gecko-dev/layout/generic/nsFloatManager.cpp

1239 строки
42 KiB
C++
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* class that manages rules for positioning floats */
#include "nsFloatManager.h"
#include <algorithm>
#include <initializer_list>
#include "mozilla/ReflowInput.h"
#include "mozilla/ShapeUtils.h"
#include "nsBlockFrame.h"
#include "nsError.h"
#include "nsIPresShell.h"
#include "nsMemory.h"
using namespace mozilla;
int32_t nsFloatManager::sCachedFloatManagerCount = 0;
void* nsFloatManager::sCachedFloatManagers[NS_FLOAT_MANAGER_CACHE_SIZE];
/////////////////////////////////////////////////////////////////////////////
// nsFloatManager
nsFloatManager::nsFloatManager(nsIPresShell* aPresShell,
mozilla::WritingMode aWM)
:
#ifdef DEBUG
mWritingMode(aWM),
#endif
mLineLeft(0), mBlockStart(0),
mFloatDamage(aPresShell),
mPushedLeftFloatPastBreak(false),
mPushedRightFloatPastBreak(false),
mSplitLeftFloatAcrossBreak(false),
mSplitRightFloatAcrossBreak(false)
{
MOZ_COUNT_CTOR(nsFloatManager);
}
nsFloatManager::~nsFloatManager()
{
MOZ_COUNT_DTOR(nsFloatManager);
}
// static
void* nsFloatManager::operator new(size_t aSize) CPP_THROW_NEW
{
if (sCachedFloatManagerCount > 0) {
// We have cached unused instances of this class, return a cached
// instance in stead of always creating a new one.
return sCachedFloatManagers[--sCachedFloatManagerCount];
}
// The cache is empty, this means we have to create a new instance using
// the global |operator new|.
return moz_xmalloc(aSize);
}
void
nsFloatManager::operator delete(void* aPtr, size_t aSize)
{
if (!aPtr)
return;
// This float manager is no longer used, if there's still room in
// the cache we'll cache this float manager, unless the layout
// module was already shut down.
if (sCachedFloatManagerCount < NS_FLOAT_MANAGER_CACHE_SIZE &&
sCachedFloatManagerCount >= 0) {
// There's still space in the cache for more instances, put this
// instance in the cache in stead of deleting it.
sCachedFloatManagers[sCachedFloatManagerCount++] = aPtr;
return;
}
// The cache is full, or the layout module has been shut down,
// delete this float manager.
free(aPtr);
}
/* static */
void nsFloatManager::Shutdown()
{
// The layout module is being shut down, clean up the cache and
// disable further caching.
int32_t i;
for (i = 0; i < sCachedFloatManagerCount; i++) {
void* floatManager = sCachedFloatManagers[i];
if (floatManager)
free(floatManager);
}
// Disable further caching.
sCachedFloatManagerCount = -1;
}
#define CHECK_BLOCK_AND_LINE_DIR(aWM) \
NS_ASSERTION((aWM).GetBlockDir() == mWritingMode.GetBlockDir() && \
(aWM).IsLineInverted() == mWritingMode.IsLineInverted(), \
"incompatible writing modes")
nsFlowAreaRect
nsFloatManager::GetFlowArea(WritingMode aWM, nscoord aBCoord, nscoord aBSize,
BandInfoType aBandInfoType, ShapeType aShapeType,
LogicalRect aContentArea, SavedState* aState,
const nsSize& aContainerSize) const
{
CHECK_BLOCK_AND_LINE_DIR(aWM);
NS_ASSERTION(aBSize >= 0, "unexpected max block size");
NS_ASSERTION(aContentArea.ISize(aWM) >= 0,
"unexpected content area inline size");
nscoord blockStart = aBCoord + mBlockStart;
if (blockStart < nscoord_MIN) {
NS_WARNING("bad value");
blockStart = nscoord_MIN;
}
// Determine the last float that we should consider.
uint32_t floatCount;
if (aState) {
// Use the provided state.
floatCount = aState->mFloatInfoCount;
MOZ_ASSERT(floatCount <= mFloats.Length(), "bad state");
} else {
// Use our current state.
floatCount = mFloats.Length();
}
// If there are no floats at all, or we're below the last one, return
// quickly.
if (floatCount == 0 ||
(mFloats[floatCount-1].mLeftBEnd <= blockStart &&
mFloats[floatCount-1].mRightBEnd <= blockStart)) {
return nsFlowAreaRect(aWM, aContentArea.IStart(aWM), aBCoord,
aContentArea.ISize(aWM), aBSize, false);
}
nscoord blockEnd;
if (aBSize == nscoord_MAX) {
// This warning (and the two below) are possible to hit on pages
// with really large objects.
NS_WARNING_ASSERTION(aBandInfoType == BandInfoType::BandFromPoint, "bad height");
blockEnd = nscoord_MAX;
} else {
blockEnd = blockStart + aBSize;
if (blockEnd < blockStart || blockEnd > nscoord_MAX) {
NS_WARNING("bad value");
blockEnd = nscoord_MAX;
}
}
nscoord lineLeft = mLineLeft + aContentArea.LineLeft(aWM, aContainerSize);
nscoord lineRight = mLineLeft + aContentArea.LineRight(aWM, aContainerSize);
if (lineRight < lineLeft) {
NS_WARNING("bad value");
lineRight = lineLeft;
}
// Walk backwards through the floats until we either hit the front of
// the list or we're above |blockStart|.
