gecko-dev/tools/profiler/lul/LulMainInt.h

632 строки
23 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef LulMainInt_h
#define LulMainInt_h
#include "PlatformMacros.h"
#include "LulMain.h" // for TaggedUWord
#include <string>
#include <vector>
#include "mozilla/Assertions.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/HashTable.h"
#include "mozilla/Sprintf.h"
// This file provides an internal interface inside LUL. If you are an
// end-user of LUL, do not include it in your code. The end-user
// interface is in LulMain.h.
namespace lul {
using std::vector;
////////////////////////////////////////////////////////////////
// DW_REG_ constants //
////////////////////////////////////////////////////////////////
// These are the Dwarf CFI register numbers, as (presumably) defined
// in the ELF ABI supplements for each architecture.
enum DW_REG_NUMBER {
// No real register has this number. It's convenient to be able to
// treat the CFA (Canonical Frame Address) as "just another
// register", though.
DW_REG_CFA = -1,
#if defined(GP_ARCH_arm)
// ARM registers
DW_REG_ARM_R7 = 7,
DW_REG_ARM_R11 = 11,
DW_REG_ARM_R12 = 12,
DW_REG_ARM_R13 = 13,
DW_REG_ARM_R14 = 14,
DW_REG_ARM_R15 = 15,
#elif defined(GP_ARCH_arm64)
// aarch64 registers
DW_REG_AARCH64_X29 = 29,
DW_REG_AARCH64_X30 = 30,
DW_REG_AARCH64_SP = 31,
#elif defined(GP_ARCH_amd64)
// Because the X86 (32 bit) and AMD64 (64 bit) summarisers are
// combined, a merged set of register constants is needed.
DW_REG_INTEL_XBP = 6,
DW_REG_INTEL_XSP = 7,
DW_REG_INTEL_XIP = 16,
#elif defined(GP_ARCH_x86)
DW_REG_INTEL_XBP = 5,
DW_REG_INTEL_XSP = 4,
DW_REG_INTEL_XIP = 8,
#elif defined(GP_ARCH_mips64)
DW_REG_MIPS_SP = 29,
DW_REG_MIPS_FP = 30,
DW_REG_MIPS_PC = 34,
#else
# error "Unknown arch"
#endif
};
////////////////////////////////////////////////////////////////
// PfxExpr //
////////////////////////////////////////////////////////////////
enum PfxExprOp {
// meaning of mOperand effect on stack
PX_Start, // bool start-with-CFA? start, with CFA on stack, or not
PX_End, // none stop; result is at top of stack
PX_SImm32, // int32 push signed int32
PX_DwReg, // DW_REG_NUMBER push value of the specified reg
PX_Deref, // none pop X ; push *X
PX_Add, // none pop X ; pop Y ; push Y + X
PX_Sub, // none pop X ; pop Y ; push Y - X
PX_And, // none pop X ; pop Y ; push Y & X
PX_Or, // none pop X ; pop Y ; push Y | X
PX_CmpGES, // none pop X ; pop Y ; push (Y >=s X) ? 1 : 0
PX_Shl // none pop X ; pop Y ; push Y << X
};
struct PfxInstr {
PfxInstr(PfxExprOp opcode, int32_t operand)
: mOpcode(opcode), mOperand(operand) {}
explicit PfxInstr(PfxExprOp opcode) : mOpcode(opcode), mOperand(0) {}
bool operator==(const PfxInstr& other) const {
return mOpcode == other.mOpcode && mOperand == other.mOperand;
}
PfxExprOp mOpcode;
int32_t mOperand;
};
static_assert(sizeof(PfxInstr) <= 8, "PfxInstr size changed unexpectedly");
// Evaluate the prefix expression whose PfxInstrs start at aPfxInstrs[start].
// In the case of any mishap (stack over/underflow, running off the end of
// the instruction vector, obviously malformed sequences),
// return an invalid TaggedUWord.
