAlphaImage, &alphaImg,
aShouldSendTelemetry);
if (!IsDecodeSuccess(r)) {
return r;
}
MOZ_ASSERT(alphaImg);
OwnedAOMImage* clonedAlphaImg = OwnedAOMImage::CopyFrom(alphaImg, true);
if (!clonedAlphaImg) {
return AsVariant(NonDecoderResult::OutOfMemory);
}
mOwnedAlphaPlane.reset(clonedAlphaImg);
// Per § 4 of the AVIF spec
// https://aomediacodec.github.io/av1-avif/#auxiliary-images: An AV1
// Alpha Image Item […] shall be encoded with the same bit depth as the
// associated master AV1 Image Item
MOZ_ASSERT(mOwnedImage->GetImage() && mOwnedAlphaPlane->GetImage());
if (mOwnedImage->GetImage()->bit_depth !=
mOwnedAlphaPlane->GetImage()->bit_depth) {
return AsVariant(NonDecoderResult::AlphaYColorDepthMismatch);
}
if (mOwnedImage->GetImage()->stride[AOM_PLANE_Y] !=
mOwnedAlphaPlane->GetImage()->stride[AOM_PLANE_Y]) {
return AsVariant(NonDecoderResult::AlphaYSizeMismatch);
}
}
MOZ_ASSERT_IF(!mOwnedAlphaPlane, !aAVIFInfo.premultiplied_alpha);
mDecodedData = AOMImageToToDecodedData(
aAVIFInfo.nclx_colour_information, std::move(mOwnedImage),
std::move(mOwnedAlphaPlane), aAVIFInfo.premultiplied_alpha);
return r;
}
private:
explicit AOMDecoder() {
MOZ_LOG(sAVIFLog, LogLevel::Verbose, ("Create AOMDecoder=%p", this));
}
aom_codec_err_t Init(bool aHasAlpha) {
MOZ_ASSERT(mColorContext.isNothing());
MOZ_ASSERT(mAlphaContext.isNothing());
aom_codec_iface_t* iface = aom_codec_av1_dx();
// Init color decoder context
mColorContext.emplace();
aom_codec_err_t r = aom_codec_dec_init(
mColorContext.ptr(), iface, /* cfg = */ nullptr, /* flags = */ 0);
MOZ_LOG(sAVIFLog, r == AOM_CODEC_OK ? LogLevel::Verbose : LogLevel::Error,
("[this=%p] color decoder: aom_codec_dec_init -> %d, name = %s",
this, r, mColorContext->name));
if (r != AOM_CODEC_OK) {
mColorContext.reset();
return r;
}
if (aHasAlpha) {
// Init alpha decoder context
mAlphaContext.emplace();
r = aom_codec_dec_init(mAlphaContext.ptr(), iface, /* cfg = */ nullptr,
/* flags = */ 0);
MOZ_LOG(sAVIFLog, r == AOM_CODEC_OK ? LogLevel::Verbose : LogLevel::Error,
("[this=%p] color decoder: aom_codec_dec_init -> %d, name = %s",
this, r, mAlphaContext->name));
if (r != AOM_CODEC_OK) {
mAlphaContext.reset();
return r;
}
}
return r;
}
static DecodeResult GetImage(aom_codec_ctx_t& aContext,
const MediaRawData& aData, aom_image_t** aImage,
bool aShouldSendTelemetry) {
aom_codec_err_t r =
aom_codec_decode(&aContext, aData.Data(), aData.Size(), nullptr);
MOZ_LOG(sAVIFLog, r == AOM_CODEC_OK ? LogLevel::Verbose : LogLevel::Error,
("aom_codec_decode -> %d", r));
if (aShouldSendTelemetry) {
switch (r) {
case AOM_CODEC_OK:
// No need to record any telemetry for the common case
break;
case AOM_CODEC_ERROR:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::error);
break;
case AOM_CODEC_MEM_ERROR:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::mem_error);
break;
case AOM_CODEC_ABI_MISMATCH:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::abi_mismatch);
break;
case AOM_CODEC_INCAPABLE:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::incapable);
break;
case AOM_CODEC_UNSUP_BITSTREAM:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::unsup_bitstream);
break;
case AOM_CODEC_UNSUP_FEATURE:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::unsup_feature);
break;
case AOM_CODEC_CORRUPT_FRAME:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::corrupt_frame);
break;
case AOM_CODEC_INVALID_PARAM:
AccumulateCategorical(LABELS_AVIF_AOM_DECODE_ERROR::invalid_param);
break;
default:
MOZ_ASSERT_UNREACHABLE(
"Unknown aom_codec_err_t value from aom_codec_decode");
}
}
if (r != AOM_CODEC_OK) {
return AsVariant(AOMResult(r));
}
aom_codec_iter_t iter = nullptr;
aom_image_t* img = aom_codec_get_frame(&aContext, &iter);
MOZ_LOG(sAVIFLog, img == nullptr ? LogLevel::Error : LogLevel::Verbose,
("aom_codec_get_frame -> %p", img));
if (img == nullptr) {
return AsVariant(AOMResult(NonAOMCodecError::NoFrame));
}
const CheckedInt<int> decoded_width = img->d_w;
const CheckedInt<int> decoded_height = img->d_h;
if (!decoded_height.isValid() || !decoded_width.isValid()) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("image dimensions can't be stored in int: d_w: %u, "
"d_h: %u",
img->d_w, img->d_h));
return AsVariant(AOMResult(NonAOMCodecError::SizeOverflow));
}
*aImage = img;
return AsVariant(AOMResult(r));
}
static UniquePtr<AVIFDecodedData> AOMImageToToDecodedData(
const Mp4parseNclxColourInformation* aNclx,