bool haveFloats = false;
for (uint32_t i = floatCount; i > 0; --i) {
const FloatInfo &fi = mFloats[i-1];
if (fi.mLeftBEnd <= blockStart && fi.mRightBEnd <= blockStart) {
// There aren't any more floats that could intersect this band.
break;
}
if (fi.IsEmpty(aShapeType)) {
// For compatibility, ignore floats with empty rects, even though it
// disagrees with the spec. (We might want to fix this in the
// future, though.)
continue;
}
nscoord floatBStart = fi.BStart(aShapeType);
nscoord floatBEnd = fi.BEnd(aShapeType);
if (blockStart < floatBStart && aBandInfoType == BandInfoType::BandFromPoint) {
// This float is below our band. Shrink our band's height if needed.
if (floatBStart < blockEnd) {
blockEnd = floatBStart;
}
}
// If blockStart == blockEnd (which happens only with WidthWithinHeight),
// we include floats that begin at our 0-height vertical area. We
// need to do this to satisfy the invariant that a
// WidthWithinHeight call is at least as narrow on both sides as a
// BandFromPoint call beginning at its blockStart.
else if (blockStart < floatBEnd &&
(floatBStart < blockEnd ||
(floatBStart == blockEnd && blockStart == blockEnd))) {
// This float is in our band.
// Shrink our band's width if needed.
StyleFloat floatStyle = fi.mFrame->StyleDisplay()->PhysicalFloats(aWM);
// When aBandInfoType is BandFromPoint, we're only intended to
// consider a point along the y axis rather than a band.
const nscoord bandBlockEnd =
aBandInfoType == BandInfoType::BandFromPoint ? blockStart : blockEnd;
if (floatStyle == StyleFloat::Left) {
// A left float
nscoord lineRightEdge =
fi.LineRight(aShapeType, blockStart, bandBlockEnd);
if (lineRightEdge > lineLeft) {
lineLeft = lineRightEdge;
// Only set haveFloats to true if the float is inside our
// containing block. This matches the spec for what some
// callers want and disagrees for other callers, so we should
// probably provide better information at some point.
haveFloats = true;
}
} else {
// A right float
nscoord lineLeftEdge =
fi.LineLeft(aShapeType, blockStart, bandBlockEnd);
if (lineLeftEdge < lineRight) {
lineRight = lineLeftEdge;
// See above.
haveFloats = true;
}
}
// Shrink our band's height if needed.
if (floatBEnd < blockEnd && aBandInfoType == BandInfoType::BandFromPoint) {
blockEnd = floatBEnd;
}
}
}
nscoord blockSize = (blockEnd == nscoord_MAX) ?
nscoord_MAX : (blockEnd - blockStart);
// convert back from LineLeft/Right to IStart
nscoord inlineStart = aWM.IsBidiLTR()
? lineLeft - mLineLeft
: mLineLeft - lineRight +
LogicalSize(aWM, aContainerSize).ISize(aWM);
return nsFlowAreaRect(aWM, inlineStart, blockStart - mBlockStart,
lineRight - lineLeft, blockSize, haveFloats);
}
void
nsFloatManager::AddFloat(nsIFrame* aFloatFrame, const LogicalRect& aMarginRect,
WritingMode aWM, const nsSize& aContainerSize)
{
CHECK_BLOCK_AND_LINE_DIR(aWM);
NS_ASSERTION(aMarginRect.ISize(aWM) >= 0, "negative inline size!");
NS_ASSERTION(aMarginRect.BSize(aWM) >= 0, "negative block size!");
FloatInfo info(aFloatFrame, mLineLeft, mBlockStart, aMarginRect, aWM,
aContainerSize);
// Set mLeftBEnd and mRightBEnd.
if (HasAnyFloats()) {
FloatInfo &tail = mFloats[mFloats.Length() - 1];
info.mLeftBEnd = tail.mLeftBEnd;
info.mRightBEnd = tail.mRightBEnd;
} else {
info.mLeftBEnd = nscoord_MIN;
info.mRightBEnd = nscoord_MIN;
}
StyleFloat floatStyle = aFloatFrame->StyleDisplay()->PhysicalFloats(aWM);
MOZ_ASSERT(floatStyle == StyleFloat::Left || floatStyle == StyleFloat::Right,
"Unexpected float style!");
nscoord& sideBEnd =
floatStyle == StyleFloat::Left ? info.mLeftBEnd : info.mRightBEnd;
nscoord thisBEnd = info.BEnd();
if (thisBEnd > sideBEnd)
sideBEnd = thisBEnd;
mFloats.AppendElement(Move(info));
}
// static
LogicalRect
nsFloatManager::CalculateRegionFor(WritingMode aWM,
nsIFrame* aFloat,
const LogicalMargin& aMargin,
const nsSize& aContainerSize)
{
// We consider relatively positioned frames at their original position.
LogicalRect region(aWM, nsRect(aFloat->GetNormalPosition(),
aFloat->GetSize()),
aContainerSize);
// Float region includes its margin
region.Inflate(aWM, aMargin);
// Don't store rectangles with negative margin-box width or height in
// the float manager; it can't deal with them.