// RUNS IN NO-MALLOC CONTEXT
TaggedUWord EvaluatePfxExpr(int32_t start, const UnwindRegs* aOldRegs,
TaggedUWord aCFA, const StackImage* aStackImg,
const vector<PfxInstr>& aPfxInstrs);
////////////////////////////////////////////////////////////////
// LExpr //
////////////////////////////////////////////////////////////////
// An expression -- very primitive. Denotes either "register +
// offset", a dereferenced version of the same, or a reference to a
// prefix expression stored elsewhere. So as to allow convenient
// handling of Dwarf-derived unwind info, the register may also denote
// the CFA. A large number of these need to be stored, so we ensure
// it fits into 8 bytes. See comment below on RuleSet to see how
// expressions fit into the bigger picture.
enum LExprHow {
UNKNOWN = 0, // This LExpr denotes no value.
NODEREF, // Value is (mReg + mOffset).
DEREF, // Value is *(mReg + mOffset).
PFXEXPR // Value is EvaluatePfxExpr(secMap->mPfxInstrs[mOffset])
};
inline static const char* NameOf_LExprHow(LExprHow how) {
switch (how) {
case UNKNOWN:
return "UNKNOWN";
case NODEREF:
return "NODEREF";
case DEREF:
return "DEREF";
case PFXEXPR:
return "PFXEXPR";
default:
return "LExpr-??";
}
}
struct LExpr {
// Denotes an expression with no value.
LExpr() : mHow(UNKNOWN), mReg(0), mOffset(0) {}
// Denotes any expressible expression.
LExpr(LExprHow how, int16_t reg, int32_t offset)
: mHow(how), mReg(reg), mOffset(offset) {
switch (how) {
case UNKNOWN:
MOZ_ASSERT(reg == 0 && offset == 0);
break;
case NODEREF:
break;
case DEREF:
break;
case PFXEXPR:
MOZ_ASSERT(reg == 0 && offset >= 0);
break;
default:
MOZ_RELEASE_ASSERT(0, "LExpr::LExpr: invalid how");
}
}
// Hash it, carefully looking only at defined parts.
mozilla::HashNumber hash() const {
mozilla::HashNumber h = mHow;
switch (mHow) {
case UNKNOWN:
break;
case NODEREF:
case DEREF:
h = mozilla::AddToHash(h, mReg);
h = mozilla::AddToHash(h, mOffset);
break;
case PFXEXPR:
h = mozilla::AddToHash(h, mOffset);
break;
default:
MOZ_RELEASE_ASSERT(0, "LExpr::hash: invalid how");
}
return h;
}
// And structural equality.
bool equals(const LExpr& other) const {
if (mHow != other.mHow) {
return false;
}
switch (mHow) {
case UNKNOWN:
return true;
case NODEREF:
case DEREF:
return mReg == other.mReg && mOffset == other.mOffset;
case PFXEXPR:
return mOffset == other.mOffset;
default:
MOZ_RELEASE_ASSERT(0, "LExpr::equals: invalid how");
}
}
// Change the offset for an expression that references memory.
LExpr add_delta(long delta) {
MOZ_ASSERT(mHow == NODEREF);
// If this is a non-debug build and the above assertion would have
// failed, at least return LExpr() so that the machinery that uses
// the resulting expression fails in a repeatable way.
return (mHow == NODEREF) ? LExpr(mHow, mReg, mOffset + delta)
: LExpr(); // Gone bad
}
// Dereference an expression that denotes a memory address.
LExpr deref() {
MOZ_ASSERT(mHow == NODEREF);
// Same rationale as for add_delta().
return (mHow == NODEREF) ? LExpr(DEREF, mReg, mOffset)
: LExpr(); // Gone bad
}
// Print a rule for recovery of |aNewReg| whose recovered value
// is this LExpr.
std::string ShowRule(const char* aNewReg) const;
// Evaluate this expression, producing a TaggedUWord. |aOldRegs|
// holds register values that may be referred to by the expression.
// |aCFA| holds the CFA value, if any, that applies. |aStackImg|
// contains a chuck of stack that will be consulted if the expression
// references memory. |aPfxInstrs| holds the vector of PfxInstrs
// that will be consulted if this is a PFXEXPR.