UniquePtr<OwnedAOMImage> aImage, UniquePtr<OwnedAOMImage> aAlphaPlane,
bool aPremultipliedAlpha);
Maybe<aom_codec_ctx_t> mColorContext;
Maybe<aom_codec_ctx_t> mAlphaContext;
UniquePtr<OwnedAOMImage> mOwnedImage;
UniquePtr<OwnedAOMImage> mOwnedAlphaPlane;
};
/* static */
UniquePtr<AVIFDecodedData> Dav1dDecoder::Dav1dPictureToDecodedData(
const Mp4parseNclxColourInformation* aNclx, OwnedDav1dPicture aPicture,
OwnedDav1dPicture aAlphaPlane, bool aPremultipliedAlpha) {
MOZ_ASSERT(aPicture);
static_assert(std::is_same<int, decltype(aPicture->p.w)>::value);
static_assert(std::is_same<int, decltype(aPicture->p.h)>::value);
UniquePtr<AVIFDecodedData> data = MakeUnique<AVIFDecodedData>();
data->mRenderSize.emplace(aPicture->frame_hdr->render_width,
aPicture->frame_hdr->render_height);
data->mYChannel = static_cast<uint8_t*>(aPicture->data[0]);
data->mYStride = aPicture->stride[0];
data->mYSkip = aPicture->stride[0] - aPicture->p.w;
data->mCbChannel = static_cast<uint8_t*>(aPicture->data[1]);
data->mCrChannel = static_cast<uint8_t*>(aPicture->data[2]);
data->mCbCrStride = aPicture->stride[1];
switch (aPicture->p.layout) {
case DAV1D_PIXEL_LAYOUT_I400: // Monochrome, so no Cb or Cr channels
break;
case DAV1D_PIXEL_LAYOUT_I420:
data->mChromaSubsampling = ChromaSubsampling::HALF_WIDTH_AND_HEIGHT;
break;
case DAV1D_PIXEL_LAYOUT_I422:
data->mChromaSubsampling = ChromaSubsampling::HALF_WIDTH;
break;
case DAV1D_PIXEL_LAYOUT_I444:
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown pixel layout");
}
data->mCbSkip = aPicture->stride[1] - aPicture->p.w;
data->mCrSkip = aPicture->stride[1] - aPicture->p.w;
data->mPictureRect = IntRect(0, 0, aPicture->p.w, aPicture->p.h);
data->mStereoMode = StereoMode::MONO;
data->mColorDepth = ColorDepthForBitDepth(aPicture->p.bpc);
MOZ_ASSERT(aPicture->p.bpc == BitDepthForColorDepth(data->mColorDepth));
data->mYUVColorSpace = GetAVIFColorSpace(aNclx, [&]() {
MOZ_LOG(sAVIFLog, LogLevel::Info,
("YUVColorSpace cannot be determined from colr box, using AV1 "
"sequence header"));
return DAV1DDecoder::GetColorSpace(*aPicture, sAVIFLog);
});
auto av1ColourPrimaries = CICP::ColourPrimaries::CP_UNSPECIFIED;
auto av1TransferCharacteristics =
CICP::TransferCharacteristics::TC_UNSPECIFIED;
auto av1MatrixCoefficients = CICP::MatrixCoefficients::MC_UNSPECIFIED;
MOZ_ASSERT(aPicture->seq_hdr);
auto& seq_hdr = *aPicture->seq_hdr;
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("seq_hdr.color_description_present: %d",
seq_hdr.color_description_present));
if (seq_hdr.color_description_present) {
av1ColourPrimaries = static_cast<CICP::ColourPrimaries>(seq_hdr.pri);
av1TransferCharacteristics =
static_cast<CICP::TransferCharacteristics>(seq_hdr.trc);
av1MatrixCoefficients = static_cast<CICP::MatrixCoefficients>(seq_hdr.mtrx);
}
data->SetCicpValues(aNclx, av1ColourPrimaries, av1TransferCharacteristics,
av1MatrixCoefficients);
gfx::ColorRange av1ColorRange =
seq_hdr.color_range ? gfx::ColorRange::FULL : gfx::ColorRange::LIMITED;
data->mColorRange = GetAVIFColorRange(aNclx, av1ColorRange);
auto colorPrimaries =
gfxUtils::CicpToColorPrimaries(data->mColourPrimaries, sAVIFLog);
if (colorPrimaries.isSome()) {
data->mColorPrimaries = *colorPrimaries;
}
if (aAlphaPlane) {
MOZ_ASSERT(aAlphaPlane->stride[0] == data->mYStride);
data->mAlpha.emplace();
data->mAlpha->mChannel = static_cast<uint8_t*>(aAlphaPlane->data[0]);
data->mAlpha->mSize = gfx::IntSize(aAlphaPlane->p.w, aAlphaPlane->p.h);
data->mAlpha->mPremultiplied = aPremultipliedAlpha;
}
data->mColorDav1d = std::move(aPicture);
data->mAlphaDav1d = std::move(aAlphaPlane);
return data;
}
/* static */
UniquePtr<AVIFDecodedData> AOMDecoder::AOMImageToToDecodedData(
const Mp4parseNclxColourInformation* aNclx, UniquePtr<OwnedAOMImage> aImage,
UniquePtr<OwnedAOMImage> aAlphaPlane, bool aPremultipliedAlpha) {
aom_image_t* colorImage = aImage->GetImage();
aom_image_t* alphaImage = aAlphaPlane ? aAlphaPlane->GetImage() : nullptr;
MOZ_ASSERT(colorImage);
MOZ_ASSERT(colorImage->stride[AOM_PLANE_Y] ==
colorImage->stride[AOM_PLANE_ALPHA]);
MOZ_ASSERT(colorImage->stride[AOM_PLANE_Y] >=
aom_img_plane_width(colorImage, AOM_PLANE_Y));
MOZ_ASSERT(colorImage->stride[AOM_PLANE_U] ==
colorImage->stride[AOM_PLANE_V]);
MOZ_ASSERT(colorImage->stride[AOM_PLANE_U] >=
aom_img_plane_width(colorImage, AOM_PLANE_U));
MOZ_ASSERT(colorImage->stride[AOM_PLANE_V] >=
aom_img_plane_width(colorImage, AOM_PLANE_V));