if (region.ISize(aWM) < 0) {
// Preserve the right margin-edge for left floats and the left
// margin-edge for right floats
const nsStyleDisplay* display = aFloat->StyleDisplay();
StyleFloat floatStyle = display->PhysicalFloats(aWM);
if ((StyleFloat::Left == floatStyle) == aWM.IsBidiLTR()) {
region.IStart(aWM) = region.IEnd(aWM);
}
region.ISize(aWM) = 0;
}
if (region.BSize(aWM) < 0) {
region.BSize(aWM) = 0;
}
return region;
}
NS_DECLARE_FRAME_PROPERTY_DELETABLE(FloatRegionProperty, nsMargin)
LogicalRect
nsFloatManager::GetRegionFor(WritingMode aWM, nsIFrame* aFloat,
const nsSize& aContainerSize)
{
LogicalRect region = aFloat->GetLogicalRect(aWM, aContainerSize);
void* storedRegion = aFloat->GetProperty(FloatRegionProperty());
if (storedRegion) {
nsMargin margin = *static_cast<nsMargin*>(storedRegion);
region.Inflate(aWM, LogicalMargin(aWM, margin));
}
return region;
}
void
nsFloatManager::StoreRegionFor(WritingMode aWM, nsIFrame* aFloat,
const LogicalRect& aRegion,
const nsSize& aContainerSize)
{
nsRect region = aRegion.GetPhysicalRect(aWM, aContainerSize);
nsRect rect = aFloat->GetRect();
if (region.IsEqualEdges(rect)) {
aFloat->DeleteProperty(FloatRegionProperty());
}
else {
nsMargin* storedMargin = aFloat->GetProperty(FloatRegionProperty());
if (!storedMargin) {
storedMargin = new nsMargin();
aFloat->SetProperty(FloatRegionProperty(), storedMargin);
}
*storedMargin = region - rect;
}
}
nsresult
nsFloatManager::RemoveTrailingRegions(nsIFrame* aFrameList)
{
if (!aFrameList) {
return NS_OK;
}
// This could be a good bit simpler if we could guarantee that the
// floats given were at the end of our list, so we could just search
// for the head of aFrameList. (But we can't;
// layout/reftests/bugs/421710-1.html crashes.)
nsTHashtable<nsPtrHashKey<nsIFrame> > frameSet(1);
for (nsIFrame* f = aFrameList; f; f = f->GetNextSibling()) {
frameSet.PutEntry(f);
}
uint32_t newLength = mFloats.Length();
while (newLength > 0) {
if (!frameSet.Contains(mFloats[newLength - 1].mFrame)) {
break;
}
--newLength;
}
mFloats.TruncateLength(newLength);
#ifdef DEBUG
for (uint32_t i = 0; i < mFloats.Length(); ++i) {
NS_ASSERTION(!frameSet.Contains(mFloats[i].mFrame),
"Frame region deletion was requested but we couldn't delete it");
}
#endif
return NS_OK;
}
void
nsFloatManager::PushState(SavedState* aState)
{
NS_PRECONDITION(aState, "Need a place to save state");
// This is a cheap push implementation, which
// only saves the (x,y) and last frame in the mFrameInfoMap
// which is enough info to get us back to where we should be
// when pop is called.
//
// This push/pop mechanism is used to undo any
// floats that were added during the unconstrained reflow
// in nsBlockReflowContext::DoReflowBlock(). (See bug 96736)
//
// It should also be noted that the state for mFloatDamage is
// intentionally not saved or restored in PushState() and PopState(),
// since that could lead to bugs where damage is missed/dropped when
// we move from position A to B (during the intermediate incremental
// reflow mentioned above) and then from B to C during the subsequent
// reflow. In the typical case A and C will be the same, but not always.
// Allowing mFloatDamage to accumulate the damage incurred during both
// reflows ensures that nothing gets missed.
aState->mLineLeft = mLineLeft;
aState->mBlockStart = mBlockStart;
aState->mPushedLeftFloatPastBreak = mPushedLeftFloatPastBreak;
aState->mPushedRightFloatPastBreak = mPushedRightFloatPastBreak;
aState->mSplitLeftFloatAcrossBreak = mSplitLeftFloatAcrossBreak;
aState->mSplitRightFloatAcrossBreak = mSplitRightFloatAcrossBreak;
aState->mFloatInfoCount = mFloats.Length();
}
void
nsFloatManager::PopState(SavedState* aState)
{
NS_PRECONDITION(aState, "No state to restore?");
mLineLeft = aState->mLineLeft;
mBlockStart = aState->mBlockStart;
mPushedLeftFloatPastBreak = aState->mPushedLeftFloatPastBreak;
mPushedRightFloatPastBreak = aState->mPushedRightFloatPastBreak;
mSplitLeftFloatAcrossBreak = aState->mSplitLeftFloatAcrossBreak;
mSplitRightFloatAcrossBreak = aState->mSplitRightFloatAcrossBreak;
NS_ASSERTION(aState->mFloatInfoCount <= mFloats.Length(),
"somebody misused PushState/PopState");
mFloats.TruncateLength(aState->mFloatInfoCount);
}
nscoord
nsFloatManager::GetLowestFloatTop() const
{
if (mPushedLeftFloatPastBreak || mPushedRightFloatPastBreak) {
return nscoord_MAX;
}
if (!HasAnyFloats()) {
return nscoord_MIN;
}
return mFloats[mFloats.Length() -1].BStart() - mBlockStart;
}
#ifdef DEBUG_FRAME_DUMP
void
DebugListFloatManager(const nsFloatManager *aFloatManager)
{
aFloatManager->List(stdout);
}
nsresult
nsFloatManager::List(FILE* out) const
{
if (!HasAnyFloats())
return NS_OK;
for (uint32_t i = 0; i < mFloats.Length(); ++i) {
const FloatInfo &fi = mFloats[i];