// RUNS IN NO-MALLOC CONTEXT
TaggedUWord EvaluateExpr(const UnwindRegs* aOldRegs, TaggedUWord aCFA,
const StackImage* aStackImg,
const vector<PfxInstr>* aPfxInstrs) const;
// Representation of expressions. If |mReg| is DW_REG_CFA (-1) then
// it denotes the CFA. All other allowed values for |mReg| are
// nonnegative and are DW_REG_ values.
LExprHow mHow : 8;
int16_t mReg; // A DW_REG_ value
int32_t mOffset; // 32-bit signed offset should be more than enough.
};
static_assert(sizeof(LExpr) <= 8, "LExpr size changed unexpectedly");
////////////////////////////////////////////////////////////////
// RuleSet //
////////////////////////////////////////////////////////////////
// This is platform-dependent. It describes how to recover the CFA and then
// how to recover the registers for the previous frame. Such "recipes" are
// specific to particular ranges of machine code, but the associated range
// is not stored in RuleSet, because in general each RuleSet may be used
// for many such range fragments ("extents"). See the comments below for
// Extent and SecMap.
//
// The set of LExprs contained in a given RuleSet describe a DAG which
// says how to compute the caller's registers ("new registers") from
// the callee's registers ("old registers"). The DAG can contain a
// single internal node, which is the value of the CFA for the callee.
// It would be possible to construct a DAG that omits the CFA, but
// including it makes the summarisers simpler, and the Dwarf CFI spec
// has the CFA as a central concept.
//
// For this to make sense, |mCfaExpr| can't have
// |mReg| == DW_REG_CFA since we have no previous value for the CFA.
// All of the other |Expr| fields can -- and usually do -- specify
// |mReg| == DW_REG_CFA.
//
// With that in place, the unwind algorithm proceeds as follows.
//
// (0) Initially: we have values for the old registers, and a memory
// image.
//
// (1) Compute the CFA by evaluating |mCfaExpr|. Add the computed
// value to the set of "old registers".
//
// (2) Compute values for the registers by evaluating all of the other
// |Expr| fields in the RuleSet. These can depend on both the old
// register values and the just-computed CFA.
//
// If we are unwinding without computing a CFA, perhaps because the
// RuleSets are derived from EXIDX instead of Dwarf, then
// |mCfaExpr.mHow| will be LExpr::UNKNOWN, so the computed value will
// be invalid -- that is, TaggedUWord() -- and so any attempt to use
// that will result in the same value. But that's OK because the
// RuleSet would make no sense if depended on the CFA but specified no
// way to compute it.
//
// A RuleSet is not allowed to cover zero address range. Having zero
// length would break binary searching in SecMaps and PriMaps.
class RuleSet {
public:
RuleSet();
void Print(uintptr_t avma, uintptr_t len, void (*aLog)(const char*)) const;
// Find the LExpr* for a given DW_REG_ value in this class.
LExpr* ExprForRegno(DW_REG_NUMBER aRegno);
// How to compute the CFA.
LExpr mCfaExpr;
// How to compute caller register values. These may reference the
// value defined by |mCfaExpr|.
#if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
LExpr mXipExpr; // return address
LExpr mXspExpr;
LExpr mXbpExpr;
#elif defined(GP_ARCH_arm)
LExpr mR15expr; // return address
LExpr mR14expr;
LExpr mR13expr;
LExpr mR12expr;
LExpr mR11expr;
LExpr mR7expr;
#elif defined(GP_ARCH_arm64)
LExpr mX29expr; // frame pointer register
LExpr mX30expr; // link register
LExpr mSPexpr;
#elif defined(GP_ARCH_mips64)
LExpr mPCexpr;
LExpr mFPexpr;
LExpr mSPexpr;
#else
# error "Unknown arch"
#endif
// Machinery in support of hashing.
