gecko-dev/gfx/2d/FilterProcessing.h

142 строки
9.1 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef _MOZILLA_GFX_FILTERPROCESSING_H_
#define _MOZILLA_GFX_FILTERPROCESSING_H_
#include "2D.h"
#include "Filters.h"
namespace mozilla {
namespace gfx {
const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_B = 0;
const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_G = 1;
const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_R = 2;
const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_A = 3;
class FilterProcessing
{
public:
// Fast approximate division by 255. It has the property that
// for all 0 <= v <= 255*255, FastDivideBy255(v) == v/255.
// But it only uses two adds and two shifts instead of an
// integer division (which is expensive on many processors).
template<class B, class A>
static B FastDivideBy255(A v)
{
return ((v << 8) + v + 255) >> 16;
}
static TemporaryRef<DataSourceSurface> ExtractAlpha(DataSourceSurface* aSource);
static TemporaryRef<DataSourceSurface> ConvertToB8G8R8A8(SourceSurface* aSurface);
static TemporaryRef<DataSourceSurface> ApplyBlending(DataSourceSurface* aInput1, DataSourceSurface* aInput2, BlendMode aBlendMode);
static void ApplyMorphologyHorizontal(uint8_t* aSourceData, int32_t aSourceStride,
uint8_t* aDestData, int32_t aDestStride,
const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOperator);
static void ApplyMorphologyVertical(uint8_t* aSourceData, int32_t aSourceStride,
uint8_t* aDestData, int32_t aDestStride,
const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOperator);
static TemporaryRef<DataSourceSurface> ApplyColorMatrix(DataSourceSurface* aInput, const Matrix5x4 &aMatrix);
static void ApplyComposition(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator);
static void SeparateColorChannels(DataSourceSurface* aSource,
RefPtr<DataSourceSurface>& aChannel0,
RefPtr<DataSourceSurface>& aChannel1,
RefPtr<DataSourceSurface>& aChannel2,
RefPtr<DataSourceSurface>& aChannel3);
static TemporaryRef<DataSourceSurface>
CombineColorChannels(DataSourceSurface* aChannel0, DataSourceSurface* aChannel1,
DataSourceSurface* aChannel2, DataSourceSurface* aChannel3);
static void DoPremultiplicationCalculation(const IntSize& aSize,
uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride);
static void DoUnpremultiplicationCalculation(const IntSize& aSize,
uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride);
static TemporaryRef<DataSourceSurface>
RenderTurbulence(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect);
static TemporaryRef<DataSourceSurface>
ApplyArithmeticCombine(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4);
protected:
static void ExtractAlpha_Scalar(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride);
static TemporaryRef<DataSourceSurface> ConvertToB8G8R8A8_Scalar(SourceSurface* aSurface);
static void ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
uint8_t* aDestData, int32_t aDestStride,
const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOperator);
static void ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
uint8_t* aDestData, int32_t aDestStride,
const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOperator);
static TemporaryRef<DataSourceSurface> ApplyColorMatrix_Scalar(DataSourceSurface* aInput, const Matrix5x4 &aMatrix);
static void ApplyComposition_Scalar(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator);
static void SeparateColorChannels_Scalar(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride);
static void CombineColorChannels_Scalar(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data);
static void DoPremultiplicationCalculation_Scalar(const IntSize& aSize,
uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride);
static void DoUnpremultiplicationCalculation_Scalar(const IntSize& aSize,
uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride);
static TemporaryRef<DataSourceSurface>
RenderTurbulence_Scalar(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect);
static TemporaryRef<DataSourceSurface>
ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4);
#ifdef USE_SSE2
static void ExtractAlpha_SSE2(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride);
static TemporaryRef<DataSourceSurface> ConvertToB8G8R8A8_SSE2(SourceSurface* aSurface);
static TemporaryRef<DataSourceSurface> ApplyBlending_SSE2(DataSourceSurface* aInput1, DataSourceSurface* aInput2, BlendMode aBlendMode);
static void ApplyMorphologyHorizontal_SSE2(uint8_t* aSourceData, int32_t aSourceStride,
uint8_t* aDestData, int32_t aDestStride,
const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOperator);
static void ApplyMorphologyVertical_SSE2(uint8_t* aSourceData, int32_t aSourceStride,
uint8_t* aDestData, int32_t aDestStride,
const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOperator);
static TemporaryRef<DataSourceSurface> ApplyColorMatrix_SSE2(DataSourceSurface* aInput, const Matrix5x4 &aMatrix);
static void ApplyComposition_SSE2(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator);
static void SeparateColorChannels_SSE2(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride);
static void CombineColorChannels_SSE2(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data);
static void DoPremultiplicationCalculation_SSE2(const IntSize& aSize,
uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride);
static void DoUnpremultiplicationCalculation_SSE2(const IntSize& aSize,
uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride);
static TemporaryRef<DataSourceSurface>
RenderTurbulence_SSE2(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect);
static TemporaryRef<DataSourceSurface>
ApplyArithmeticCombine_SSE2(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4);
#endif
};
// Constant-time max and min functions for unsigned arguments
static inline unsigned
umax(unsigned a, unsigned b)
{
return a - ((a - b) & -(a < b));
}
static inline unsigned
umin(unsigned a, unsigned b)
{
return a - ((a - b) & -(a > b));
}
} // namespace gfx
} // namespace mozilla
#endif // _MOZILLA_GFX_FILTERPROCESSING_H_