MOZ_ASSERT(aom_img_plane_width(colorImage, AOM_PLANE_U) ==
aom_img_plane_width(colorImage, AOM_PLANE_V));
MOZ_ASSERT(aom_img_plane_height(colorImage, AOM_PLANE_U) ==
aom_img_plane_height(colorImage, AOM_PLANE_V));
UniquePtr<AVIFDecodedData> data = MakeUnique<AVIFDecodedData>();
data->mRenderSize.emplace(colorImage->r_w, colorImage->r_h);
data->mYChannel = colorImage->planes[AOM_PLANE_Y];
data->mYStride = colorImage->stride[AOM_PLANE_Y];
data->mYSkip = colorImage->stride[AOM_PLANE_Y] -
aom_img_plane_width(colorImage, AOM_PLANE_Y);
data->mCbChannel = colorImage->planes[AOM_PLANE_U];
data->mCrChannel = colorImage->planes[AOM_PLANE_V];
data->mCbCrStride = colorImage->stride[AOM_PLANE_U];
data->mCbSkip = colorImage->stride[AOM_PLANE_U] -
aom_img_plane_width(colorImage, AOM_PLANE_U);
data->mCrSkip = colorImage->stride[AOM_PLANE_V] -
aom_img_plane_width(colorImage, AOM_PLANE_V);
data->mPictureRect = gfx::IntRect(0, 0, colorImage->d_w, colorImage->d_h);
data->mStereoMode = StereoMode::MONO;
data->mColorDepth = ColorDepthForBitDepth(colorImage->bit_depth);
if (colorImage->x_chroma_shift == 1 && colorImage->y_chroma_shift == 1) {
data->mChromaSubsampling = gfx::ChromaSubsampling::HALF_WIDTH_AND_HEIGHT;
} else if (colorImage->x_chroma_shift == 1 &&
colorImage->y_chroma_shift == 0) {
data->mChromaSubsampling = gfx::ChromaSubsampling::HALF_WIDTH;
} else if (colorImage->x_chroma_shift != 0 ||
colorImage->y_chroma_shift != 0) {
MOZ_ASSERT_UNREACHABLE("unexpected chroma shifts");
}
MOZ_ASSERT(colorImage->bit_depth == BitDepthForColorDepth(data->mColorDepth));
auto av1ColourPrimaries = static_cast<CICP::ColourPrimaries>(colorImage->cp);
auto av1TransferCharacteristics =
static_cast<CICP::TransferCharacteristics>(colorImage->tc);
auto av1MatrixCoefficients =
static_cast<CICP::MatrixCoefficients>(colorImage->mc);
data->mYUVColorSpace = GetAVIFColorSpace(aNclx, [=]() {
MOZ_LOG(sAVIFLog, LogLevel::Info,
("YUVColorSpace cannot be determined from colr box, using AV1 "
"sequence header"));
return gfxUtils::CicpToColorSpace(av1MatrixCoefficients, av1ColourPrimaries,
sAVIFLog);
});
gfx::ColorRange av1ColorRange;
if (colorImage->range == AOM_CR_STUDIO_RANGE) {
av1ColorRange = gfx::ColorRange::LIMITED;
} else {
MOZ_ASSERT(colorImage->range == AOM_CR_FULL_RANGE);
av1ColorRange = gfx::ColorRange::FULL;
}
data->mColorRange = GetAVIFColorRange(aNclx, av1ColorRange);
data->SetCicpValues(aNclx, av1ColourPrimaries, av1TransferCharacteristics,
av1MatrixCoefficients);
auto colorPrimaries =
gfxUtils::CicpToColorPrimaries(data->mColourPrimaries, sAVIFLog);
if (colorPrimaries.isSome()) {
data->mColorPrimaries = *colorPrimaries;
}
if (alphaImage) {
MOZ_ASSERT(alphaImage->stride[AOM_PLANE_Y] == data->mYStride);
data->mAlpha.emplace();
data->mAlpha->mChannel = alphaImage->planes[AOM_PLANE_Y];
data->mAlpha->mSize = gfx::IntSize(alphaImage->d_w, alphaImage->d_h);
data->mAlpha->mPremultiplied = aPremultipliedAlpha;
}
data->mColorAOM = std::move(aImage);
data->mAlphaAOM = std::move(aAlphaPlane);
return data;
}
// Wrapper to allow rust to call our read adaptor.
intptr_t nsAVIFDecoder::ReadSource(uint8_t* aDestBuf, uintptr_t aDestBufSize,
void* aUserData) {
MOZ_ASSERT(aDestBuf);
MOZ_ASSERT(aUserData);
MOZ_LOG(sAVIFLog, LogLevel::Verbose,
("AVIF ReadSource, aDestBufSize: %zu", aDestBufSize));
auto* decoder = reinterpret_cast<nsAVIFDecoder*>(aUserData);
MOZ_ASSERT(decoder->mReadCursor);
size_t bufferLength = decoder->mBufferedData.end() - decoder->mReadCursor;
size_t n_bytes = std::min(aDestBufSize, bufferLength);
MOZ_LOG(
sAVIFLog, LogLevel::Verbose,
("AVIF ReadSource, %zu bytes ready, copying %zu", bufferLength, n_bytes));
memcpy(aDestBuf, decoder->mReadCursor, n_bytes);
decoder->mReadCursor += n_bytes;
return n_bytes;
}
nsAVIFDecoder::nsAVIFDecoder(RasterImage* aImage) : Decoder(aImage) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] nsAVIFDecoder::nsAVIFDecoder", this));
}
nsAVIFDecoder::~nsAVIFDecoder() {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] nsAVIFDecoder::~nsAVIFDecoder", this));
}
LexerResult nsAVIFDecoder::DoDecode(SourceBufferIterator& aIterator,
IResumable* aOnResume) {
MOZ_LOG(sAVIFLog, LogLevel::Info,
("[this=%p] nsAVIFDecoder::DoDecode start", this));
DecodeResult result = DoDecodeInternal(aIterator, aOnResume);
RecordDecodeResultTelemetry(result);
if (result.is<NonDecoderResult>()) {
NonDecoderResult r = result.as<NonDecoderResult>();