typedef RuleSet Lookup;
static mozilla::HashNumber hash(RuleSet rs) {
mozilla::HashNumber h = rs.mCfaExpr.hash();
#if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
h = mozilla::AddToHash(h, rs.mXipExpr.hash());
h = mozilla::AddToHash(h, rs.mXspExpr.hash());
h = mozilla::AddToHash(h, rs.mXbpExpr.hash());
#elif defined(GP_ARCH_arm)
h = mozilla::AddToHash(h, rs.mR15expr.hash());
h = mozilla::AddToHash(h, rs.mR14expr.hash());
h = mozilla::AddToHash(h, rs.mR13expr.hash());
h = mozilla::AddToHash(h, rs.mR12expr.hash());
h = mozilla::AddToHash(h, rs.mR11expr.hash());
h = mozilla::AddToHash(h, rs.mR7expr.hash());
#elif defined(GP_ARCH_arm64)
h = mozilla::AddToHash(h, rs.mX29expr.hash());
h = mozilla::AddToHash(h, rs.mX30expr.hash());
h = mozilla::AddToHash(h, rs.mSPexpr.hash());
#elif defined(GP_ARCH_mips64)
h = mozilla::AddToHash(h, rs.mPCexpr.hash());
h = mozilla::AddToHash(h, rs.mFPexpr.hash());
h = mozilla::AddToHash(h, rs.mSPexpr.hash());
#else
# error "Unknown arch"
#endif
return h;
}
static bool match(const RuleSet& rs1, const RuleSet& rs2) {
return rs1.mCfaExpr.equals(rs2.mCfaExpr) &&
#if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
rs1.mXipExpr.equals(rs2.mXipExpr) &&
rs1.mXspExpr.equals(rs2.mXspExpr) &&
rs1.mXbpExpr.equals(rs2.mXbpExpr);
#elif defined(GP_ARCH_arm)
rs1.mR15expr.equals(rs2.mR15expr) &&
rs1.mR14expr.equals(rs2.mR14expr) &&
rs1.mR13expr.equals(rs2.mR13expr) &&
rs1.mR12expr.equals(rs2.mR12expr) &&
rs1.mR11expr.equals(rs2.mR11expr) && rs1.mR7expr.equals(rs2.mR7expr);
#elif defined(GP_ARCH_arm64)
rs1.mX29expr.equals(rs2.mX29expr) &&
rs1.mX30expr.equals(rs2.mX30expr) && rs1.mSPexpr.equals(rs2.mSPexpr);
#elif defined(GP_ARCH_mips64)
rs1.mPCexpr.equals(rs2.mPCexpr) && rs1.mFPexpr.equals(rs2.mFPexpr) &&
rs1.mSPexpr.equals(rs2.mSPexpr);
#else
# error "Unknown arch"
#endif
}
};
// Returns |true| for Dwarf register numbers which are members
// of the set of registers that LUL unwinds on this target.
static inline bool registerIsTracked(DW_REG_NUMBER reg) {
switch (reg) {
#if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86)
case DW_REG_INTEL_XBP:
case DW_REG_INTEL_XSP:
case DW_REG_INTEL_XIP:
return true;
#elif defined(GP_ARCH_arm)
case DW_REG_ARM_R7:
case DW_REG_ARM_R11:
case DW_REG_ARM_R12:
case DW_REG_ARM_R13:
case DW_REG_ARM_R14:
case DW_REG_ARM_R15:
return true;
#elif defined(GP_ARCH_arm64)
case DW_REG_AARCH64_X29:
case DW_REG_AARCH64_X30:
case DW_REG_AARCH64_SP:
return true;
#elif defined(GP_ARCH_mips64)
case DW_REG_MIPS_FP:
case DW_REG_MIPS_SP:
case DW_REG_MIPS_PC:
return true;
#else
# error "Unknown arch"
#endif
default:
return false;
}
}
////////////////////////////////////////////////////////////////
// Extent //
////////////////////////////////////////////////////////////////
struct Extent {
// Three fields, which together take 8 bytes.
uint32_t mOffset;
uint16_t mLen;
uint16_t mDictIx;
// What this means is: suppose we are looking for the unwind rules for some
// code address (AVMA) `avma`. If we can find some SecMap `secmap` such
// that `avma` falls in the range
//
// `[secmap.mMapMinAVMA, secmap.mMapMaxAVMA]`
//
// then the RuleSet to use is `secmap.mDictionary[dictIx]` iff we can find
// an `extent` in `secmap.mExtents` such that `avma` falls into the range
//
// `[secmap.mMapMinAVMA + extent.offset(),
// secmap.mMapMinAVMA + extent.offset() + extent.len())`.