fprintf_stderr(out, "Float %u: frame=%p rect={%d,%d,%d,%d} BEnd={l:%d, r:%d}\n",
i, static_cast<void*>(fi.mFrame),
fi.LineLeft(), fi.BStart(), fi.ISize(), fi.BSize(),
fi.mLeftBEnd, fi.mRightBEnd);
}
return NS_OK;
}
#endif
nscoord
nsFloatManager::ClearFloats(nscoord aBCoord, StyleClear aBreakType,
uint32_t aFlags) const
{
if (!(aFlags & DONT_CLEAR_PUSHED_FLOATS) && ClearContinues(aBreakType)) {
return nscoord_MAX;
}
if (!HasAnyFloats()) {
return aBCoord;
}
nscoord blockEnd = aBCoord + mBlockStart;
const FloatInfo &tail = mFloats[mFloats.Length() - 1];
switch (aBreakType) {
case StyleClear::Both:
blockEnd = std::max(blockEnd, tail.mLeftBEnd);
blockEnd = std::max(blockEnd, tail.mRightBEnd);
break;
case StyleClear::Left:
blockEnd = std::max(blockEnd, tail.mLeftBEnd);
break;
case StyleClear::Right:
blockEnd = std::max(blockEnd, tail.mRightBEnd);
break;
default:
// Do nothing
break;
}
blockEnd -= mBlockStart;
return blockEnd;
}
bool
nsFloatManager::ClearContinues(StyleClear aBreakType) const
{
return ((mPushedLeftFloatPastBreak || mSplitLeftFloatAcrossBreak) &&
(aBreakType == StyleClear::Both ||
aBreakType == StyleClear::Left)) ||
((mPushedRightFloatPastBreak || mSplitRightFloatAcrossBreak) &&
(aBreakType == StyleClear::Both ||
aBreakType == StyleClear::Right));
}
/////////////////////////////////////////////////////////////////////////////
// RoundedBoxShapeInfo
nscoord
nsFloatManager::RoundedBoxShapeInfo::LineLeft(const nscoord aBStart,
const nscoord aBEnd) const
{
if (!mRadii) {
return mRect.x;
}
nscoord lineLeftDiff =
ComputeEllipseLineInterceptDiff(
mRect.y, mRect.YMost(),
mRadii[eCornerTopLeftX], mRadii[eCornerTopLeftY],
mRadii[eCornerBottomLeftX], mRadii[eCornerBottomLeftY],
aBStart, aBEnd);
return mRect.x + lineLeftDiff;
}
nscoord
nsFloatManager::RoundedBoxShapeInfo::LineRight(const nscoord aBStart,
const nscoord aBEnd) const
{
if (!mRadii) {
return mRect.XMost();
}
nscoord lineRightDiff =
ComputeEllipseLineInterceptDiff(
mRect.y, mRect.YMost(),
mRadii[eCornerTopRightX], mRadii[eCornerTopRightY],
mRadii[eCornerBottomRightX], mRadii[eCornerBottomRightY],
aBStart, aBEnd);
return mRect.XMost() - lineRightDiff;
}
/////////////////////////////////////////////////////////////////////////////
// EllipseShapeInfo
nscoord
nsFloatManager::EllipseShapeInfo::LineLeft(const nscoord aBStart,
const nscoord aBEnd) const
{
nscoord lineLeftDiff =
ComputeEllipseLineInterceptDiff(BStart(), BEnd(),
mRadii.width, mRadii.height,
mRadii.width, mRadii.height,
aBStart, aBEnd);
return mCenter.x - mRadii.width + lineLeftDiff;
}
nscoord
nsFloatManager::EllipseShapeInfo::LineRight(const nscoord aBStart,
const nscoord aBEnd) const
{
nscoord lineRightDiff =
ComputeEllipseLineInterceptDiff(BStart(), BEnd(),
mRadii.width, mRadii.height,
mRadii.width, mRadii.height,
aBStart, aBEnd);
return mCenter.x + mRadii.width - lineRightDiff;
}
/////////////////////////////////////////////////////////////////////////////
// PolygonShapeInfo
nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(nsTArray<nsPoint>&& aVertices)
: mVertices(aVertices)
{
// Polygons with fewer than three vertices result in an empty area.
// https://drafts.csswg.org/css-shapes/#funcdef-polygon
if (mVertices.Length() < 3) {
mEmpty = true;
return;
}
auto Determinant = [] (const nsPoint& aP0, const nsPoint& aP1) {
// Returns the determinant of the 2x2 matrix [aP0 aP1].
// https://en.wikipedia.org/wiki/Determinant#2_.C3.97_2_matrices
return aP0.x * aP1.y - aP0.y * aP1.x;
};
// See if we have any vertices that are non-collinear with the first two.
// (If a polygon's vertices are all collinear, it encloses no area.)
bool isEntirelyCollinear = true;
const nsPoint& p0 = mVertices[0];
const nsPoint& p1 = mVertices[1];
for (size_t i = 2; i < mVertices.Length(); ++i) {
const nsPoint& p2 = mVertices[i];
// If the determinant of the matrix formed by two points is 0, that
// means they're collinear with respect to the origin. Here, if it's
// nonzero, then p1 and p2 are non-collinear with respect to p0, i.e.
// the three points are non-collinear.
if (Determinant(p2 - p0, p1 - p0) != 0) {
isEntirelyCollinear = false;
break;
}
}
if (isEntirelyCollinear) {
mEmpty = true;
return;
}
// mBStart and mBEnd are the lower and the upper bounds of all the
// vertex.y, respectively. The vertex.y is actually on the block-axis of
// the float manager's writing mode.
for (const nsPoint& vertex : mVertices) {
mBStart = std::min(mBStart, vertex.y);
mBEnd = std::max(mBEnd, vertex.y);
}
}
nscoord
nsFloatManager::PolygonShapeInfo::LineLeft(const nscoord aBStart,
const nscoord aBEnd) const
{
MOZ_ASSERT(!mEmpty, "Shouldn't be called if the polygon encloses no area.");
// We want the line-left-most inline-axis coordinate where the
// (block-axis) aBStart/aBEnd band crosses a line segment of the polygon.