if (r == NonDecoderResult::NeedMoreData) {
return LexerResult(Yield::NEED_MORE_DATA);
}
if (r == NonDecoderResult::OutputAvailable) {
MOZ_ASSERT(HasSize());
return LexerResult(Yield::OUTPUT_AVAILABLE);
}
if (r == NonDecoderResult::Complete) {
MOZ_ASSERT(HasSize());
return LexerResult(TerminalState::SUCCESS);
}
return LexerResult(TerminalState::FAILURE);
}
MOZ_ASSERT(result.is<Dav1dResult>() || result.is<AOMResult>() ||
result.is<Mp4parseStatus>());
// If IsMetadataDecode(), a successful parse should return
// NonDecoderResult::MetadataOk or else continue to the decode stage
MOZ_ASSERT_IF(result.is<Mp4parseStatus>(),
result.as<Mp4parseStatus>() != MP4PARSE_STATUS_OK);
auto rv = LexerResult(IsDecodeSuccess(result) ? TerminalState::SUCCESS
: TerminalState::FAILURE);
MOZ_LOG(sAVIFLog, LogLevel::Info,
("[this=%p] nsAVIFDecoder::DoDecode end", this));
return rv;
}
Mp4parseStatus nsAVIFDecoder::CreateParser() {
if (!mParser) {
Mp4parseIo io = {nsAVIFDecoder::ReadSource, this};
mBufferStream = new AVIFDecoderStream(&mBufferedData);
Mp4parseStatus status = AVIFParser::Create(
&io, mBufferStream.get(), mParser,
bool(GetDecoderFlags() & DecoderFlags::AVIF_SEQUENCES_ENABLED),
bool(GetDecoderFlags() & DecoderFlags::AVIF_ANIMATE_AVIF_MAJOR));
if (status != MP4PARSE_STATUS_OK) {
return status;
}
const Mp4parseAvifInfo& info = mParser->GetInfo();
mIsAnimated = mParser->IsAnimated();
mHasAlpha = mIsAnimated ? !!info.alpha_track_id : info.has_alpha_item;
}
return MP4PARSE_STATUS_OK;
}
nsAVIFDecoder::DecodeResult nsAVIFDecoder::CreateDecoder() {
if (!mDecoder) {
DecodeResult r = StaticPrefs::image_avif_use_dav1d()
? Dav1dDecoder::Create(mDecoder, mHasAlpha)
: AOMDecoder::Create(mDecoder, mHasAlpha);
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] Create %sDecoder %ssuccessfully", this,
StaticPrefs::image_avif_use_dav1d() ? "Dav1d" : "AOM",
IsDecodeSuccess(r) ? "" : "un"));
return r;
}
return StaticPrefs::image_avif_use_dav1d()
? DecodeResult(Dav1dResult(0))
: DecodeResult(AOMResult(AOM_CODEC_OK));
}
// Records all telemetry available in the AVIF metadata, called only once during
// the metadata decode to avoid multiple counts.
static void RecordMetadataTelem(const Mp4parseAvifInfo& aInfo) {
if (aInfo.pixel_aspect_ratio) {
const uint32_t& h_spacing = aInfo.pixel_aspect_ratio->h_spacing;
const uint32_t& v_spacing = aInfo.pixel_aspect_ratio->v_spacing;
if (h_spacing == 0 || v_spacing == 0) {
AccumulateCategorical(LABELS_AVIF_PASP::invalid);
} else if (h_spacing == v_spacing) {
AccumulateCategorical(LABELS_AVIF_PASP::square);
} else {
AccumulateCategorical(LABELS_AVIF_PASP::nonsquare);
}
} else {
AccumulateCategorical(LABELS_AVIF_PASP::absent);
}
const auto& major_brand = aInfo.major_brand;
if (!memcmp(major_brand, "avif", sizeof(major_brand))) {
AccumulateCategorical(LABELS_AVIF_MAJOR_BRAND::avif);
} else if (!memcmp(major_brand, "avis", sizeof(major_brand))) {
AccumulateCategorical(LABELS_AVIF_MAJOR_BRAND::avis);
} else {
AccumulateCategorical(LABELS_AVIF_MAJOR_BRAND::other);
}
AccumulateCategorical(aInfo.has_sequence ? LABELS_AVIF_SEQUENCE::present
: LABELS_AVIF_SEQUENCE::absent);
#define FEATURE_TELEMETRY(fourcc) \
AccumulateCategorical( \
(aInfo.unsupported_features_bitfield & (1 << MP4PARSE_FEATURE_##fourcc)) \
? LABELS_AVIF_##fourcc::present \
: LABELS_AVIF_##fourcc::absent)
FEATURE_TELEMETRY(A1LX);
FEATURE_TELEMETRY(A1OP);
FEATURE_TELEMETRY(CLAP);
FEATURE_TELEMETRY(GRID);
FEATURE_TELEMETRY(IPRO);
FEATURE_TELEMETRY(LSEL);
if (aInfo.nclx_colour_information && aInfo.icc_colour_information.data) {
AccumulateCategorical(LABELS_AVIF_COLR::both);
} else if (aInfo.nclx_colour_information) {
AccumulateCategorical(LABELS_AVIF_COLR::nclx);
} else if (aInfo.icc_colour_information.data) {
AccumulateCategorical(LABELS_AVIF_COLR::icc);
} else {
AccumulateCategorical(LABELS_AVIF_COLR::absent);
}
}
static void RecordPixiTelemetry(uint8_t aPixiBitDepth,
uint8_t aBitstreamBitDepth,
const char* aItemName) {
if (aPixiBitDepth == 0) {
AccumulateCategorical(LABELS_AVIF_PIXI::absent);
} else if (aPixiBitDepth == aBitstreamBitDepth) {
AccumulateCategorical(LABELS_AVIF_PIXI::valid);
} else {
MOZ_LOG(sAVIFLog, LogLevel::Error,
("%s item pixi bit depth (%hhu) doesn't match "
"bitstream (%hhu)",
aItemName, aPixiBitDepth, aBitstreamBitDepth));
AccumulateCategorical(LABELS_AVIF_PIXI::bitstream_mismatch);
}
}
// This telemetry depends on the results of decoding.