//
// Packing Extent into the minimum space is important, since there will be
// huge numbers of Extents -- around 3 million for libxul.so as of Sept
// 2020. Here, we aim for an 8-byte size, with the field sizes chosen
// carefully, as follows:
//
// `offset` denotes a byte offset inside the text section for some shared
// object. libxul.so is by far the largest. As of Sept 2020 it has a text
// size of up to around 120MB, that is, close to 2^27 bytes. Hence a 32-bit
// `offset` field gives a safety margin of around a factor of 32
// (== 2 ^(32 - 27)).
//
// `dictIx` indicates a unique `RuleSet` for some code address range.
// Experimentation on x86_64-linux indicates that only around 300 different
// `RuleSet`s exist, for libxul.so. A 16-bit bit field allows up to 65536
// to be recorded, hence leaving us a generous safety margin.
//
// `len` indicates the length of the associated address range.
//
// Note the representation becomes unusable if either `offset` overflows 32
// bits or `dictIx` overflows 16 bits. On the other hand, it does not
// matter (although is undesirable) if `len` overflows 16 bits, because in
// that case we can add multiple size-65535 entries to `secmap.mExtents` to
// cover the entire range. Hence the field sizes are biased so as to give a
// good safety margin for `offset` and `dictIx` at the cost of stealing bits
// from `len`. Almost all `len` values we will ever see in practice are
// 65535 or less, so stealing those bits does not matter much.
//
// If further compression is required, it would be feasible to implement
// Extent using 29 bits for the offset, 8 bits for the length and 11 bits
// for the dictionary index, giving a total of 6 bytes, provided that the
// data is packed into 3 uint16_t's. That would be a bit slower, though,
// due to the bit packing, and it would be more fragile, in the sense that
// it would fail for any object with more than 512MB of text segment, or
// with more than 2048 different `RuleSet`s. For the current (Sept 2020)
// libxul.so situation, though, it would work fine.
Extent(uint32_t offset, uint32_t len, uint32_t dictIx) {
MOZ_RELEASE_ASSERT(len < (1 << 16));
MOZ_RELEASE_ASSERT(dictIx < (1 << 16));
mOffset = offset;
mLen = len;
mDictIx = dictIx;
}
inline uint32_t offset() const { return mOffset; }
inline uint32_t len() const { return mLen; }
inline uint32_t dictIx() const { return mDictIx; }
void setLen(uint32_t len) {
MOZ_RELEASE_ASSERT(len < (1 << 16));
mLen = len;
}
void Print(void (*aLog)(const char*)) const {
char buf[64];
SprintfLiteral(buf, "Extent(offs=0x%x, len=%u, dictIx=%u)", this->offset(),
this->len(), this->dictIx());
aLog(buf);
}
};
static_assert(sizeof(Extent) == 8);
////////////////////////////////////////////////////////////////
// SecMap //
////////////////////////////////////////////////////////////////
// A SecMap may have zero address range, temporarily, whilst RuleSets
// are being added to it. But adding a zero-range SecMap to a PriMap
// will make it impossible to maintain the total order of the PriMap
// entries, and so that can't be allowed to happen.
class SecMap {
public:
// In the constructor, `mapStartAVMA` and `mapLen` define the actual
// (in-process) virtual addresses covered by the SecMap. All RuleSets
// subsequently added to it by calling `AddRuleSet` must fall into this
// address range, and attempts to add ones outside the range will be
// ignored. This restriction exists because the type Extent (see below)
// indicates an address range for a RuleSet, but for reasons of compactness,
// it does not contain the start address of the range. Instead, it contains
// a 32-bit offset from the base address of the SecMap. This is also the
// reason why the map's size is a `uint32_t` and not a `uintptr_t`.
//
// The effect is to limit this mechanism to shared objects / executables
// whose text section size does not exceed 4GB (2^32 bytes). Given that, as
// of Sept 2020, libxul.so's text section size is around 120MB, this does
// not seem like much of a limitation.