// To get that, we start as line-right as possible (at nscoord_MAX). Then
// we iterate each line segment to compute its intersection point with the
// band (if any) and using std::min() successively to get the smallest
// inline-coordinates among those intersection points.
//
// Note: std::min<nscoord> means the function std::min() with template
// parameter nscoord, not the minimum value of nscoord.
return ComputeLineIntercept(aBStart, aBEnd, std::min<nscoord>, nscoord_MAX);
}
nscoord
nsFloatManager::PolygonShapeInfo::LineRight(const nscoord aBStart,
const nscoord aBEnd) const
{
MOZ_ASSERT(!mEmpty, "Shouldn't be called if the polygon encloses no area.");
// Similar to LineLeft(). Though here, we want the line-right-most
// inline-axis coordinate, so we instead start at nscoord_MIN and use
// std::max() to get the biggest inline-coordinate among those
// intersection points.
return ComputeLineIntercept(aBStart, aBEnd, std::max<nscoord>, nscoord_MIN);
}
nscoord
nsFloatManager::PolygonShapeInfo::ComputeLineIntercept(
const nscoord aBStart,
const nscoord aBEnd,
nscoord (*aCompareOp) (std::initializer_list<nscoord>),
const nscoord aLineInterceptInitialValue) const
{
MOZ_ASSERT(aBStart <= aBEnd,
"The band's block start is greater than its block end?");
const size_t len = mVertices.Length();
nscoord lineIntercept = aLineInterceptInitialValue;
// Iterate each line segment {p0, p1}, {p1, p2}, ..., {pn, p0}.
for (size_t i = 0; i < len; ++i) {
const nsPoint* smallYVertex = &mVertices[i];
const nsPoint* bigYVertex = &mVertices[(i + 1) % len];
// Swap the two points to satisfy the requirement for calling
// XInterceptAtY.
if (smallYVertex->y > bigYVertex->y) {
std::swap(smallYVertex, bigYVertex);
}
if (aBStart >= bigYVertex->y || aBEnd <= smallYVertex->y ||
smallYVertex->y == bigYVertex->y) {
// Skip computing the intercept if a) the band doesn't intersect the
// line segment (even if it crosses one of two the vertices); or b)
// the line segment is horizontal. It's OK because the two end points
// forming this horizontal segment will still be considered if each of
// them is forming another non-horizontal segment with other points.
continue;
}
nscoord bStartLineIntercept =
aBStart <= smallYVertex->y
? smallYVertex->x
: XInterceptAtY(aBStart, *smallYVertex, *bigYVertex);
nscoord bEndLineIntercept =
aBEnd >= bigYVertex->y
? bigYVertex->x
: XInterceptAtY(aBEnd, *smallYVertex, *bigYVertex);
// If either new intercept is more extreme than lineIntercept (per
// aCompareOp), then update lineIntercept to that value.
lineIntercept =
aCompareOp({lineIntercept, bStartLineIntercept, bEndLineIntercept});
}
return lineIntercept;
}
void
nsFloatManager::PolygonShapeInfo::Translate(nscoord aLineLeft,
nscoord aBlockStart)
{
for (nsPoint& vertex : mVertices) {
vertex.MoveBy(aLineLeft, aBlockStart);
}
mBStart += aBlockStart;
mBEnd += aBlockStart;
}
/* static */ nscoord
nsFloatManager::PolygonShapeInfo::XInterceptAtY(const nscoord aY,
const nsPoint& aP1,
const nsPoint& aP2)
{
// Solve for x in the linear equation: x = x1 + (y-y1) * (x2-x1) / (y2-y1),
// where aP1 = (x1, y1) and aP2 = (x2, y2).
MOZ_ASSERT(aP1.y <= aY && aY <= aP2.y,
"This function won't work if the horizontal line at aY and "
"the line segment (aP1, aP2) do not intersect!");
MOZ_ASSERT(aP1.y != aP2.y,
"A horizontal line segment results in dividing by zero error!");
return aP1.x + (aY - aP1.y) * (aP2.x - aP1.x) / (aP2.y - aP1.y);
}
/////////////////////////////////////////////////////////////////////////////
// FloatInfo
nsFloatManager::FloatInfo::FloatInfo(nsIFrame* aFrame,
nscoord aLineLeft, nscoord aBlockStart,
const LogicalRect& aMarginRect,
WritingMode aWM,
const nsSize& aContainerSize)
: mFrame(aFrame)
, mRect(ShapeInfo::ConvertToFloatLogical(aMarginRect, aWM, aContainerSize) +
nsPoint(aLineLeft, aBlockStart))
{
MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);
const StyleShapeSource& shapeOutside = mFrame->StyleDisplay()->mShapeOutside;
if (shapeOutside.GetType() == StyleShapeSourceType::None) {
return;
}
if (shapeOutside.GetType() == StyleShapeSourceType::URL) {
// Bug 1265343: Implement 'shape-image-threshold'. Early return
// here because shape-outside with url() value doesn't have a
// reference box, and GetReferenceBox() asserts that.
return;
}
// Initialize <shape-box>'s reference rect.