// These data must be recorded only on the first frame decoded after metadata
// decode finishes.
static void RecordFrameTelem(bool aAnimated, const Mp4parseAvifInfo& aInfo,
const AVIFDecodedData& aData) {
AccumulateCategorical(
gColorSpaceLabel[static_cast<size_t>(aData.mYUVColorSpace)]);
AccumulateCategorical(
gColorDepthLabel[static_cast<size_t>(aData.mColorDepth)]);
RecordPixiTelemetry(
aAnimated ? aInfo.color_track_bit_depth : aInfo.primary_item_bit_depth,
BitDepthForColorDepth(aData.mColorDepth), "color");
if (aData.mAlpha) {
AccumulateCategorical(LABELS_AVIF_ALPHA::present);
RecordPixiTelemetry(
aAnimated ? aInfo.alpha_track_bit_depth : aInfo.alpha_item_bit_depth,
BitDepthForColorDepth(aData.mColorDepth), "alpha");
} else {
AccumulateCategorical(LABELS_AVIF_ALPHA::absent);
}
if (CICP::IsReserved(aData.mColourPrimaries)) {
AccumulateCategorical(LABELS_AVIF_CICP_CP::RESERVED_REST);
} else {
AccumulateCategorical(
static_cast<LABELS_AVIF_CICP_CP>(aData.mColourPrimaries));
}
if (CICP::IsReserved(aData.mTransferCharacteristics)) {
AccumulateCategorical(LABELS_AVIF_CICP_TC::RESERVED);
} else {
AccumulateCategorical(
static_cast<LABELS_AVIF_CICP_TC>(aData.mTransferCharacteristics));
}
if (CICP::IsReserved(aData.mMatrixCoefficients)) {
AccumulateCategorical(LABELS_AVIF_CICP_MC::RESERVED);
} else {
AccumulateCategorical(
static_cast<LABELS_AVIF_CICP_MC>(aData.mMatrixCoefficients));
}
}
nsAVIFDecoder::DecodeResult nsAVIFDecoder::DoDecodeInternal(
SourceBufferIterator& aIterator, IResumable* aOnResume) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] nsAVIFDecoder::DoDecodeInternal", this));
// Since the SourceBufferIterator doesn't guarantee a contiguous buffer,
// but the current mp4parse-rust implementation requires it, always buffer
// locally. This keeps the code simpler at the cost of some performance, but
// this implementation is only experimental, so we don't want to spend time
// optimizing it prematurely.
while (!mReadCursor) {
SourceBufferIterator::State state =
aIterator.AdvanceOrScheduleResume(SIZE_MAX, aOnResume);
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] After advance, iterator state is %d", this, state));
switch (state) {
case SourceBufferIterator::WAITING:
return AsVariant(NonDecoderResult::NeedMoreData);
case SourceBufferIterator::COMPLETE:
mReadCursor = mBufferedData.begin();
break;
case SourceBufferIterator::READY: { // copy new data to buffer
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] SourceBufferIterator ready, %zu bytes available",
this, aIterator.Length()));
bool appendSuccess =
mBufferedData.append(aIterator.Data(), aIterator.Length());
if (!appendSuccess) {
MOZ_LOG(sAVIFLog, LogLevel::Error,
("[this=%p] Failed to append %zu bytes to buffer", this,
aIterator.Length()));
}
break;
}
default:
MOZ_ASSERT_UNREACHABLE("unexpected SourceBufferIterator state");
}
}
Mp4parseStatus parserStatus = CreateParser();
if (parserStatus != MP4PARSE_STATUS_OK) {
return AsVariant(parserStatus);
}
const Mp4parseAvifInfo& parsedInfo = mParser->GetInfo();
if (parsedInfo.icc_colour_information.data) {
const auto& icc = parsedInfo.icc_colour_information;
MOZ_LOG(
sAVIFLog, LogLevel::Debug,
("[this=%p] colr type ICC: %zu bytes %p", this, icc.length, icc.data));
}
if (IsMetadataDecode()) {
RecordMetadataTelem(parsedInfo);
}
if (parsedInfo.nclx_colour_information) {
const auto& nclx = *parsedInfo.nclx_colour_information;
MOZ_LOG(
sAVIFLog, LogLevel::Debug,
("[this=%p] colr type CICP: cp/tc/mc/full-range %u/%u/%u/%s", this,
nclx.colour_primaries, nclx.transfer_characteristics,
nclx.matrix_coefficients, nclx.full_range_flag ? "true" : "false"));
}
if (!parsedInfo.icc_colour_information.data &&
!parsedInfo.nclx_colour_information) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] colr box not present", this));
}
AVIFImage parsedImage;
DecodeResult r = mParser->GetImage(parsedImage);
if (!IsDecodeSuccess(r)) {
return r;
}
bool isDone =
!IsMetadataDecode() && r == DecodeResult(NonDecoderResult::Complete);
if (mIsAnimated) {
PostIsAnimated(parsedImage.mDuration);
}
if (mHasAlpha) {
PostHasTransparency();
}
Orientation orientation = StaticPrefs::image_avif_apply_transforms()
? GetImageOrientation(parsedInfo)
: Orientation{};
// TODO: Orientation should probably also apply to animated AVIFs.
if (mIsAnimated) {
orientation = Orientation{};
}
MaybeIntSize ispeImageSize = GetImageSize(parsedInfo);
bool sendDecodeTelemetry = IsMetadataDecode();
if (ispeImageSize.isSome()) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] Parser returned image size %d x %d (%d/%d bit)", this,
ispeImageSize->width, ispeImageSize->height,
mIsAnimated ? parsedInfo.color_track_bit_depth
: parsedInfo.primary_item_bit_depth,
mIsAnimated ? parsedInfo.alpha_track_bit_depth
: parsedInfo.alpha_item_bit_depth));
PostSize(ispeImageSize->width, ispeImageSize->height, orientation);
if (IsMetadataDecode()) {
MOZ_LOG(
sAVIFLog, LogLevel::Debug,
("[this=%p] Finishing metadata decode without image decode", this));
return AsVariant(NonDecoderResult::Complete);
}
// If we're continuing to decode here, this means we skipped decode
// telemetry for the metadata decode pass. Send it this time.