//
// From the supplied `mapStartAVMA` and `mapLen`, fields `mMapMinAVMA` and
// `mMapMaxAVMA` are calculated. It is intended that no two SecMaps owned
// by the same PriMap contain overlapping address ranges, and the PriMap
// logic enforces that.
//
// Some invariants:
//
// mExtents is nonempty
// <=> mMapMinAVMA <= mMapMaxAVMA
// && mMapMinAVMA <= apply_delta(mExtents[0].offset())
// && apply_delta(mExtents[#rulesets-1].offset()
// + mExtents[#rulesets-1].len() - 1) <= mMapMaxAVMA
// where
// apply_delta(off) = off + mMapMinAVMA
//
// This requires that no RuleSet has zero length.
//
// mExtents is empty
// <=> mMapMinAVMA > mMapMaxAVMA
//
// This doesn't constrain mMapMinAVMA and mMapMaxAVMA uniquely, so let's use
// mMapMinAVMA == 1 and mMapMaxAVMA == 0 to denote this case.
SecMap(uintptr_t mapStartAVMA, uint32_t mapLen, void (*aLog)(const char*));
~SecMap();
// Binary search mRuleSets to find one that brackets |ia|, or nullptr
// if none is found. It's not allowable to do this until PrepareRuleSets
// has been called first.
RuleSet* FindRuleSet(uintptr_t ia);
// Add a RuleSet to the collection. The rule is copied in. Calling
// this makes the map non-searchable.
void AddRuleSet(const RuleSet* rs, uintptr_t avma, uintptr_t len);
// Add a PfxInstr to the vector of such instrs, and return the index
// in the vector. Calling this makes the map non-searchable.
uint32_t AddPfxInstr(PfxInstr pfxi);
// Returns the entire vector of PfxInstrs.
const vector<PfxInstr>* GetPfxInstrs() { return &mPfxInstrs; }
// Prepare the map for searching, by sorting it, de-overlapping entries and
// removing any resulting zero-length entries. At the start of this
// routine, all Extents should fall within [mMapMinAVMA, mMapMaxAVMA] and
// not have zero length, as a result of the checks in AddRuleSet().
void PrepareRuleSets();
bool IsEmpty();
size_t Size() { return mExtents.size() + mDictionary.size(); }
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const;
// The extent of this SecMap as a whole. The extents of all contained
// RuleSets must fall inside this. See comment above for details.
uintptr_t mMapMinAVMA;
uintptr_t mMapMaxAVMA;
private:
// False whilst adding entries; true once it is safe to call FindRuleSet.
// Transition (false->true) is caused by calling PrepareRuleSets().
bool mUsable;
// This is used to find and remove duplicate RuleSets while we are adding
// them to the SecMap. Almost all RuleSets are duplicates, so de-duping
// them is a huge space win. This is non-null while `mUsable` is false, and
// becomes null (is discarded) after the call to PrepareRuleSets, which
// copies all the entries into `mDictionary`.
mozilla::UniquePtr<
mozilla::HashMap<RuleSet, uint32_t, RuleSet, InfallibleAllocPolicy>>
mUniqifier;
// This will contain final contents of `mUniqifier`, but ordered
// (implicitly) by the `uint32_t` value fields, for fast access.
vector<RuleSet> mDictionary;
// A vector of Extents, sorted by offset value, nonoverlapping (post
// PrepareRuleSets()).
vector<Extent> mExtents;
// A vector of PfxInstrs, which are referred to by the RuleSets.
// These are provided as a representation of Dwarf expressions
// (DW_CFA_val_expression, DW_CFA_expression, DW_CFA_def_cfa_expression),
// are relatively expensive to evaluate, and and are therefore
// expected to be used only occasionally.
//
// The vector holds a bunch of separate PfxInstr programs, each one
// starting with a PX_Start and terminated by a PX_End, all
// concatenated together. When a RuleSet can't recover a value
// using a self-contained LExpr, it uses a PFXEXPR whose mOffset is
// the index in this vector of start of the necessary PfxInstr program.
vector<PfxInstr> mPfxInstrs;
// A logging sink, for debugging.
void (*mLog)(const char*);
};
} // namespace lul
#endif // ndef LulMainInt_h