LogicalRect shapeBoxRect =
ShapeInfo::ComputeShapeBoxRect(shapeOutside, mFrame, aMarginRect, aWM);
if (shapeOutside.GetType() == StyleShapeSourceType::Box) {
mShapeInfo = ShapeInfo::CreateShapeBox(mFrame, shapeBoxRect, aWM,
aContainerSize);
} else if (shapeOutside.GetType() == StyleShapeSourceType::Shape) {
StyleBasicShape* const basicShape = shapeOutside.GetBasicShape();
switch (basicShape->GetShapeType()) {
case StyleBasicShapeType::Polygon:
mShapeInfo =
ShapeInfo::CreatePolygon(basicShape, shapeBoxRect, aWM,
aContainerSize);
break;
case StyleBasicShapeType::Circle:
case StyleBasicShapeType::Ellipse:
mShapeInfo =
ShapeInfo::CreateCircleOrEllipse(basicShape, shapeBoxRect, aWM,
aContainerSize);
break;
case StyleBasicShapeType::Inset:
mShapeInfo =
ShapeInfo::CreateInset(basicShape, shapeBoxRect, aWM, aContainerSize);
break;
}
} else {
MOZ_ASSERT_UNREACHABLE("Unknown StyleShapeSourceType!");
}
MOZ_ASSERT(mShapeInfo,
"All shape-outside values except none should have mShapeInfo!");
// Translate the shape to the same origin as nsFloatManager.
mShapeInfo->Translate(aLineLeft, aBlockStart);
}
#ifdef NS_BUILD_REFCNT_LOGGING
nsFloatManager::FloatInfo::FloatInfo(FloatInfo&& aOther)
: mFrame(Move(aOther.mFrame))
, mLeftBEnd(Move(aOther.mLeftBEnd))
, mRightBEnd(Move(aOther.mRightBEnd))
, mRect(Move(aOther.mRect))
, mShapeInfo(Move(aOther.mShapeInfo))
{
MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);
}
nsFloatManager::FloatInfo::~FloatInfo()
{
MOZ_COUNT_DTOR(nsFloatManager::FloatInfo);
}
#endif
nscoord
nsFloatManager::FloatInfo::LineLeft(ShapeType aShapeType,
const nscoord aBStart,
const nscoord aBEnd) const
{
if (aShapeType == ShapeType::Margin) {
return LineLeft();
}
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
if (!mShapeInfo) {
return LineLeft();
}
// Clip the flow area to the margin-box because
// https://drafts.csswg.org/css-shapes-1/#relation-to-box-model-and-float-behavior
// says "When a shape is used to define a float area, the shape is clipped
// to the floats margin box."
return std::max(LineLeft(), mShapeInfo->LineLeft(aBStart, aBEnd));
}
nscoord
nsFloatManager::FloatInfo::LineRight(ShapeType aShapeType,
const nscoord aBStart,
const nscoord aBEnd) const
{
if (aShapeType == ShapeType::Margin) {
return LineRight();
}
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
if (!mShapeInfo) {
return LineRight();
}
// Clip the flow area to the margin-box. See LineLeft().
return std::min(LineRight(), mShapeInfo->LineRight(aBStart, aBEnd));
}
nscoord
nsFloatManager::FloatInfo::BStart(ShapeType aShapeType) const
{
if (aShapeType == ShapeType::Margin) {
return BStart();
}
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
if (!mShapeInfo) {
return BStart();
}
// Clip the flow area to the margin-box. See LineLeft().
return std::max(BStart(), mShapeInfo->BStart());
}
nscoord
nsFloatManager::FloatInfo::BEnd(ShapeType aShapeType) const
{
if (aShapeType == ShapeType::Margin) {
return BEnd();
}
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
if (!mShapeInfo) {
return BEnd();
}
// Clip the flow area to the margin-box. See LineLeft().
return std::min(BEnd(), mShapeInfo->BEnd());
}
bool
nsFloatManager::FloatInfo::IsEmpty(ShapeType aShapeType) const
{
if (aShapeType == ShapeType::Margin) {
return IsEmpty();
}
MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
if (!mShapeInfo) {
return IsEmpty();
}
return mShapeInfo->IsEmpty();
}
/////////////////////////////////////////////////////////////////////////////
// ShapeInfo
/* static */ LogicalRect
nsFloatManager::ShapeInfo::ComputeShapeBoxRect(
const StyleShapeSource& aShapeOutside,
nsIFrame* const aFrame,
const mozilla::LogicalRect& aMarginRect,
mozilla::WritingMode aWM)
{
LogicalRect rect = aMarginRect;
switch (aShapeOutside.GetReferenceBox()) {
case StyleGeometryBox::ContentBox:
rect.Deflate(aWM, aFrame->GetLogicalUsedPadding(aWM));
MOZ_FALLTHROUGH;
case StyleGeometryBox::PaddingBox:
rect.Deflate(aWM, aFrame->GetLogicalUsedBorder(aWM));
MOZ_FALLTHROUGH;
case StyleGeometryBox::BorderBox:
rect.Deflate(aWM, aFrame->GetLogicalUsedMargin(aWM));
break;
case StyleGeometryBox::MarginBox:
// Do nothing. rect is already a margin rect.
break;
case StyleGeometryBox::NoBox:
default:
MOZ_ASSERT(aShapeOutside.GetType() != StyleShapeSourceType::Box,
"Box source type must have <shape-box> specified!");
break;
}
return rect;
}
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateShapeBox(
nsIFrame* const aFrame,
const LogicalRect& aShapeBoxRect,
WritingMode aWM,
const nsSize& aContainerSize)
{
nsRect logicalShapeBoxRect
= ConvertToFloatLogical(aShapeBoxRect, aWM, aContainerSize);
nscoord physicalRadii[8];
bool hasRadii = aFrame->GetShapeBoxBorderRadii(physicalRadii);
if (!hasRadii) {
return MakeUnique<RoundedBoxShapeInfo>(logicalShapeBoxRect,
UniquePtr<nscoord[]>());
}
return MakeUnique<RoundedBoxShapeInfo>(logicalShapeBoxRect,
ConvertToFloatLogical(physicalRadii,
aWM));
}
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateInset(
const StyleBasicShape* aBasicShape,
const LogicalRect& aShapeBoxRect,
WritingMode aWM,
const nsSize& aContainerSize)
{
// Use physical coordinates to compute inset() because the top, right,
// bottom and left offsets are physical.