sendDecodeTelemetry = true;
} else {
MOZ_LOG(sAVIFLog, LogLevel::Error,
("[this=%p] Parser returned no image size, decoding...", this));
}
r = CreateDecoder();
if (!IsDecodeSuccess(r)) {
return r;
}
MOZ_ASSERT(mDecoder);
r = mDecoder->Decode(sendDecodeTelemetry, parsedInfo, parsedImage);
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] Decoder%s->Decode() %s", this,
StaticPrefs::image_avif_use_dav1d() ? "Dav1d" : "AOM",
IsDecodeSuccess(r) ? "succeeds" : "fails"));
if (!IsDecodeSuccess(r)) {
return r;
}
UniquePtr<AVIFDecodedData> decodedData = mDecoder->GetDecodedData();
MOZ_ASSERT_IF(mHasAlpha, decodedData->mAlpha.isSome());
MOZ_ASSERT(decodedData->mColourPrimaries !=
CICP::ColourPrimaries::CP_UNSPECIFIED);
MOZ_ASSERT(decodedData->mTransferCharacteristics !=
CICP::TransferCharacteristics::TC_UNSPECIFIED);
MOZ_ASSERT(decodedData->mColorRange <= gfx::ColorRange::_Last);
MOZ_ASSERT(decodedData->mYUVColorSpace <= gfx::YUVColorSpace::_Last);
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] decodedData.mColorRange: %hhd", this,
static_cast<uint8_t>(decodedData->mColorRange)));
// Technically it's valid but we don't handle it now (Bug 1682318).
if (decodedData->mAlpha &&
decodedData->mAlpha->mSize != decodedData->YDataSize()) {
return AsVariant(NonDecoderResult::AlphaYSizeMismatch);
}
bool isFirstFrame = GetFrameCount() == 0;
if (!HasSize()) {
MOZ_ASSERT(isFirstFrame);
MOZ_LOG(
sAVIFLog, LogLevel::Error,
("[this=%p] Using decoded image size: %d x %d", this,
decodedData->mPictureRect.width, decodedData->mPictureRect.height));
PostSize(decodedData->mPictureRect.width, decodedData->mPictureRect.height,
orientation);
AccumulateCategorical(LABELS_AVIF_ISPE::absent);
} else {
// Verify that the bitstream hasn't changed the image size compared to
// either the ispe box or the previous frames.
IntSize expectedSize = GetImageMetadata()
.GetOrientation()
.ToUnoriented(Size())
.ToUnknownSize();
if (decodedData->mPictureRect.width != expectedSize.width ||
decodedData->mPictureRect.height != expectedSize.height) {
if (isFirstFrame) {
MOZ_LOG(
sAVIFLog, LogLevel::Error,
("[this=%p] Metadata image size doesn't match decoded image size: "
"(%d x %d) != (%d x %d)",
this, ispeImageSize->width, ispeImageSize->height,
decodedData->mPictureRect.width,
decodedData->mPictureRect.height));
AccumulateCategorical(LABELS_AVIF_ISPE::bitstream_mismatch);
return AsVariant(NonDecoderResult::MetadataImageSizeMismatch);
}
MOZ_LOG(
sAVIFLog, LogLevel::Error,
("[this=%p] Frame size has changed in the bitstream: "
"(%d x %d) != (%d x %d)",
this, expectedSize.width, expectedSize.height,
decodedData->mPictureRect.width, decodedData->mPictureRect.height));
return AsVariant(NonDecoderResult::FrameSizeChanged);
}
if (isFirstFrame) {
AccumulateCategorical(LABELS_AVIF_ISPE::valid);
}
}
if (IsMetadataDecode()) {
return AsVariant(NonDecoderResult::Complete);
}
IntSize rgbSize = decodedData->mPictureRect.Size();
if (parsedImage.mFrameNum == 0) {
RecordFrameTelem(mIsAnimated, parsedInfo, *decodedData);
}
if (decodedData->mRenderSize &&
decodedData->mRenderSize->ToUnknownSize() != rgbSize) {
// This may be supported by allowing all metadata decodes to decode a frame
// and get the render size from the bitstream. However it's unlikely to be
// used often.
return AsVariant(NonDecoderResult::RenderSizeMismatch);
}
// Read color profile
if (mCMSMode != CMSMode::Off) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] Processing color profile", this));
// See comment on AVIFDecodedData
if (parsedInfo.icc_colour_information.data) {
// same profile for every frame of image, only create it once
if (!mInProfile) {
const auto& icc = parsedInfo.icc_colour_information;
mInProfile = qcms_profile_from_memory(icc.data, icc.length);
}
} else {
// potentially different profile every frame, destroy the old one
if (mInProfile) {
if (mTransform) {
qcms_transform_release(mTransform);
mTransform = nullptr;
}
qcms_profile_release(mInProfile);
mInProfile = nullptr;
}
const auto& cp = decodedData->mColourPrimaries;
const auto& tc = decodedData->mTransferCharacteristics;
if (CICP::IsReserved(cp)) {
MOZ_LOG(sAVIFLog, LogLevel::Error,
("[this=%p] colour_primaries reserved value (%hhu) is invalid; "
"failing",
this, cp));
return AsVariant(NonDecoderResult::InvalidCICP);
}
if (CICP::IsReserved(tc)) {
MOZ_LOG(sAVIFLog, LogLevel::Error,
("[this=%p] transfer_characteristics reserved value (%hhu) is "
"invalid; failing",
this, tc));
return AsVariant(NonDecoderResult::InvalidCICP);
}
MOZ_ASSERT(cp != CICP::ColourPrimaries::CP_UNSPECIFIED &&
!CICP::IsReserved(cp));
MOZ_ASSERT(tc != CICP::TransferCharacteristics::TC_UNSPECIFIED &&
!CICP::IsReserved(tc));
mInProfile = qcms_profile_create_cicp(cp, tc);
}
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] mInProfile %p", this, mInProfile));
} else {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] CMSMode::Off, skipping color profile", this));
}
if (mInProfile && GetCMSOutputProfile() && !mTransform) {
auto intent = static_cast<qcms_intent>(gfxPlatform::GetRenderingIntent());
qcms_data_type inType;
qcms_data_type outType;
// If we're not mandating an intent, use the one from the image.