// https://drafts.csswg.org/css-shapes-1/#funcdef-inset
nsRect physicalShapeBoxRect =
aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
nsRect insetRect =
ShapeUtils::ComputeInsetRect(aBasicShape, physicalShapeBoxRect);
nsRect logicalInsetRect =
ConvertToFloatLogical(LogicalRect(aWM, insetRect, aContainerSize),
aWM, aContainerSize);
nscoord physicalRadii[8];
bool hasRadii =
ShapeUtils::ComputeInsetRadii(aBasicShape, insetRect, physicalShapeBoxRect,
physicalRadii);
if (!hasRadii) {
return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
UniquePtr<nscoord[]>());
}
return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
ConvertToFloatLogical(physicalRadii,
aWM));
}
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateCircleOrEllipse(
const StyleBasicShape* aBasicShape,
const LogicalRect& aShapeBoxRect,
WritingMode aWM,
const nsSize& aContainerSize)
{
// Use physical coordinates to compute the center of circle() or ellipse()
// since the <position> keywords such as 'left', 'top', etc. are physical.
// https://drafts.csswg.org/css-shapes-1/#funcdef-ellipse
nsRect physicalShapeBoxRect =
aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
nsPoint physicalCenter =
ShapeUtils::ComputeCircleOrEllipseCenter(aBasicShape, physicalShapeBoxRect);
nsPoint logicalCenter =
ConvertToFloatLogical(physicalCenter, aWM, aContainerSize);
// Compute the circle or ellipse radii.
nsSize radii;
StyleBasicShapeType type = aBasicShape->GetShapeType();
if (type == StyleBasicShapeType::Circle) {
nscoord radius = ShapeUtils::ComputeCircleRadius(aBasicShape, physicalCenter,
physicalShapeBoxRect);
radii = nsSize(radius, radius);
} else {
MOZ_ASSERT(type == StyleBasicShapeType::Ellipse);
nsSize physicalRadii =
ShapeUtils::ComputeEllipseRadii(aBasicShape, physicalCenter,
physicalShapeBoxRect);
LogicalSize logicalRadii(aWM, physicalRadii);
radii = nsSize(logicalRadii.ISize(aWM), logicalRadii.BSize(aWM));
}
return MakeUnique<EllipseShapeInfo>(logicalCenter, radii);
}
/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreatePolygon(
const StyleBasicShape* aBasicShape,
const LogicalRect& aShapeBoxRect,
WritingMode aWM,
const nsSize& aContainerSize)
{
// Use physical coordinates to compute each (xi, yi) vertex because CSS
// represents them using physical coordinates.
// https://drafts.csswg.org/css-shapes-1/#funcdef-polygon
nsRect physicalShapeBoxRect =
aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
// Get physical vertices.
nsTArray<nsPoint> vertices =
ShapeUtils::ComputePolygonVertices(aBasicShape, physicalShapeBoxRect);
// Convert all the physical vertices to logical.
for (nsPoint& vertex : vertices) {
vertex = ConvertToFloatLogical(vertex, aWM, aContainerSize);
}
return MakeUnique<PolygonShapeInfo>(Move(vertices));
}
/* static */ nscoord
nsFloatManager::ShapeInfo::ComputeEllipseLineInterceptDiff(
const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd,
const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB,
const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB,
const nscoord aBandBStart, const nscoord aBandBEnd)
{
// An example for the band intersecting with the top right corner of an
// ellipse with writing-mode horizontal-tb.
//
// lineIntercept lineDiff
// | |
// +---------------------------------|-------|-+---- aShapeBoxBStart
// | ##########^ | | |
// | ##############|#### | | |
// +---------#################|######|-------|-+---- aBandBStart
// | ###################|######|## | |
// | aBStartCornerRadiusB |######|### | |
// | ######################|######|##### | |
// +---#######################|<-----------><->^---- aBandBEnd
// | ########################|############## |
// | ########################|############## |---- b
// | #########################|############### |
// | ######################## v<-------------->v
// |###################### aBStartCornerRadiusL|
// |###########################################|
// |###########################################|
// |###########################################|
// |###########################################|
// | ######################################### |
// | ######################################### |
// | ####################################### |
// | ####################################### |
// | ##################################### |
// | ################################### |
// | ############################### |
// | ############################# |
// | ######################### |
// | ################### |
// | ########### |
// +-------------------------------------------+----- aShapeBoxBEnd
NS_ASSERTION(aShapeBoxBStart <= aShapeBoxBEnd, "Bad shape box coordinates!");
NS_ASSERTION(aBandBStart <= aBandBEnd, "Bad band coordinates!");
nscoord lineDiff = 0;
// If the band intersects both the block-start and block-end corners, we
// don't need to enter either branch because the correct lineDiff is 0.
if (aBStartCornerRadiusB > 0 &&
aBandBEnd >= aShapeBoxBStart &&
aBandBEnd <= aShapeBoxBStart + aBStartCornerRadiusB) {
// The band intersects only the block-start corner.