if (gfxPlatform::GetRenderingIntent() == -1) {
intent = qcms_profile_get_rendering_intent(mInProfile);
}
uint32_t profileSpace = qcms_profile_get_color_space(mInProfile);
if (profileSpace != icSigGrayData) {
// If the transform happens with SurfacePipe, it will be in RGBA if we
// have an alpha channel, because the swizzle and premultiplication
// happens after color management. Otherwise it will be in BGRA because
// the swizzle happens at the start.
if (mHasAlpha) {
inType = QCMS_DATA_RGBA_8;
outType = QCMS_DATA_RGBA_8;
} else {
inType = gfxPlatform::GetCMSOSRGBAType();
outType = inType;
}
} else {
if (mHasAlpha) {
inType = QCMS_DATA_GRAYA_8;
outType = gfxPlatform::GetCMSOSRGBAType();
} else {
inType = QCMS_DATA_GRAY_8;
outType = gfxPlatform::GetCMSOSRGBAType();
}
}
mTransform = qcms_transform_create(mInProfile, inType,
GetCMSOutputProfile(), outType, intent);
}
// Get suggested format and size. Note that GetYCbCrToRGBDestFormatAndSize
// force format to be B8G8R8X8 if it's not.
gfx::SurfaceFormat format = SurfaceFormat::OS_RGBX;
gfx::GetYCbCrToRGBDestFormatAndSize(*decodedData, format, rgbSize);
if (mHasAlpha) {
// We would use libyuv to do the YCbCrA -> ARGB convertion, which only
// works for B8G8R8A8.
format = SurfaceFormat::B8G8R8A8;
}
const int bytesPerPixel = BytesPerPixel(format);
const CheckedInt rgbStride = CheckedInt<int>(rgbSize.width) * bytesPerPixel;
const CheckedInt rgbBufLength = rgbStride * rgbSize.height;
if (!rgbStride.isValid() || !rgbBufLength.isValid()) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] overflow calculating rgbBufLength: rbgSize.width: %d, "
"rgbSize.height: %d, "
"bytesPerPixel: %u",
this, rgbSize.width, rgbSize.height, bytesPerPixel));
return AsVariant(NonDecoderResult::SizeOverflow);
}
UniquePtr<uint8_t[]> rgbBuf = MakeUnique<uint8_t[]>(rgbBufLength.value());
const uint8_t* endOfRgbBuf = {rgbBuf.get() + rgbBufLength.value()};
if (!rgbBuf) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] allocation of %u-byte rgbBuf failed", this,
rgbBufLength.value()));
return AsVariant(NonDecoderResult::OutOfMemory);
}
if (decodedData->mAlpha) {
const auto wantPremultiply =
!bool(GetSurfaceFlags() & SurfaceFlags::NO_PREMULTIPLY_ALPHA);
const bool& hasPremultiply = decodedData->mAlpha->mPremultiplied;
PremultFunc premultOp = nullptr;
if (wantPremultiply && !hasPremultiply) {
premultOp = libyuv::ARGBAttenuate;
} else if (!wantPremultiply && hasPremultiply) {
premultOp = libyuv::ARGBUnattenuate;
}
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] calling gfx::ConvertYCbCrAToARGB premultOp: %p", this,
premultOp));
gfx::ConvertYCbCrAToARGB(*decodedData, *decodedData->mAlpha, format,
rgbSize, rgbBuf.get(), rgbStride.value(),
premultOp);
} else {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] calling gfx::ConvertYCbCrToRGB", this));
gfx::ConvertYCbCrToRGB(*decodedData, format, rgbSize, rgbBuf.get(),
rgbStride.value());
}
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] calling SurfacePipeFactory::CreateSurfacePipe", this));
Maybe<SurfacePipe> pipe = Nothing();
if (mIsAnimated) {
SurfaceFormat outFormat =
decodedData->mAlpha ? SurfaceFormat::OS_RGBA : SurfaceFormat::OS_RGBX;
Maybe<AnimationParams> animParams;
if (!IsFirstFrameDecode()) {
animParams.emplace(FullFrame().ToUnknownRect(), parsedImage.mDuration,
parsedImage.mFrameNum, BlendMethod::SOURCE,
DisposalMethod::CLEAR_ALL);
}
pipe = SurfacePipeFactory::CreateSurfacePipe(
this, Size(), OutputSize(), FullFrame(), format, outFormat, animParams,
mTransform, SurfacePipeFlags());
} else {
pipe = SurfacePipeFactory::CreateReorientSurfacePipe(
this, Size(), OutputSize(), format, mTransform, GetOrientation());
}
if (pipe.isNothing()) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] could not initialize surface pipe", this));
return AsVariant(NonDecoderResult::PipeInitError);
}
MOZ_LOG(sAVIFLog, LogLevel::Debug, ("[this=%p] writing to surface", this));
WriteState writeBufferResult = WriteState::NEED_MORE_DATA;
for (uint8_t* rowPtr = rgbBuf.get(); rowPtr < endOfRgbBuf;
rowPtr += rgbStride.value()) {
writeBufferResult = pipe->WriteBuffer(reinterpret_cast<uint32_t*>(rowPtr));
Maybe<SurfaceInvalidRect> invalidRect = pipe->TakeInvalidRect();
if (invalidRect) {
PostInvalidation(invalidRect->mInputSpaceRect,
Some(invalidRect->mOutputSpaceRect));
}
if (writeBufferResult == WriteState::FAILURE) {
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] error writing rowPtr to surface pipe", this));
} else if (writeBufferResult == WriteState::FINISHED) {
MOZ_ASSERT(rowPtr + rgbStride.value() == endOfRgbBuf);
}
}
MOZ_LOG(sAVIFLog, LogLevel::Debug,
("[this=%p] writing to surface complete", this));
if (writeBufferResult == WriteState::FINISHED) {
PostFrameStop(mHasAlpha ? Opacity::SOME_TRANSPARENCY
: Opacity::FULLY_OPAQUE);
if (!mIsAnimated || IsFirstFrameDecode()) {
PostDecodeDone(0);
return DecodeResult(NonDecoderResult::Complete);
}
if (isDone) {
switch (mParser->GetInfo().loop_mode) {
case MP4PARSE_AVIF_LOOP_MODE_LOOP_BY_COUNT: {
auto loopCount = mParser->GetInfo().loop_count;
PostDecodeDone(
loopCount > INT32_MAX ? -1 : static_cast<int32_t>(loopCount));
break;
}
case MP4PARSE_AVIF_LOOP_MODE_LOOP_INFINITELY:
case MP4PARSE_AVIF_LOOP_MODE_NO_EDITS:
default:
PostDecodeDone(-1);
break;
}