nscoord b = aBStartCornerRadiusB - (aBandBEnd - aShapeBoxBStart);
nscoord lineIntercept =
XInterceptAtY(b, aBStartCornerRadiusL, aBStartCornerRadiusB);
lineDiff = aBStartCornerRadiusL - lineIntercept;
} else if (aBEndCornerRadiusB > 0 &&
aBandBStart >= aShapeBoxBEnd - aBEndCornerRadiusB &&
aBandBStart <= aShapeBoxBEnd) {
// The band intersects only the block-end corner.
nscoord b = aBEndCornerRadiusB - (aShapeBoxBEnd - aBandBStart);
nscoord lineIntercept =
XInterceptAtY(b, aBEndCornerRadiusL, aBEndCornerRadiusB);
lineDiff = aBEndCornerRadiusL - lineIntercept;
}
return lineDiff;
}
/* static */ nscoord
nsFloatManager::ShapeInfo::XInterceptAtY(const nscoord aY,
const nscoord aRadiusX,
const nscoord aRadiusY)
{
// Solve for x in the ellipse equation (x/radiusX)^2 + (y/radiusY)^2 = 1.
MOZ_ASSERT(aRadiusY > 0);
return aRadiusX * std::sqrt(1 - (aY * aY) / double(aRadiusY * aRadiusY));
}
/* static */ nsPoint
nsFloatManager::ShapeInfo::ConvertToFloatLogical(
const nsPoint& aPoint,
WritingMode aWM,
const nsSize& aContainerSize)
{
LogicalPoint logicalPoint(aWM, aPoint, aContainerSize);
return nsPoint(logicalPoint.LineRelative(aWM, aContainerSize),
logicalPoint.B(aWM));
}
/* static */ UniquePtr<nscoord[]>
nsFloatManager::ShapeInfo::ConvertToFloatLogical(const nscoord aRadii[8],
WritingMode aWM)
{
UniquePtr<nscoord[]> logicalRadii(new nscoord[8]);
// Get the physical side for line-left and line-right since border radii
// are on the physical axis.
Side lineLeftSide =
aWM.PhysicalSide(aWM.LogicalSideForLineRelativeDir(eLineRelativeDirLeft));
logicalRadii[eCornerTopLeftX] =
aRadii[SideToHalfCorner(lineLeftSide, true, false)];
logicalRadii[eCornerTopLeftY] =
aRadii[SideToHalfCorner(lineLeftSide, true, true)];
logicalRadii[eCornerBottomLeftX] =
aRadii[SideToHalfCorner(lineLeftSide, false, false)];
logicalRadii[eCornerBottomLeftY] =
aRadii[SideToHalfCorner(lineLeftSide, false, true)];
Side lineRightSide =
aWM.PhysicalSide(aWM.LogicalSideForLineRelativeDir(eLineRelativeDirRight));
logicalRadii[eCornerTopRightX] =
aRadii[SideToHalfCorner(lineRightSide, false, false)];
logicalRadii[eCornerTopRightY] =
aRadii[SideToHalfCorner(lineRightSide, false, true)];
logicalRadii[eCornerBottomRightX] =
aRadii[SideToHalfCorner(lineRightSide, true, false)];
logicalRadii[eCornerBottomRightY] =
aRadii[SideToHalfCorner(lineRightSide, true, true)];
if (aWM.IsLineInverted()) {
// When IsLineInverted() is true, i.e. aWM is vertical-lr,
// line-over/line-under are inverted from block-start/block-end. So the
// relationship reverses between which corner comes first going
// clockwise, and which corner is block-start versus block-end. We need
// to swap the values stored in top and bottom corners.
std::swap(logicalRadii[eCornerTopLeftX], logicalRadii[eCornerBottomLeftX]);
std::swap(logicalRadii[eCornerTopLeftY], logicalRadii[eCornerBottomLeftY]);
std::swap(logicalRadii[eCornerTopRightX], logicalRadii[eCornerBottomRightX]);
std::swap(logicalRadii[eCornerTopRightY], logicalRadii[eCornerBottomRightY]);
}
return logicalRadii;
}
//----------------------------------------------------------------------
nsAutoFloatManager::~nsAutoFloatManager()
{
// Restore the old float manager in the reflow input if necessary.
if (mNew) {
#ifdef DEBUG
if (nsBlockFrame::gNoisyFloatManager) {
printf("restoring old float manager %p\n", mOld);
}
#endif
mReflowInput.mFloatManager = mOld;
#ifdef DEBUG
if (nsBlockFrame::gNoisyFloatManager) {
if (mOld) {
mReflowInput.mFrame->ListTag(stdout);
printf(": float manager %p after reflow\n", mOld);
mOld->List(stdout);
}
}
#endif
}
}
void
nsAutoFloatManager::CreateFloatManager(nsPresContext *aPresContext)
{
MOZ_ASSERT(!mNew, "Redundant call to CreateFloatManager!");
// Create a new float manager and install it in the reflow
// input. `Remember' the old float manager so we can restore it
// later.
mNew = MakeUnique<nsFloatManager>(aPresContext->PresShell(),
mReflowInput.GetWritingMode());
#ifdef DEBUG
if (nsBlockFrame::gNoisyFloatManager) {
printf("constructed new float manager %p (replacing %p)\n",
mNew.get(), mReflowInput.mFloatManager);
}
#endif
// Set the float manager in the existing reflow input.
mOld = mReflowInput.mFloatManager;
mReflowInput.mFloatManager = mNew.get();
}