return DecodeResult(NonDecoderResult::Complete);
}
return DecodeResult(NonDecoderResult::OutputAvailable);
}
return AsVariant(NonDecoderResult::WriteBufferError);
}
/* static */
bool nsAVIFDecoder::IsDecodeSuccess(const DecodeResult& aResult) {
return aResult == DecodeResult(NonDecoderResult::OutputAvailable) ||
aResult == DecodeResult(NonDecoderResult::Complete) ||
aResult == DecodeResult(Dav1dResult(0)) ||
aResult == DecodeResult(AOMResult(AOM_CODEC_OK));
}
void nsAVIFDecoder::RecordDecodeResultTelemetry(
const nsAVIFDecoder::DecodeResult& aResult) {
if (aResult.is<Mp4parseStatus>()) {
switch (aResult.as<Mp4parseStatus>()) {
case MP4PARSE_STATUS_OK:
MOZ_ASSERT_UNREACHABLE(
"Expect NonDecoderResult, Dav1dResult or AOMResult");
return;
case MP4PARSE_STATUS_BAD_ARG:
case MP4PARSE_STATUS_INVALID:
case MP4PARSE_STATUS_UNSUPPORTED:
case MP4PARSE_STATUS_EOF:
case MP4PARSE_STATUS_IO:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::parse_error);
return;
case MP4PARSE_STATUS_OOM:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::out_of_memory);
return;
case MP4PARSE_STATUS_MISSING_AVIF_OR_AVIS_BRAND:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::missing_brand);
return;
case MP4PARSE_STATUS_FTYP_NOT_FIRST:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::ftyp_not_first);
return;
case MP4PARSE_STATUS_NO_IMAGE:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::no_image);
return;
case MP4PARSE_STATUS_MOOV_BAD_QUANTITY:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::multiple_moov);
return;
case MP4PARSE_STATUS_MOOV_MISSING:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::no_moov);
return;
case MP4PARSE_STATUS_LSEL_NO_ESSENTIAL:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::lsel_no_essential);
return;
case MP4PARSE_STATUS_A1OP_NO_ESSENTIAL:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::a1op_no_essential);
return;
case MP4PARSE_STATUS_A1LX_ESSENTIAL:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::a1lx_essential);
return;
case MP4PARSE_STATUS_TXFORM_NO_ESSENTIAL:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::txform_no_essential);
return;
case MP4PARSE_STATUS_PITM_MISSING:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::no_primary_item);
return;
case MP4PARSE_STATUS_IMAGE_ITEM_TYPE:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::image_item_type);
return;
case MP4PARSE_STATUS_ITEM_TYPE_MISSING:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::item_type_missing);
return;
case MP4PARSE_STATUS_CONSTRUCTION_METHOD:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::construction_method);
return;
case MP4PARSE_STATUS_PITM_NOT_FOUND:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::item_loc_not_found);
return;
case MP4PARSE_STATUS_IDAT_MISSING:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::no_item_data_box);
return;
default:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::uncategorized);
return;
}
MOZ_LOG(sAVIFLog, LogLevel::Error,
("[this=%p] unexpected Mp4parseStatus value: %d", this,
aResult.as<Mp4parseStatus>()));
MOZ_ASSERT(false, "unexpected Mp4parseStatus value");
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::invalid_parse_status);
} else if (aResult.is<NonDecoderResult>()) {
switch (aResult.as<NonDecoderResult>()) {
case NonDecoderResult::NeedMoreData:
return;
case NonDecoderResult::OutputAvailable:
return;
case NonDecoderResult::Complete:
return;
case NonDecoderResult::SizeOverflow:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::size_overflow);
return;
case NonDecoderResult::OutOfMemory:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::out_of_memory);
return;
case NonDecoderResult::PipeInitError:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::pipe_init_error);
return;
case NonDecoderResult::WriteBufferError:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::write_buffer_error);
return;
case NonDecoderResult::AlphaYSizeMismatch:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::alpha_y_sz_mismatch);
return;
case NonDecoderResult::AlphaYColorDepthMismatch:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::alpha_y_bpc_mismatch);
return;
case NonDecoderResult::MetadataImageSizeMismatch:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::ispe_mismatch);
return;
case NonDecoderResult::RenderSizeMismatch:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::render_size_mismatch);
return;
case NonDecoderResult::FrameSizeChanged:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::frame_size_changed);
return;
case NonDecoderResult::InvalidCICP:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::invalid_cicp);
return;
case NonDecoderResult::NoSamples:
AccumulateCategorical(LABELS_AVIF_DECODE_RESULT::no_samples);
return;
}
MOZ_ASSERT_UNREACHABLE("unknown NonDecoderResult");
} else {
MOZ_ASSERT(aResult.is<Dav1dResult>() || aResult.is<AOMResult>());
AccumulateCategorical(aResult.is<Dav1dResult>() ? LABELS_AVIF_DECODER::dav1d
: LABELS_AVIF_DECODER::aom);
AccumulateCategorical(IsDecodeSuccess(aResult)
? LABELS_AVIF_DECODE_RESULT::success
: LABELS_AVIF_DECODE_RESULT::decode_error);
}
}
Maybe<Telemetry::HistogramID> nsAVIFDecoder::SpeedHistogram() const {
return Some(Telemetry::IMAGE_DECODE_SPEED_AVIF);
}
} // namespace image
} // namespace mozilla